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Abstract [( iml]

h7 this paper, we present an automatic system ,/’or analyz-
ing and annotating video sequences of technical talks. Our
method uses a robust motion estimation technique to de-
tect key ,frames and segment the video sequence into sub-
sequences containing a single overhead slide. The subse-
quences are stabilized to remove motion that occurs when the
speaker adjusts their slides. Any changes remaining between
frames in the stabilized sequences may be due to speaker
gestures such as pointing or writing and we use active con-
tours to automatically track these potential gestures. Given
the constrained domain we de[ine a simple "vocabulary" of
actions which can easily be recognized based on the active
contour shape and motion. The recognized actions provide a
rich annotation of the sequence that can be used to access a
condensed version of the talk from a web page.

Introduction
In recent years, researchers have been increasingly inter-
ested in the problem of browsing and indexing video se-
quences. The majority of work has focused on the detection
of key frames and scene breaks in general, tmconstrained,
video databases (Otsuji & Tonomura 1994; Zabih, Miller,
& Mai 1996; Zhang, Kankanhalli, & Smoliar 1993). For
these methods to work on general video sequences they use
simple image processing techniques and do not attempt any
high-level analysis of the content of the sequence. In our
work we have chosen to constrain the domain of video se-
quences that we wish to analyze and look specifically at
video-taped presentations in which the camera is focused on
the speaker’s slides projected by an overhead projector. By
constraining the domain we are able to define a rich "vocab-
ulary" of actions that people perform during a presentation.
By automatically recognizing these actions we can provide
a rich annotation of the video sequence that can be used, for
example, to access a summarized or condensed version of
the talk from a web page.

Figure I shows a simple example of a video browsing and
indexing system. The original video stream is summarized
and annotated first. In previous versions of the system this
was an off-line process and the present paper addresses the
automation of this process. The outputs of the process are
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Figure I : A example system of video browsing and index-
ing

indices of the events and the images corresponding to these
events. This information is used to make a summary web
page containing images of each event and their time indices.
Our current system makes use of real-time JPEG decoding
hardware and a fiber-optic ATM network to permit access of
real-time audio and video from the web page.

Generally speaking, the goal of automatic video annota-
tion is to save a small set of frames that contain most of the
relevant information in the video sequence. In our restricted
domain of overhead presentations a number of "changes"
can occur in the inaage sequence. There are two classes
which we will call "nuisances" and "affordances’’~

Nuisance changes are those which we define to have no
relevant semantic interpretation (Figure 2). Examples 
this are when the speaker occludes the slide with their hand
or body or when the speaker moves the slide (an action that
we observe to be very common). These nuisance changes
are ones that we wish to ignore in the analysis and summa-
rization of the video sequence.

Affordances, on the other hand, are changes in the video

~The actual distinction between these classes is somewhat ar-
bitrary and is defined relative to the specific domain formulation
and problem to be solved.
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Figure 2: Nuisance changes.
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Figure 3: Affordances.

sequence that have a semantic interpretation with respect
to the presentation (Figure 3). For example, speakers often
write, point, or make repetitive gestures at locations on the
slide to which they are referring. Another common action is
to cover a portion of the slide and gradually reveal the un-
derlying text. We call these changes "affordances" because
we can take advantage of them to acquire more information
about the presentation.2 Automatic recognition of the affor-
dances can provide a rich description of the video. As we
will show, recognition of the affordances will allow us to
produce annotated key-frames from the video that will allow
users to later access portions of the talk where the speaker
gestured at a particular location on his or her slides.

In this paper we propose a novel approach of automatic
meeting video annotation. First, we estimate the global im-
age motion between every two consecutive frames using a
robust regression method. The motion information is used
to compute a warped sequence where the slides are stabi-
lized. Second, the stabilized sequence is processed to ex-
tract slide templates, or key frames. Third, we compute a
pixel-wise difference image between the slide templates and
the corresponding frames in the stabilized image sequence.
These difference images contain only occluded/disoccluded
objects, e.g., the gestures. Then we track these gestures us-
ing a deformable contour model. By analyzing the shape
of the contour and its motion over time, we can recognize
pointing gestures and recover the location on the slide to

2Gibson (Gibson 1979) uses the term affordances to describe
invariant properties of an environment that an organism can use to
their advantage.

which the speaker is referring. Finally, the key frames and
gesture information can be integrated to annotate the video.
We will describe the first three steps in Sections 3 through
6. In Section 2, we briefly review previous work on video
summarization.

Related Work
The two main themes explored in previous work on auto-
matic video summarization can be broadly described as seg-
mentation and analysis. The work on segmentation focuses
on finding scene changes or key frames in the video while
work on analysis focuses on understanding actions or events
(typically in a more restricted domain). Both types of anal-
ysis are important to provide useful video summarization.

Scene-break detection is a first step towards the automatic
annotation of digital video sequences. There are two basic
types of algorithms for scene-break detection. The first uses
image-based methods, such as image differencing and color
histograming (Otsuji & Tonomura 1994; Zhang, Kankan-
halli, & Smoliar 1993). The second, feature-based methods,
use image edge pixels (Zabih, Miller, & Mai 1996). These
algorithms typically compute the differences between two
consecutive images and, when the difference is larger than
a threshold, there may be a scene break.

Simple image-based differencing tends to over-segment
the video sequence when there is motion present in the scene
or when the camera is moving since many pixels will change
their color from frame to frame. Zabih et al. (Zabih, Miller,
& Mai 1996) recently proposed a feature-based method.
They detected the appearance of intensity edges that are
distant from edges in the previous frame. A global mo-
tion computation is used to handle camera or object motion.
Their method can detect and classify scene breaks that are
difficult to detect with image-based methods. However their
motion estimation technique (the correlation method and the
Hausdorff distance method) can not handle multiple moving
objects well. Generally speaking, the image- and feature-
based methods are naive approaches that use straightfor-
ward measurements of scene change. For simply detecting
scene changes, these methods are fast.

There has been somewhat less attention paid to the se-
mantic analysis of video and arguably this is a tremendously
hard problem in general and previous work has focused
on narrow domains. Intille and Bobick (Intille & Bobick
1995) refer to these restricted domains as "closed-worlds"
and their work focuses on the tracking and analysis of play-
ers in a football game. As in our work, they must register
multiple frames in a video sequence in which other changes
are occurring. They manually register the frames while we
use an automatic robust estimation technique to perform this
task. Their domain did not require them to address the seg-
mentation of the video into multiple scenes (cut detection).
Like us, they define a narrow domain in which they can ex-
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press prior assumptions about the semantics of changes in
the scene.

Other recent attempts to provide an automated analysis
of video in restricted domains include the work of Mann et
al. (Mann, Jepson, & Siskind 1996) who propose a method
for analyzing the physical interactions between objects in a
video sequence and that of Brand (Brand 1996) who looks
at understanding human actions in video for the purpose of
video summarization. Earlier work on the linguistic analy-
sis of action in video focused on generating descriptions of a
soccer match given manually generated motion information
(Andre, Gergog, & Rist 1988; Retz-schmidt 1988).

We will present a robust motion estimation method in the
following section, which can recover the motion of over-
head slides accurately. This will be used to automatically
stabilize the image sequence and to reliably detect slide
changes in the sequence. We then present a method for ges-
ture tracking and recognition.

Motion estimation
Image motion between two frames can be estimated using
a parametric model. Parametric models of image motion
make explicit assumptions that the image flow can be repre-
sented by a low-order polynomial. For example, we assume
that the slides are always perpendicular to camera’s viewing
axis, and they can be modeled as a rigid plane. Therefore,
the image motion can only be translation, scaling, or rota-
tion. For small motions, these can be described by the fol-
lowing four-parameter model:

u(x.y) = ao+alx--a2y, (1)

v(x.y) = a3+a2x÷aly, (2)

where a = [ao, al. a2, a3] denotes the vector of parame-
ters to be estimated, and u(x, a) = [u(x, y), v(x, y)] are
the horizontal and vertical components of the flow at image
point x = [x, y]. The coordinates (x, y) are defined with re-
spect to a particular point; here this is taken to be the center
of the image.

To estimate the motion parameters, a, for a given patch
we make the assumption that the brightness pattern within
the patch remains constant while the patch may translate,
scale, or rotate. This brightness constancy assumption is
formulated as

I(x+u(x,a),t+l)=I(x,t), VxC~ (3)

where a denotes the motion model for patch R, I is the im-
age brightness function and t represents time. This equation
simply states that the motion u(x, a) can be used to warp
image at time t -4- 1 to make it look like the image at time t.

Note that the brightness constancy assumption is often
violated in practice due to changes in lighting, occlusion
boundaries, specular reflections, etc. In our domain of

view-graphs, violations will occur in situations in which the
speaker occludes their slides. Robust regression has been
shown to provide accurate motion estimates in a variety of
situations in which the brightness constancy assumption is
violated (Black & Anandan 1996). To estimate the slide mo-
tion, a, robustly, we minimize

E.~ = Z p(I(x + u(x,a),t + l)- I(x,t),~ ), (4)
xET~

with respect to the parameters a for some robust error norm
p where a is a scale parameter (see (Black & Anandan 1996)
for details). Violations of the brightness constancy assump-
tion can be viewed as "outliers" (Hampel et al. 1986) and
we need to choose the function p such that it is insensitive
to these large errors.

Equation 4 is minimized using a simple gradient descent
scheme (Black & Anandan 1996). The robust formulation
of Equation 4 means that the algorithm estimates the dom-
inant motion in the scene (i.e. the slide motion) and auto-
matically ignores the image points that belong to other mo-
tions (the gestures). Gestures will be tracked using a differ-
ent technique described in the Section 5. In the following
section we will use the motion information to stabilize the
image sequence with respect to key frames.

Key-Frame Detection
Given an image sequence corresponding to a particular
slide, stabilization is just a process of warping each of the
images towards a reference image by taking into account the
cumulative motion estimated between each of the frames in
the sequence. Since minimizing Equation 4 can only esti-
mate small image motions between two consecutive images,
we need to compute the motion between the reference image
and each following frame. Given a,~_ 1, the motion between
the reference image and frame n - 1, and an, the motion
between frame n - I and n, image motion between the ref-
erence image and frame n is:

an = an-1 -4- a,~ + da

(I,n--13 --an--12 an--ll --an lo

where an-la, for example, represents the paramter aa from
the previous frame n - 1.

We use a simple heuristic that the reference frame is the
first non-blank image for which the motion is smaller than
a threshold. For subsequent images, if the motion estima-
tion method succeeds (has low error) then the image belongs
to the same subsequence as the reference frame. When the
motion estimation method fails, it means that two consecu-
tive frames are significantly dissimilar and can not be mod-
eled by Equations l and 2. Thus, it typically corresponds
to a change of slides, and we use this frame to end the sub-
sequence and we begin looking for the next stable reference
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Figure 4: The key frame detection: filtering the stabilized
sequence.

Figure 6: Gesture Tracking: a deformable image boundary.

image. In the domain of overhead presentations this simple
strategy works well.

Since we only estimate the dominant (slide) motion 
the scene, the warped sequence contains both the stabilized
slide and moving objects, such as the hand of the speaker.
To get a template image that contains no gestures, we use
a median temporal filter to remove the moving objects in
the sequence (Wang & Adelson 1993). At each image posi-
tion, we take all the values at this position in the stabilized
frames, find the median value, and use it as the intensity
value of the slide template. The median filter can filter out
the gestures, hand motions, and partial occlusion. Finally
we find which of the stabilized frames is most similar to the
template, and use this particular frame as our key frame of
the slide (see Figure 4).

Experimental results

We collected a short image sequence to simulate a talk (ap-
proximately 3200 frames over 105 seconds of video) in
which the camera is focused on the speaker’s slides on a
desktop. The speaker used three slides during the talk. They
put the first slide on, moved it up then down, pointed to a
few bullets on the slide, and then took it away. The second
slide was partly covered at first, then the cover sheet was
moved down to reveal the slide. The speaker also wrote a
few words on the third slide. During the "talk", the speaker
frequently adjusted the position of their slides.

Figure 5 shows the three automatically recovered key
frames. Since we warp all the frames backward toward the
first reference frame, the slides should be put roughly in the
center of the viewing area at first. Note that, while it did
not occur with this sequence, the median filter could pro-
duce unexpected results. For instance, if the speaker puts
their hand on the slide for a significantly long period of time,
the hand will be considered as part of the key frame or tem-
plate. More sophisticated techniques would be required to
distinguish hands from slides but it is not clear whether this
is necessary or desirable.

Gesture Tracking
If we compute the absolute difference between the slide
template and images in the warped sequence, the non-zero

Figure 7: The snake at iteration 1, 20, 40 and 60.

pixels in the image must correspond to gestures, covered
data, or written text. Since all the gestures must enter the
scene or leave the scene from the image botmdary, new ma-
terial can not suddenly appear in the middle of the image.
Therefore, we can let the image boundary deform when a
"thing" enters, such that it tracks the contour of the enter-
ing object. If the object leaves, the deformable contour will
expand to the image boundary (See Figure 6).

We use controlled continuity splines, or "Snakes" (Kass,
Witkin, & Terzopouios 1987), to model the deformable con-
tour. The idea is to have the snake lock on to features
of an image structure by minimizing an integral measure
which represents the snake’s total energy. Due to the dy-
namic property of the snake model, we can achieve auto-
matic tracking of a contour from frame to frame.

The behavior of a snake is controlled by internal and ex-
ternal forces. The internal forces serve as a smoothness con-
straint, and the external forces guide the active contour to-
wards inaage features. Following the notation from the orig-
inal model proposed by Kass et al. (Kass, Witkin, & Ter-
zopoulos 1987), given a parametric representation of an im-
age curve v(s) = (:n:(s),’!l(.s)), the energy function is de-
fined as

,f.~n~kc = 8~,,(v(s)) $,~(v(s))d,.s. (5)

The function £i,~, represents the internal energy of the active
contour and is composed of a first and second order deriva-
tive terms (v.~ and v~.~ respectively):

E¢,,, = (~,lv~(s)l2 + f~lv,,(.~)l=)/2. (6)
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Figure 5: The key frames of: (a) slide I (b) slide 2 (c) slide 

Figure 9: Finding the contour of the object.

Figure 8: Snake Tracking at frame 1220, 1240, 1280 and
1312.

The first-order term makes the snake act like a string and
the second-order term makes it act like a rod. Adjusting the
weights ~ and/’:~ controls the relative importance of the first
and second terms.

~¢,:.~ represents the extemal potential

E,:,,, = PC:,., :,j) - g = ~:[G~, ,I,(.~:, v)] - 

where K is a constant expansion force, c is a constant
weight, ~IJ is a difference image, and G~, 9 denotes the
difference image convolved with a Gaussian smoothing fil-
ter. The active contour model in Equation (5) attempts 
find a contour which is both smooth and which minimizes
the value of P(:J:,y) at every snake node (.~,y). P(:r.y)
is a scalar potential function defined over image plane. If
the value of P is large over some region that overlaps the
boundary of the image (because the hand has entered the
slide) then the snake will deform around the region until
P(a:, !l) is small enough along the contour and both the in-
ternal and extemal forces are balanced. If the hand leaves
the frame the default expansion force will push the snake
back out to the image boundary.

Minimizing the energy function of Equation 5 gives rise
to two independent Euler equations (Kass, Witkin, & Ter-
zopoulos 1987). The tracking behavior of the snake is

achieved by numerical, iterative solution of these two equa-
tions using techniques from variational calculus (See (Kass,
Witkin, & Terzopoulos 1987) for details).

It is well known that if the initial snake position is not
chosen properly, the contour will fail to converge to desir-
able features. We can initialize a closed snake to be at the
position of image boundary, and avoid the hard problem
of automatic initialization of snakes. Figure 7 shows how
the snake deforms to find the object boundary. The image
shows the absolute difference between one of the frames in
the sequence and the corresponding key frame. Bright ar-
eas correspond to the hand of the speaker making a point-
ing gesture. Once the snake locks onto image features, we
can change the external image to the next frame. The snake
is able to track the moving object when the images change
(See Figure 8). In Figure 7 and 8, white dots indicate the
snake nodes.

There is a problem of using the difference images for the
external potential. If the entering object has a color simi-
lar to that of the slide, the snake will not track it since the
external image force will be too small. In our experiments,
the snake model failed to track a gesture sequence involv-
ing pointing with a pen which was relatively small and of
similar color to the slide.

Recognizing Pointing Gestures
From the snake nodes, we can detect if, and where, the
speaker is pointing on the slides. Our method has three
steps. First, we fit a bounding quadrilateral to the snake
nodes by finding the four comers. The nodes that are not
close to any edge of the quadrilateral belong to the deformed
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Figure 10: Pointing position

part of the Snake, that is, the contour of the object (Figure
9).

Second, we define a starting point to be the middle point
between the first node and the last node of the contour (Fig-
ure 10). Among all the snake nodes on the contour, the one
that is fi~rthest from this starting point is defined as the point-
ing position. The line which connects the starting point and
the pointing position will give us the rough pointing direc-
tion.

Finally, we will recognize the pointing gesture. Two
het, ristics are used to filter out the non-gestures. The first is
a constraint on the spatial structure of the gesturing object;
we want it to have a definite "point". The pointing positions
that are too close to the first or last node in the segmented
gesture are therefore eliminated (Figure 1 I, row one).

The second heuristic models the expected temporal pat-
tern of gestures. We only recognize an action as a pointing
gesture if the speaker points at one position for a time longer
than a threshold (e.g., longer than 0.5 second). In the sec-
ond row of Figure I I, a hand moves continuously from left
to right in the sequence. We will not classify this gesture as
pointing. In the third row, on the other hand, the finger stays
at roughly the same position for a while, and it will be recog-
nized as a pointing gesture. More sophisticated techniques
could be employed for recognizing more complex gestures
(cf. (Bobick & Wilson 1996)).

On the first slide of our experimental sequence, the
speaker pointed to the two top boxes and the two following
bullets. Figure 12 shows a few images from this portion of
the experimental sequence. During this portion of the talk
the speaker moved the slides a number of times.

Figure 13 shows the resulting analysis of our system for
this portion of the sequence. Four distinct pointing gestures
were recognized and the estimated pointing positions are
marked on the slide template by a pointing-hand icon. These
four slides become part of the web-based interface to the talk
allowing the user to access the original video and audio at
those points in the talk relevant to their interests. Note that
nuisance gestures corresponding to the speaker moving the
slides have been correctly eliminated.

Conclusion
We propose a fully atttomatic method that can robustly de-
tect key frames of a video captured in a meeting. The

not ap~’n~

not a pointing

/
good pointing position

Figure I 1" Good and bad pointing.

method is robust with respect to slide motions, occlusions
and gestures. It can also provide richer description of the
slides, such as where the speaker is pointing. This automatic
video annotation and analysis system will help the user ac-
cess meeting videos intelligently.

Note that this is an off-line process. The original digitized
video sequence is saved in JPEG format and must be de-
compressed before processing. The decompression, motion
estimation and key-frame detection parts of our algorithm
take approximately 20 minutes to process the near 2 minute
video of our simulated talk. This time is highly dependent
on whether or not there are a lot of changes in the scene.
Since the sequence we use has a large number of motions
and gestures in short period of time, the cost of motion es-
timation is high. With gesture tracking, the algorithm takes
nearly 50 minutes in total for the 2 minute sequence.

In future work we would like to match the low resolu-
tion slide template image with a stored postscript file of the
slides. This would provide an automatic correspondence
between the low-resoh, tion video and a postscript version
of the talk and would allow a user to view or print specific
slides at high resolution. We also leave the detection of re-
vealing and writing affordances for future work.
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