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Abstract

In this thesis the problem of localizing discontinuities while smoothing noisy data
is solved fer the surface reconstruction method known as Curvature Consistency. In
this algorithm, noisy initial estimates of surface patches are refined according to a
continuity model, using a relaxation process. The interaction between neighbouring
pixels in local neighbourhoods during relaxation is shown to be equivalent to a multi-
ple measurement fusion process, where each pixel acts as a measurement source. Using
optimal estimation theory as a basis, an adaptive weighting technique is developed to
estimate interpolant surface patch parameters from neighbouring pixels. By apply-
ing the weighting process iteratively within local neighbourhoods, discontinuities are
localized, and a piecewise-continuous surface description is achieved. The resulting
discontinuity localization algorithm is adaptive over different signal to noise ratios,

robust over discontinuities of different scales and independent of user set parameters.



Résumé

Cette these résont le probleme de localisation des discontinuités de la méthode de
reconstruction de surface *Curvature Consistency’, toul en lissant les donndes bruitées,
Dans cet algorithme, les estimés initialement bruités des méthodes de reconstruction
de surfaces sont améliorées pour satisfaire un modele de continuité en utilisant un
procédé de relaxation. L'interaction entre les pixels voising pendant e procédé de
relaxation est présenté comme ¢tant équivalent & un procedé de fusion de donndes
ou chaque pixel agit comme une source de mesure. Fn se basani sur une théorie
de mesure optimale, une méthode de pondération adaptative est utilisée pour evaluer
des informations provenant des différents pixels voisins. En appliquant cette méthode
itérativement, les discontinuités sont graduecllement détectées et une description de
surface localement continue est réalisée. La détection des discontinuités résultante est
adaptative aux différents rapports de signal a bruit, robuste pour différentes échelles

de discontinuités et pratiquement libre de parametres & définir par "utilisateur.



Acknowledgments

A first note of thanks goes to my thesis supervisor Frank Ferrie, who has shown
incredible patience and support during the development of this thesis. In addition,
thanks goes Lo my group-mates in the computer vision lab at CIM for the stimu-
lating and [riendly environment in which we all co-existed. Special thanks go to
Gilbert Soucy, who has to be the most helpful guy around at CIM, The many fruitful
discussions with Gilbert, Andre Lejeune, Pierre Tremblay and Duncan Baird have
contributed significantly to ideas in this thesis.

My special appreciation goes to my parents Shashi and Lakshmi Mathur and my

wife Julie for the support and extra push I always needed to finish this thesis.

iii



Table of Contents

Chapter 1 Introduction . ... ........ .. ... ... ... .. ... .. 1
1.1 Motivation . . . . . . . . e e 2

L2 OVeIVIeW . & v i vt et e e e e e e e e e 6

1.3 Contribution . . . . .« o o v e e e e e 4

1.4 Organization of Thesis . . .. . ... . . o v e 10
Chapter 2 Literature Overview . ... ... ... ... ... ... ...... 12
2.1 Adaptive Noise Smoothing Techniques . . .. ... ... ... ......... 13
2.2 Visual Reconstruction in the Regularization Framework . . . . . ... .. .. 17
2.3 Use of Optimal Estimation Theory in Visual Reconstruction . .. ... .. 23
Chapter 3 The Curvature Consistency Algorithm . . . .. ... ... ... 26
3.1 The Local Surface Representation . . . . ... ... .. .. .......... 27
3.2 Initial Estimates . .. .. ... .. . e 28
3.3 Ilterative Refinement Using Curvature Consistency . . . . . ... ... . ... 24
3.4 Applying Curvature Consistency to Range Images . . . . .. ... ...... 31
3.5 Chapter Summary . . . . . ¢ i . i e e e e e e e e e e 35
Chapter 4 An Optimal Estimation Problem . ... ............. 36
4,1 Optimal Estimation Theory . ... ... . .. .. . . ... 37
42 An Optimal Estimation Problem . ... .................... 38
4.3 State Space Formulation . ... .. ... .. ... ... .. . ... ... 40
4.3.1 Accommodating Sequences of Measurements . . . . ... ..... .. 11

4.3.2 Recursively Estimating the Noise Variance . . . .. .. ... ... .. 42

4.3.3 Sources With Changing Noise Properties . . . ... ... ....... 43

44 Chapter Summary . . . . . v o it it i i e e e e A4
Chapter 5 Using Estimation Theory In Curvature Consistency . . ... 46

iv




5.1 Control Processes at the Pixel Level in Curvature Consistency . . . . . . .. 47
5.0.1 Information Flow in Relaxation Processes . . . .. ... ..., ... 48

5.1.2  Defining the Noise Property . . .. ... ... ... . oo ... 49

5.1.3  Optimally Combining Measurements From Neighbours . . . . .. .. 52

5.1.4  Optlimal Estimation in the Curvature Consistency Formulation . . . . 35

5.1.5  Modification to the Update Equations . . . . ... .. ... ..... 56

52 Accommodating Pixel Groupings in Discontinuous Regions . . . . ... ... 60
5.2.1  Mapping Error Variances to 2 New Function . .. ..., ..., ... 62

522 Makingy Adaptive . . ... .. .. .. . . 64

5.3 Chapter Summary . . . . .. L e e e e e 68
Chapter 6 Resultsand Discussion . . . . .. ... ... ... ... ...... 70
6.1 Qualitative Analysis . . . ... .. L L 71
6.1.1 General Behaviour of the Algorithm . . . . .. ... ... ... .... 72

6.1.2 Localizationof aStepEdge . . .. ... ... ... ... ....... 72

6.1.3 Localizationof a Roof Edge . . .. ... ... .. ... ........ 77

6.1.4 Discontinuity Localization in Complex Images . . . ... ... .. .. 81

6.2 Meration Control . . . .. ... ... .. .. ... .. 84
6.3 Adaptiveness of the Modified Algorithm . ... ... ... .......... 88
6.3.1 Scale Space Robustness. . . . ... ... ... ... ... .. ..... 89

6.3.2 NoiseLevel Robustness . . ... ... .................. 93
Chapter 7 Conclusions . . .. ... ... ... .. . . ... ... .. .... 97
Bibliography . .. .. .. . . . e e 99



List of Figures

1.1 (a) Gaussian noise added to a synthetic step adge. Distortion in the step
after (b) 30 iterations of curvature consistency algorithm, (¢) al convergence
(100 iterations). (d) Reconstruction using the edge localization method at

convergence,

.....................................

1.2 (a) Gaussian noise added to a synthetic roof edge. Distortion in the step
after (b) 20 iterations of curvature consistency algorithm, (¢) al convergenee
(100 iterations). (d) Reconstruction using edge localization method alter 20

iterations,

--------------------------------------

3.1 Local surface representation - the augmented Darboux frame . . . . . . . ..

3.2 The local transport model determines how a frame al a neighbouring point
(@ appears when it is extrapolatedoverto P.. . . ... ..o

3.3 (a) A synthetic range image. (b) Noise added to the range points (SNR
5/3). (c) The initial estimate of the darboux frames and surface patches.
Darboux frames and recovered surface after (d) 3 iterations, (¢) 10 iterations of
the curvature consistency algorithm. (I} Energy residual plot. . .. .. ... ..

3.4 (a) A real range image of a toy car. (b) Initial estimate of the surface
patches. Recovered surface after (¢) 3 iterations, (d) 5 iterations, (¢) 10

iterations of the curvature consistency algorithm. () Plot of energy residual.

5.1 Direction of information flow into a 3 x 3 neighbourhood during a

relaxation process

----------------------------------

5.2 (a) A simulated noisy range image of a step junction. (b) Initial estimate of
the surface patches. (¢) Underlying surface recovered using the original
curvature consistency algorithm after 40 iterations. (d) Surface reconstruction

using the curvature consistency modified to incorporate variance weighting.

vi

27

30

33

48



53 A 5 x 5 ncighbourhood mask straddling a (a) step discontinuity, (b) a roof
discontinuity. The mask is centered at P. The discontinuity divides the
neighbourhood into two subregions Aand B, .. . .. .. ... ... ... 62

5.4 Distribution of weights according to a Gaussian error function. . . .. ... . 63

5.5 Distribution of weights for the depth component according to a Gaussian
function amongst pixel sonrces in a 3 x 3 (a) continuous neighbourhood, and
(b) discontinuous neighbourhood. The ‘x’ symbols on the X-axis represent the
error variance cstimate of the different pixel sources; the **’ symbols represent
the corresponding weights assigned according to the Gaussian function; the ‘¢’
symbol on the X-axis is the mean of error variances of all the pixel sources; the
‘+' symbol shows the corresponding mapping of this mean onto the Gaussian
brace, o e e e e e e e e P

5.6 (a) A simulated noisy range image of a step junction. Surface
reconstruction using a 5 x 5 neighbourhood size after 40 iterations (b) using
the original curvature consistency algorithm, (c¢) using variance weighting in

the algorithm, (d) using Gaussian weighting. .. ................. 67

6.1 Changes in the surface structure around discontinuities with progressive
iterations of the modified curvature consistency algorithm, using a 5 x 5 mask,
after (a) initial patch estimate, (b) 2 iterations, (c) 4 iterations, (d) 10
iterations, {e) 20 iterations, (f) 50 iterations . . . ... .. ... ... ...... 74
6.2 The estimation errors and the corresponding weights for the position
(depth in range image) component of the Extended Darboux Frame at a pixel
straddling the discontinuity using the modified curvature consistency
algorithm. Using a 5 x 5 mask after (a) 1 iteration, (b) 4 iterations, (c) 10
iterations, (d) 20 iterations. . . . . . . . ... ... . e 75

vil



6.3 The estimation crrors and the correspoiiding weights for the position

(depth in range image) component of the Extended Darboux Frame ad a pixel

in a continuous region of the surface data using the modified curvature

consistency algorithm. Using a 5 x 5 mask, after (a) 1 iteration, (b) 4

iterations, (c) 10 iterations, (d) 20 iterations, . . . . . . . ..o o oL 76
6.4 Surface reconstruction of a simulated noisy range image containing a roof

discontinuity. (a) The original image, (b) initial estimate of surface patches.

Using a 5 x 5 mask, distortion of the edge after (c) 10 iterations and {d) 20

iterntions of the original curvature consistency. Preservation of the edge after

(e) 10 iterations and ([) 20 iterations of the modified algorithm. . . .. ... .. 78
6.5 The estimation errors and the corresponding weights for the Normal

component of the Extended Darboux Frames at a pixel straddling the roof

discontinuity while applying the modified curvature consistency algorithm.

Using a 5 x 5 mask, the estimation error variance and corresponding weights

after (a) 1 iteration, (b) 5 iterations, (c) 10 iterations, (d) 20 ilerations. . . . . . 79
6.6 Surface reconstruction of an image containing discontinuity in position, as

well as curvatures and normals. (a) Original data of a discontinuons sinusoidal

trace in grid form, (b) initial fit of surface patches to the image. Usinga 3 x 3

mask, (c) surface reconstruction after 20 iterations of the original curvature

consistency algorithm, (d) surface reconstruction after 20 iterations of the

modified algorithm. . . . . . .. .. ... 8l
6.7 (a) Range image of an owl statve acquired with the NRCC/McGill laser

range-finder. (b) Reconstructed surface after 8 iterations of the original

algorithm, (c) Reconstructed surface after 8 iterations of the modified algorithm. 82
6.8 Surface reconstruction of an image of two overlapping rocks, acquired using

the NRCC/McGill University laser range-finder; (a) Original range data in grid

form; (b) Initial fit of surface patches to the image; (c) Surface reconstruction

after 50 iterations of the original curvature consistency algorithm; (d) Surface

reconstruction after 50 iterations of the modified algorithm. . .. ..... ... 83

viii



6.9 Comparison of global error of fil when the original (solid line) and modified
(dashed line) enrvature consistency algorithin are applied to the image
containing (a) the step discontinuity, (b) the roof discontinuity. ... ... ...

6.10 Seale space performance of the original curvature consistency algorithm on
an image containing discontinities of varying scales. (a) Original image,
surface reconstiuction using a (h) 3 x 3 mask, (¢) 5 x 5 mask, (d) 7 x 7 mask,
(e xOmask, .« . oo e e e e e e e e

6.11 Scale space perforinance of the modified curvature consistency algorithm on
an image containing discontinuities of varying scales. (a) Original image,
surface reconstruction using using a (b) 3 x 3 mask, (c) 5 X 5 mask, (d) 7 x 7
mask, (e) 9x Imask. . . . e e

6.12 Noise adaptation of the modified curvature consistency algorithm, (a)
Original image with noise of standard deviation 1 (outermost), 2, 3 and 4
(innermost) added to the surface regions. (b) Surface reconstruction after 25
terations usinga S x5mask. . . ... L L o oL e

6.13 Notse space adaptation of the modified curvature consistency algorithm at
multiple scales. Image contains regions with signal to noise ratios of 10
(outermost region), 3.33, 2, and 1 (middle region). (a) Original image, surface
reconstruction using a (b) 3 x 3 mask, (c) 5 x 5 mask, (d) 7 x 7 mask, (e) 9 x 9

MK, . o e e e e e e e e e e e e e e e e e

X



Chapter 1 Introduction

This thesis presents a new way of looking at inter-pixel interaction during relaxation
processes. Using this approach, a novel method is proposed for Lhe localization of dis-
continuities during surface reconstruction from noisy range data. The neighbourbiood-
level processing during relaxation is shown to be equivalent to a multiple measure-
ment fusion problem which is solved using optimal estimation theory. Pixels in a
given neighbourhood act as information sources, combining their information in some
fashion to update the state of that neighbourhood. The surface reconstruction algo-
rithm of focus is the so called curvature consistency algorithm [12] [13] [16] [20] [55)
[56]. Since smocthing of noisy surface patch estimates in this algorithm involves a
variational relaxation process, the neighbourhood information processing in this stage
can be formulated in multiple measurement fusion terms using the theory developed
in this thesis. Optimal estimates of surface patch paramecters in each neighbourhood
are obtained by combining information from all the neighbours. By redefining the
concept of noise in the image, the same optimal estimator is then adjusted to provide
discontinuity localization while eliminating errors due to noise.

The purpose of most surface reconstruction algorithms is to provide a piecewise
continuous surface description from noisy image data. The problem of removing noise
while preserving edges in the image data has been studicd by many rescarchers (8] [9)
[38] [39] [42] [49] [54] [69] [70]. Most of the algorithms developed by these rescarchers
are adaptive in the sense that noise smoothing is applied only in continuous datla re-
gions and inhibited in the presence of an edge. In the field of surface reconstruction,
many researchers base their approach on the regularization framework [50]. Various
methods have been proposed to incorporate discontinuity information into this frame-
work [2] {4] [27] [41] [59] [66]. Necarly all algorithms reviewed require some user sct
parameters. Some of the more recent adaptive algorithms [41] {49] [54] still require a

parameter which controls the level of smoothing to be applied to the image. In the



1. Introduction

attempt Lo make the discontinuity localization algorithm in this thesis completely
adaptive, methods have been found to set all the parameters automatically.
Optimal estimation theory has found many applications in the field of image,
and more generally, signal processing [23] [71]. In this thesis, a novel use of this
theory has been found in providing optimal surface patch estimates while preserving

discontinuities in the curvature consistency surface reconstruction algorithm.

1.1 Motivation

Visual reconstruction is an important area of research in the field of computer vision.
The goal is to reduce visual data to stable descriptions [4]. It is viewed as an ill-posed
inverse mathematical problem [50). In the absence of constraints, the existence and
stability of a unique solution cannot be guaranteed. -

Surface reconstruction techniques deal with a particular aspect of visual recon-
struction, which is the inference of surfaces from sets of noisy image data. Constraints
are needed to narrow the choices of surface functions representing the image samples.
Surface reconstruction is seen as being an early vision process, after which the higher
level processes act to aggregate the stable surface descriptions to produce more do-
main dependent knowledge. In early vision processes, the constraints need necessarily
be generic and should reflect general assumptions about the physical world being im-
aged and the imaging modality itself.

A local surface smoothness constraint is one such generic assumption which helps
in restricting the domain of possible solutions for a function which interpolates a set
of image samples. However, a smoothness constraint by itself may be incomplete,
if not inaccurate, in some regions of the sampled data. In particular, inaccurate
representation of a sampled surface is obtained in regions containing discontinuities
if the smoothness constraint is applied blindly. A smooth interpolating function does
not follow sampled data in discontinuous regions. To localize discontinuities in local

neighbourhoods, it is imperative to either

1. include a model of discontinuities as part of the constraints, or
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2. apply the smoothness constraint selectively, based on a belief in the continuity

of the sampled data.

Under-constraining is precisely the problem with the surfice reconstruction al-
gorithm referred to as the “curvature consistency™ algorithm, which is the focus of
this thesis. The curvature consistency framework was first introduced by Sander and
Zucker for surface reconstruction in 3D voxel based images [56], and was consequently
modified for range images in [14, 15]. ‘This algorithm operates on local measurements
of surface orientation and curvature to produce a stable surface description from noisy
discrete surface samples. Here the idea is Lo iteratively refine an initial set of surface
descriptors such that, at convergence, cach provides a consistent representation of its
local surface region with respect to its neighbours. The problem is formulated as an
energy minimization where the task is to minimize a functional form that limits the
variation of curvature with respect to an implied model of the local surface (56, 37).
The resulting class of algorithms is robust, view-independent, and converges quite
rapidly to stable descriptions (14, 15, 37, 56). However, as presently formulated, the
curvature consistency framework does not have an explicit model of discontinuity and
applies the continuity constraint even across discontinuous sample data', Surface dis-
continuities are all pervasive in real life data: step edges occur at the junction of two
adjacent objects, between object and background or between occluding object; roof
edges occur between adjacent faces of a single object [4]. While recovering a stable
surface description, it is important to preserve the discontinuities as a precursor to
object segmentation and identification.

The effect of the original curvature consistency algorithm in reconstructing a dis-
continuous surface is demonstrated in Figure 1.1. Figure 1.1(a) shows noisy surface
patch estimates from a synthetically generated step edge with Gaussian noise added.
Figures 1.1(b) and 1.1(c) show the eflects of the original curvature consistency algo-
rithm on the step edge, after 30 and 100 iterations respectively. The discontinuity

distortion can be seen to get progressively worse with the number of iterations. Fig-

1We are mainly concerned with C° and C! discontinuities.
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(c) (d)

Figure 1.1: (a) Gaussian noise added to a synthetic step edge. Distortion
in the step after (b) 30 iterations of curvature consistency algorithm, (c) at
convergence (100 iterations). (d) Reconstruction using the edge localization
method at convergence.

ure 1.1(d) shows the same step discontinuity recovered after 30 iterations of the dis-
continuity localization method developed in this thesis. The discontinuity structure
can be seen to be preserved while providing the same smoothing effect in the continu-
ous regions of the data. Figure 1.2 shows the distortion for a roof discontinuity using
the original algorithm in Figure 1.2(b) and (c), and the preservation of the edge in
Figure 1.2(d) using the modified algorithm.

To tackle the problem of edge distortion, a modification is required to the func-
tional minimization procedure in the curvature consistency algorithm to adapt to
local discontinuities. It is desirable to make the solution adaptive over the image so
that no user sct thresholds are required and images of different noise properties can

be handled. It should also be able to accommodate discontinuous surface features at
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(b)
(d)

Figure 1.2: (a) Gaussian noise added to a synthetic roof edge. Distortion
in the step after (b) 20 iterations of curvature consistency algorithm, (c)
at convergence (100 iterations). (d) Reconstruction using edge localization
method after 20 iterations.

(a)
()
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different scales, Properties like view invariance [5] [61] which are exhibited by the

existing curvature consistency algorithm should be preserved.

1.2 Overview

The discontinuity localization problem can be solved cither by including a model of
disconlinuity in the constraints or by applying the constraints selectively®. Several
rescarchers have adopted the former approach in their surface reconstruction methods,
where they have incorporated models of discontinuity as part of the constraints in
the functional minimization leading to a unique surface function [2] [41]. One of the
terms in the minimization function is dependent on the n** derivative of sample data,
where n determines the continuity of the region.

In the second approach, the smoothness constraint is applied selectively. It is
enforced only in those image regions where there is reason to believe that the image
data comes from a continuous region of the surface. Some researchers [24] {66] control
the application of the continuity constraint by assuming that discontinuity informa-
Lion is available beforehand and smoothing the data only in the continuous regions of
the data. However, discontinuity information is not always available. This approach
then has the disadvantage of requiring a priori knowledge of the image properties and
not being adaptive over variable noise in the image samples. Adaptive techniques
can be used to modulate the application of the continuity constraints according to
the degree of discontinuity in the sample data rather than make a binary decision
on the presence or absence of an edge. The degree of dis(continuity) is learnt on the
fly, while the smoothing is applied. Adaptive techniques have the advantage in that
image properties are estimated and consecutively refined automatically as part of the
process.

Traditionally, first derivatives have been used to define the “edginess” in a region
during surface reconstruction (4] [24] [41] [49] [54] [66). The edginess control is used

to determine the balance between two separate processes acting on the noisy data.

2Various implementations of the curvature consistency algorithm deal with discontinuities in ad
hoc fashion, typically by not updating across steep curvature gradients.
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One process forces the interpolating function to smooth over the noisy sections of the
data, while the other accommodates discontinuitics and closeness of fit to the data.
In some of the works [4] [24] [66], an energy threshold was used to make a binary
decision on the presence or absence of a discontinuity in the energy minimization
process. Recent modifications to these algorithms [22] [41] have made them more
adaptive to the image and do not require such a user set threshold.

In this thesis the discontinuity localization problem in the curvature consistency
algorithm is solved using an adaptive method, which controls the application of the
constant curvature constraint according to a current belief in the continuity of the
data. Using a recursive estimation technique, the reconstruction process “learns” the
continuous or discontinuous nature of the local surface and applies the smoothing
constraint accordingly.

In the curvature consistency framework, the continuity in a nciglll)ourhoo‘(l 15
determined by taking the difference between what a neighbour predicted as the in-
terpolant surface patch parameters, and what was actually obtained after integrating
information from all the other neighbours. Conceptually, this method of determining
(dis}continuity is significantly different from simply taking a first derivative,

Over several iterations, within a local neighbourhood, the current belief of conti-
nuity or discontinuity is represented by an “error” variance associated with cach pixel
in that neighbourhood. The error variance of a given pixel tracks the history of its
accuracy in estimating the interpolant patch parameters over the iterations. In the
presence of an edge, some neighbours would consistently demonstrale a worse perfor-
mance in the patch estimation process than others. A dichotomy in error variances
within the same neighbourhood would indicate the presence of an edge. However, no
attempt is made to make a binary decision about its presence or absence, as this would
involve setting a user set threshold. Rather, the error variance is used to weight the
pixel’s influence in determining the interpolant patch parameters in the subsequent
iterations.

Optimal estimation theory offers a method of incorporating measurements from

multiple sources with different noise properties. In a major contribution of this the-
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sis, it is shown thatl inter-pixel interaction during relaxation processes can in fact
he construed as a multiple measurement fusion problem, with each pixel acting as
a source of measurement. The smoothing operation in the curvature consistency al-
gorithin is performed using variational relaxation, which is based on the paradigm
of relaxation labeling [34], except, it performs iterative constraint satisfaction in the
continuous domain, Relaxation algorithms propagate information across the image
iteratively. At each iteration a new “measurement” is available at a pixel-source. An
optimal estimation technique can then be used to combine the measurecments from
pixel-sources in a neighbourhood to predict the interpolant patch parameters. The
optimal estimator developed in this thesis uses a function of the prediction error vari-
ance of cach pixel-source to weight iis contribution to the interpolant surface patch
parameter update.

By accommodating discontinuities in the “noise” model attributed to each pixel
source, we arrive at a method by which the prediction error variance at each pixel is
now capable of storing information about the continuity of data in the neighbourhood.
By using an appropriate function of the error variance, it now becomes possible to
encourage intra-region smoothing rather than inter-region smoothing across discon-
tinuitics.

Though the direct application of this discontinuity localization method is in sur-
face reconstruction, it could conceivably be applied to any general smoothing problem
where edges need to be preserved. The weighting function in the resulting edge pre-
serving smoother, is similar to the one proposed by Saint-Marc et al. in [54]. Whereas
the origins of their work lie in the anisotropic diffusion work done by Perona and Ma-
lik {49], the origin of the adaptive smoother presented in this thesis lies in optimal
estimation theory. To the best of the author’s knowledge, the idea of using optimal
estimation between neighbouring image pizels for discontinuity preserving smoothing
has not been addvessed in existing literature. Saint-Marc et al. and Perona and
Malik, leave some parameters as user set arguments, such as the one which controls
the amount of smoothing to be applied. In my approach all such parameters are

calculated automatically and adaptively over an image.



1. Intreduction

Note that this work addresses the problem of localizing and preserving the local
structure of discontinuitics adaptively, without explicitly identifying them. The deci-
sion on the presence or absence of a discontinuity is not needed a priori and could be
made after the surface is reconstructed.

The assumption in the development of the original curvature consistency algorithin
was of local C'? continuity of the underlying surface. In this thesis, the edge preserving
reconstruction algorithm will also be applied to data from CY and C' continuous
surfaces. On these surfaces the continuity constraint depends only on the position
and normals of the adjacent patches. The discontinuities locatized on the CV surface
is only in depth, the ones on the C! surface is in depth and normals, and the ones
on the C? surfaces are in depth, normals as well as curvature components. Another
assumption made is that the noise in the image is zero mean Gaussian.

In this thesis, the curvature consistency algorithm without discontinuity local-
ization is referred to as the “original algorithm”, and the extended algorithm with
discontinuity localization, as the “modified algorithm”. In the context of the cur-
vature consistency aigorithm, the discontinuities which are localized are in depth,

orientation and curvature.

1.3 Contribution

In this thesis, an original and unique discontinuity localization method is described in
the framework of the curvature consistency surface reconstruction algorithm. More

specifically, the contributions are:

1. It is shown that inter-pixel interactions which take place in relaxation processes
can be construed in estimation theoretic terms. At cach iteration in the relax-
ation process, the problem of finding the new state of a neighbourhood using
the information from the constituent pixels is in fact a problem of multiple-

measurement fusion and can be solved using optimal estimation theory.

2. Using optimal estimation theory as a basis, a new method is proposed in the

curvature consistency framework to estimate interpolant surface patch param-

9



1. Introduction

eters from neighbouring pixels. The patch parameter estimates are optimal in

the minimum mean square error (MMSL) sense.

3. While keeping within the optimal estimation framework, a change in the defi-
nition of noise provides a method to localize discontinuities while providing a
smooth surface fit in continuous areas using the curvature consistency smooth-

ing algorithm.

4. The edge preserving smoother developed in this thesis is shown to be completely
adaptive to discontinuities in depth, orientation and curvatures and over varying

noise levels within the same image.

5. The edge preserving algorithm is shown to be robust over scale space. Process-
ing can be done using different neighbourhood sizes, achieving the same edge

localization effect.

6. The algorithm is made completely adaptive, with no user set parameters to

adjust the amount of smoothing required.

7. An analysis of the proposed algorithm is presented, with an in-depth look at

the role of cach parameter.

8. Expcriments are presented on synthetic and real range images to validate the

theories set forth in this thesis.

1.4 Organization of Thesis

Before tackling the theory behind the discontinuity localization method, a survey of
existing methods is presented in Chapter 2. Previous work is reviewed in the field
of adaptive noise removal algorithms, surface -econstruction in the regularization
framework and associated discontinuity localization methods, and finally the use of
optirnal estimation theory in the field of image and signal processing.

In Chapter 3, an overview of the curvature consistency surface reconstruction

algorithm is presented. Since it is this algorithm which we will augment to include

10



1. Introduction

the discontinuity localization feature, it is worthwhile to review the theory behind it.
The algorithm is presented in the context of reconstruction from range images. The
surface representation, methods for obtaining a first estimate of the surface patches,
and the method to iteratively refinc these estimates are covered.

Chapter 4 provides an introduction to optimal estimation theory, T'he usage of a
simple version of the Kalman filter is illustrated by applying it to a simple problem
of multiple-measurement fusion. The example problem is carefully chosen so that it
parallels the measurement [usion process between pixels in a relaxation process in an
image. An optimal estimator is derived and modificd to accommodate Limme varying
noise processes.

Chapter 5 forms the core of this thesis. In this chapter it is shown thatl during
variational relaxation in the curvature consistency algorithm, the process by which
surface patch parameters are updated is analogous to the multiple measurement, fu-
sion problem described in the previous chapter. It is shown that the optimal esti-
mator developed for the previous chapter could be applied directly in the curvature
consistency framework. The concept of noise in the pixel sources in the relaxation
framework is discussed in detail and expanded to include discontinuities. The edge
preserving smoothing technique is then derived using optimal estimation theory and
the redefinition of noise as a basis.

Results and analysis are presented in Chapter 6. The discontinuity localization
algorithm is tested on a number of synthetic and real range images and its behaviour
characterized. The role of the different parameters are discussed. Using several
experiments, the robustness and adaptive behaviour of the algorithm is proven.

Finally, conclusions are presented in Chapter 7, in which arcas of further rescarch

are described and the main ideas behind this thesis are summarized.
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Chapter 2 Literature Overview

In this chapter, the historical context for the research presented in this thesis is
established. The literature survey spans over three related rescarch areas: adaptive
noise smoothing techniques, visual reconstruction algorithms in the regularization
framework and associated discontinuity localization methods, and finally the use of
optimal cstimation theory in image processing,.

[irst we will review the carly literature related to noise removal methods. The
emphasis is on algorithms which are adaptive in nature, i.e., which adapt to the
presence of the edges in the images, and do not require a priori knowledge of their
positions. Another feature to look for in these algorithms is adaptation to different
noise levels in the images. The application of these techniques varies from 1-D signals,
2-D gray level images, to 21-D range images.

Next, more recent literature related to the application of adaptive discontinu-
ity localization techniques to visual reconstruction methods will be reviewed. More
speciftcally, visual reconstruction algorithms in a regularization framework will be
surveyed. From a mathematical and statistical point of view, the problem of interpo-
lating data [rom surfaces has received much attention. The goal of these algorithms is
to recover smooth and piccewise continuous surface interpolant functions from noisy
image sample data by minimizing some energy cost functional. Some of the more
important reconstruction algorithms and the corresponding discontinuity localization
methods have been reviewed.

One of the major contributions of this thesis is to show a link between optimal
estimation theory and relaxation processes, such as the one which takes place in
the curvature consistency algorithm. Though the application of optimal estimation
theory to inter-pixel interactions is new, the use of optimal estimation theory to the
gencral field of image processing is not. Some of the image processing algorithms

which use optimal estimation frameworks for feature analysis and signal estimation
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2. Literature Qverviow

are reviewed in this chapter.

2.1 Adaptive Noise Smoothing Techniques

Edges in images contribute significantly to the process of human or artificial percep-
tion [30] [40]. Due to their importance in 'buil(ling a scene deseription, there has been
a tremendous amount of rescarch performed in extracting, analyzing and preserving
edge features in images. Most of this research has centered around the detection of
reliable edge information, and its use in building credible object deseriptions. How-
ever, the research literature relevant to this thesis topic deals with the preservation
rather than the explicit detection of edges.

Distortion of edges takes place most commonly in noise smoothing or image
restoration algorithms. Sce [26] and [53] for an introduction to the subject of smooth-
ing noisy images. A low pass fillering process to remove the higher frequency noise
results in the removal of the high frequency components of the edge signal as well
[26). A similar fate is expected when linear algorithms such as a mean filter (run-
ning average) are used. Noise removal filters which adapt to varying noise and image
statistics over an image are non-linear. Mastin in [42] and Chin et al. in [8] provide
a review and evaluation of several such non-lincar adaptive filtering algorithms,

One of the most popular edge preserving noise smoothing algorithms has been the
median filter first proposed by Tukey [69]. It was initially developed for application
in time series analysis. It was subsequently adapted to image noise smoothing in
{21} and [51]. This filter operates on the simple concept of picking the median pixel
value within a sliding window to replace the window’s central pixel. Huang ct al. {33]
provided a much faster version of the algorithm.

Lev et al., in [39], provide one of the carly adaptive methods to enhance noisy
images containing discontinuities. Theirs is an iterative algorithin which uses the ob-
servation that while averaging in a neighbourhood which contains an cdge, only those
neighbours which are on the same side of the edge should be used in the averaging

process. To establish which neighbours are on the same side of the edge, a kind of
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2. Literature Qverview

termplate matching is performed to determine which of 12 configurations of edges a
3 % 3 neighbourhood matches. For each possible edge configuration A, (1 <4 £ 12),
a corresponding 3 x 3 weight matrix Dy is assigned. Once template matchingof a 3x 3
image neighbourheod A has taken place over each of the 12 possible neighbourhood

configurations, the final weighting for cach neighbour in the window is determined by
12

D =" wb;, (2.1)
i=1

where, w; is a scalar measure of how closely the image neighbourhood A matches
the configuration A;. A more elaborate second approach presented in the paper
assigns a gray level probabilily deusity to each pixel P in the image, rather than
just a gray level, At each iteration this density is adjusted by comparing it with the
densities of P’s neighbours, where the contribution of a given neighbour @ depends
on the confidence that @ belongs to the same region as P, as determined by the
template matching process described carlier. One limitation of this algorithm is its
dependence upon the existence of local cues to the underlying piecewisc-constant
structure. Another limitation is that the algorithm is developed only for a 3 x 3
window size. Ideally for noisier images, more image pixels need to be used in the
averaging process to eliminate the noise, however it is not trivial and computationally
expensive to extend this algorithm to larger scales.

Davis et al, in [9] also work on the same assumption that due to the presence of
an edge, there is a grouping of pixels according to similarity of gray levels. However
they propose a much simpler approach than [39], in which the gray level of the sliding
window’s central pixel is replaced by the average of its k neighbours whose gray levels
are closest to that of the central pixel. The biggest drawback of this algorithm relative
to {39] is that the parameter k now needs to be set by the user to determine how
many pixels in a ncighbourhood should contribute to the average. In [39] on the cther
hand, the neighbourhood contributions are determined automatically. This algorithm
lends itself better to application with a larger window size, even though there are no

results presented Lo this effect in the paper.
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Wang et al. in [70] recommend a gradient-inverse weighted noise smoothing al-
gorithm. Whereas the observation in the two previous techniques ([9) and [39]) was
that within each subregion separated by a discontinuity, the gray levels are similar,
Wang ct al. work on the assumption that the variations of gray levels inside each
continuous region are smaller than those between regions, For cach 3 x 3 neighbour-
hood, they use a matrix of weighting cocflicients. The coeflicients are the normalized
gradient inverses at each pixel. This approach is best applied to images with sharp
discontinuities and with discontinuitics with magnitudes much greater than the noise
magnitude.

In [38] Lee proposed an adaptive method to smooth images with additive Gaussian
noise. The basic assumption is that the sample mcan and variance of a pixel al the
center of a window are equal to the local mean and variance of all pixels within the
neighbourhood. The mean and variance of the recovered image are approximated
from the local means and variances from the noisy image. Each pixel in the recovered
image is given by

Q(, j)

&(i,j) = 2(i,5) + 0G.7) ~ o 22, 5) — %, 3)]s (2.2)

where, z(1,) is a noisy image pixel, 2(7, 7) represents the mean gray level in the

neighbourhood around (3, j), and
Qi,3) = El(2(i, ) = 2(3,5))*] - o (2.3)

The ¢? parameter is an estimate of the additive noise variance. It is estimated by
averaging the lowest 10% of the window variances computed in a flat intensity region.
The user is in fact responsible for directing the algorithm to the “flat™ area in the
image.

Tomita et al. describe a smoothing method in {68], in which smoothing is per-
formed only in a selected neighbourhoods around each pixel. The most homogencous
of five rectangular neighbourhoods around a given pixel is chosen and the gray level

of the pixel replaced by the average gray level in the selected neighbourhood. The
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homogeneity is determined by applying a gradient operator within a given neighbour-
hood. This algorithm tends to over-smooth complex shaped boundaries, and does not
preserve edges of smaller scales. In an enhancement to the original method, Nagao
et al, [45) propose using nine har shaped regions instead of the original rectangular
regions,

In one of the more important works in this field, Perona and Malik in [49] have ex-
tended the concept of scale-space recovery of edge features in images using anisotropic
diffusion. They have described a very effective method of localizing edges in the im-
age by using a spatially varying diffusion coefficient. The coeflicient encourages intra-
region smoothing in preference to inter-region smoothing. The anisotropic diffusion

cquation for image [ at scale (time) ¢ is
Iy = Div(c(z,y,t)VI) = e(z,y, )A(I) + V.V, (2.4)

where ¢(z,y,t) is the diffusion coefficient, A is the Laplacian operator V is the grad
operator, and Div is the divergence operator. For discontinuity localization they
propose setting this coeflicient to a function g(.) of the magnitude of the local gradient

in the image

c(z, 4, t) = g(||A1(=z, y, t)}])- (2.5)

The function g(.) is chosen to be a nonnegative monotonically decreasing function

with g(0) = 1. Amongst the functions they examined were
g(AT) = WaTIRY) (2.6)

and
1
g(AN = — . 2.7
1+ (L1202 29)
The parameter K determines how much smoothing should be applied in the image.
Since this is a user set parameter, the algorithm is not completely automatic. Even
though the algorithm adapts to edges, due to a fixed constant, it does not adapt to

varying noise statistics over the image. There is a danger of over-smoothing discon-
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tinuous regions due to an inappropriate choice of ',

In a recent simplification of Perona and Malik’s work, Saint Marc et al. [54]
present a more general algorithm for adaplive smoothing. They propose a filtering
mechanism where neighbourhood weighting is applied using the function (2.6). They
show operation of their filter on 1-D signals, 2-D intensity images as well as range
images. A special adaptation of their algorithm has to be made to deal with range
images. In their original formulation, the weight assigned to a given neighbour is a
function of the signal difference between them. To localize discontinuities in orienta-
tion (roof edges}, instead of using the difference in signal value between two pixels, the
difference in the gradients at those two pixels is used. Similar to Perona and Malik’s
work, they also have no automatic method of setting the K parameter to determine
the amount of smoothing required over the image. Though they have made good
use of the K parameter by designating it as the scale space control, they present no

method of determining its value according to the chosen scale.

2.2 Visual Reconstruction in the Regularization Frame-

work

The process of reducing noisy visual data to stable descriptions is often referred to
as visual reconstruction. The process of surface recovery from image data falls under
the same definition. Visual reconstruction from data is an ill-posed problem, which
by definition implies that the existence, uniqueness and stability of solutions cannot
be guaranteed. Poggio et al. in [50] in their review paper, presented a regulariza-
tion framework [67] for solving it. The idea is to make the problem well-posed by
introducing a priori knowledge in the form of constraints. Several rescarchers have
used the regularization approach to solve the visual reconstruction problem, with and
without discontinuity localization. Some of that work will be reviewed here. Sce {5]
and [61] for a detailed analysis of surface reconstruction theory and implementation

in the regularization framework.

Poggio et al. set the stage for the use of regularization techniques in visnal and
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surface reconstruction in [50]. Surface reconstruction is akin to finding a solution to

the general problem of the form

Az =y (2.8)

The aim is to find z from the data y. This requires choosing a norm ||.|| and a
stabilizing functional || Pz||. A is a linear operator, the norms are usually quadratic

and P is lincar. Poggio ct al. present two methods of regularization:

1. Among all the z which satisfy

Az =yl < ¢, (2.9)
where ¢ is a minimum error, find the z which minimizes
1Pz (2.10)

In surface reconstruction terms, the idea then would be to first find a function
which provides the closest fit to the given sample data, and then apply the
smoothness constraint criterion || Pz||%. The criterion could be that of C! or C?

continuity.

. Find the z that minimizes

1Az — y|* + M| Pz, (2.11)

where A is a regularization parameter. It controls the trade-off between “close-

ness to the data” and “following the continuity constraint”.

Several rescarchers have formulated the surface reconstruction problem in this
manner [2] (4] {27] [28] [41] [59] (66]). Though the particular reconstruction problem
formalistn may be based on physical, stochastic, or information theoretical models,

the solutions are based on functional energy minimization. The surface f can be
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found by minimizing a composite cost energy functional

k
E(f) = z |2 = flan, w2+ M+ 2_[3" + 3y)2timdy (2.12)

The first term in the energy functional measures the cost due to error between a
function f and the data z. The second term is the regularizer term which measures
the irregularity of the data. As presented in (2.12) and used by Grimson in [28], this
term gives a measure of the C? continuity. The minimization yields a function which
is termed as the thin plate spline approximation. Schumaker in [57) was one of the
first to use this function in interpolation from scattered data.

By applying the C? smoothness criterion imposed by this regulizer globally over
the whole image, discontinuous regions in the surface may not be recovered accurately.
A better approach is to use a variable order regularizer [2]. By considering higher

orders of derivatives the regulizer term in the cost energy functional becomes

N
Er(f) =3 [ [ /e,y dedy, (2.13)
n=1

where N is the highest order derivative, f® is the n** order derivative of f, A, is the
weight assigned to each individual n** order component in the summation, and 2 is
the region over which the interpolation takes place.

Geman and Geman in [24] introduce the ideca of a “line process” into the regu-
larization framework. The line process embeds prior knowledge of the geometry of
discontinuities in the regulizer term. For the n** order derivative term in (2.13) the

cost energy term becomes

ER(D) = [ [Pad(l = ey A2, 5 + (1 = 0 (000} +

a',"y',,ur,,,n + a} , ntizynldrdy, (2.14)

where [ and f; denote the derivatives in x and y directions respectively, uz . and
Uryn are the line processes in the two directions, a¥ = and o}, are the penaltics

£ B

imposed for the inclusion of the discontinuity and controls the resistance to noise
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in the image. For quadratic regularization terms in standard regularization, the
scarch space for the function which minimizes the energy functional has only one
local minima [50]. However for non-quadratic terms like the one proposed by Geman
and Geman, it is easy to get stuck in a local minima and never converge to the global
one.

Geman and Geman use a stochastic method (simulated annealing) to optimize the
non-convex encrgies, in which random disturbances are applied to enable the system
to jump out of local minima in the energy function. The magnitude of the random
disturbances are controlled by a temperature parameter. Their formulation is based
on Bayesian estimation and Markov random field (MRF) models.

Blake and Zisserman [4] have proposed a deterministic procedure for optimiz-
ing the non-convex energies associated with the piecewise continuous reconstruction
problems. The weak-membrane model energy minimization has been solved using
their Graduated Non-convexity (GNC) algorithm. For a comparison of deterministic
(relaxation) vs. a stochastic method for surface reconstruction with discontinuity
localization see [3).

Drawbacks of MRF models are the computational complexity and the difficulty
in estimating the parameters of the model. Geiger and Girosi in [22] have derived a
deterministic approximation to the MRF models, one of which gives in a natural way,
the GNC algorithm of Blake and Zisserman.

Deterministic relaxation algorithms can be inefficient. Since they are posed in
variational terms or as partial differential equations, they are amenable to numerical
solutions by algorithms which are local, iterative and often parallel. In [65] Ter-
zopoulos points out that such relaxation algorithms have an inherent inefficiency at
propagating constraints between widely separated processing regions in an image.
Due to this reason, these algorithms converge extremely slowly. He proposes a multi-
grid relaxation method to deal with this inefficiency. Since constraints travel faster
across the image at coarser scales, they can be used to constrain the processing at a
smaller scale [63] [64]).

To incorporate discontinuities in the regularization framework, Terzopoulos [66]
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introduces a controlled-continuity stabilizer in which the regulizer term contains a
weighted sum of the cnergies associated with a membrane and a thin plate approxi-

mation over the surface. The regulizer term E® is described as

=5 [ [ pleu)(rl@ )t 277, 4 1)+ =7l 2+ S dady. (2.15)

The parameters p(z,y) (0 £ p £ 1) and 7(z,y) (0 < 7 < 1) provide control over the
behaviour of the surface as a thin plate or a membrane. When p(z,y) = r(x,y) = L,
a thin -plate approximation function is obtained and the solution is as computed by
Grimson in [28]. When p(z,y) = 1 and 7(z,y) = 0, a membrane approximation
is obtained. When p{z,y) = 0, the surface is discontinuous and surface “tearing”
occurs.

The methods described above allow the incorporation of depth and orientation
discontinuities into the regularization model, however, the localization of binary dis-
continuities must be either pre-specified or determined at the end of the reconstruction
process. If we consider the regulizer term in one dimension (weak string formulation),

the regulizers which incorporate discontinuity localization can be represented by

Z,\n'n'n f [f*)(2))2de, (2.16)

where 7,(z) controls the n'* order discontinuity localization. In the presence of
a discontinuity (w,(z) = 0), smoothing is inhibited, and @ (z} = 1 implics that
the interpolation takes place over a continuous region and smoothing of the noise is
permitted. Stan Li in [41] points out that in most of the reconstruction methods,
the value of this controller is either restricted to, or forced towards 0 or I. He
proposes an adaptive regulizer which does not use a weighting term like (2.16). This
regulizer solves the conflict between over-smoothing across discontinuities, and finding

discontinuities. His proposed regulizer is of the form

N b
= Z ,\nf _e-[!‘“'(ﬂ]’/fndz, (2.17)
n=1 a
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where [f0)(z)]? gives a measure of the n'* order irregularity of the data, and 7, is a
user set parameter which controls the level of smoothing. His implementation uses
only the first order derivatives in the regulizer. Though this method manages to adapt
the surface reconstruction algorithm to different levels of discontinuities in depth and
oricntation, there is no automatic method of setting the smoothing control 7.

Viewpoint invariance in the reconstruction process has been recognized as a very
desirable feature. The recovery of the surface description should be independent of the
choice of viewer coordinate system [4]. In [5] and [61] different surface reconstruction
algorithms have been analyzed from the view invariance aspect. Sec [60] for one such
example of viewpoint invariant recovery of surface interpolants from sparse data.

In [20] [13] [16] [12] Ferrie et al. recover the local structure of a surface described in
terms of differential geometry. The reconstruction algorithm is an adaptation to range
images of the work done by Sander and Zucker in [56] and [55] and is popularly referred
to as the curvature consistency algorithm. The curvature consistency algorithm has
been shown to be very effective in recovering the local structure of smooth surfaces
obtained from C.T. data [55, 56), range images [15, 17], and shape-from-shading [14].
As originally proposed by Sander, the purpose of the algorithm was to infer trace
points through which the surface of the object passes in 3D images. Coupled to
that was the problem of estimating parameters for the local shape descriptors: the
extended darboux frames. The extended darboux frames describe quadric patches,
which provide a covering for the object surface. They capture the differential structure
of the local surface region based on principal curvatures and tangent fields. The
constraints are in terms of curvature variation between local neighbouring patches.
The recovery of the surface parameters is view-invariant.

The surface recovery problem in the curvature consistency framework is not
molded in the same regularization framework as the algorithms reviewed so far. How-
ever it is still based on variational principles. At the beginning of this section two
methods were recommended for solving ill-posed problems (2.8). Most of the re-
construction algorithms presented so far have followed the second method, where the

“closeness” term and the “regulizer” term are both minimized at the same time. How-
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ever the method proposed by Ferrie et al. is similar to the first method of regulariza-
tion, where the closest fit to the data is obtained first, and then as a consequent step,
the continuity constraint is applied. It is this algorithm which will be augmented in
this thesis to include discontinuity localization. The underlying curvature-consistency

data smoothing algorithm will be reviewed in some detail in the following chapter.

2.3 Use of Optimal Estimation Theory in Visual Recon-

struction

With close similarities between the fields of digital signal procesaing and estimation
theory, the use of the optimal estimation theory has seen tremendous use in signal
estimation, image restoration, de-blurring, multi-sensor fusion, and other fields of
image processing. In [23] Gelb and in [71] Willsky have provided a comprehensive
introduction to optimal estimation theory and its usc in digital signal processing.
Some early research in the recursive estimation of image signals from data cor-
rupted by additive white Gaussian noise is presented in [35]. In the ficld of visnal
reconstruction, recursive estimation has traditionally been used as a means of incor-
porating image data from different sources or from time-varying imagery [7]. Nearly
all the papers surveyed in this field use some variation of the Kalman filter [73].
Matthies et al. [44] have used Kalman filtering for obtaining on-line estimates of
depth from motion sequences. In the first stage they use correlation to produce a
disparity map at each pixel and an estimate of the associated variance. In a second
stage, the new disparity map is integrated with the one predicted from the previous
time step. The third stage uses a regularization approach to smooth the measurement
noise and to interpolate under-constrained areas. The smoothing function used is
the generalized piecewise continuous spline under tension [65]. As a last stage, the
disparity field in the next time step is predicted according to a camera translation.
In [43], an extension to arbitrary camera motion is described. It is interesting to note
that in this later work they attempt to localize discontinuities while performing the

regularization step by thresholding the angle between the camera view vector and the
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local surface normal to detect surface foreshortening.

As opposed to estimating depth maps, Szeliski in [62] presents a Kalman filter
based method to estimate camera motion parameters from time-varying range maps.
No correspondence is established between images rather, the motion estimate is found
by finding the geometric transformation which makes it most likely (in a Bayesian
sense) that the points come from the same surface. His method also “registers”
pixels in two consccutive images, so that they may be integrated into an updated
piecewise continuous surface estimate. A dense depth map is incrementally built up
by interpolating and integrating sparse range data. The points are then matched to
some known surface model. He uses a thin plate surface model and Terzopoulos's
method {65) to localize depth and orientation discontinuities.

Singh in [58] uses a Kalman filtering technique to compute image-flow from time-
varying imagery. One very interesting aspect about his work is that he uses a neigh-
bourhood weighting method to localize discontinuous flow fields. Neighbours which
do not provide a good estimate of the central pixel’s motion vector are weighted
down, while the ones which provide a good estimate are given more emphasis in the
subsequent time steps of image frame integration.

A recent paper by Heel [29] has shown an equivalence between recursive estimation
theory and surface reconstruction in the regularization framework from time-varying
imagery. Using a thin plate model, and representing the surface by a depth map
he shows that the solution of the resulting optimization problem is identical to the
update procedure of a Kalman filter. He also shows the equivalence between the
regularization parameter and the variance of the depth estimate at a given vixel.
Given two depth samples Z;;; and Za;;, to compute a depth map Z;; which is closest

to both values the following optimization problem needs to be solved
minzz M(Zi; - Zlij)z + A2(Zi; — Zais)?, (2.18)
]

the solution to which is
7. = M Zyi; + M2y
i A; + Ag ’

(2.19)
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In showing the equivalence between the Kalman filtering update equation which inte-
grates information from one image to another, the A's can be replaced by the inverse

of the variance estimate for that particular pixel to give

P Ziii [ pris + Zaii/ paij
J,'J‘ =

. .20
Vpuj + 1 paij (220

To incorporate discontinuities in the same model he includes the line-process terms
(28] in the functional to be minimized and arrives at another corresponding Kalman

filter based update procedure.
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Chapter 3 The Curvature Consistency Algorithm

Mecasurements of depth and/or orientation information over surfaces are available
from several imaging modalities, Several Shape-from-X {X = shading, motion, tex-
ture, stereo} algorithms are capable of providing these measurements with varying
degrees of acturacy [32]. The goal of a reconstruction algorithm is to provide piecewise
smooth surface descriptions from these measurements, while preserving the important
fcatures of the surface.

In Sander’s and Zucker’s original work [55, 56), the surface reconstruction algo-
rithm for 3D images was tied to inferring the trace points of the surface itself. In
the later adaptation to range images, and shading analysis, [37, 14}, the trace of the
surface is given a priori, hence the problem reduces to finding the surface coverings
from the measurements. The surface reconstruction process begins with an initial set
of surface descriptions computed from local estimates of the orientation or depth, e.g.
[1, 11, 18, 19, 48, 47]. The curvature consistency algorithm amounts to an iterative
refinement of these estimates such that curvature varies according to an expected
local model of a surface. In this thesis the context of the reconstruction algorithm
will be depth maps acquired with a laser range-finding system.

The surface descriptors used in a reconstruction algorithm should be able to de-
scribe the salient features in the image, and should be independent of the viewer
coordinate system. In Section 3.1 one such descriptor, based on differential geometry
of local surfaces is presented. The method used to obtain initial estimates of this
surface descriptor from noisy range data is presented in Section 3.2. In Section 3.3
these initial estimates are refined using curvature consistency: a transport model
sets up the continuity criterion between neighbouring surface patches; the updating
rules describe how neighbouring patches contribute to the refinement of the surface

descriptor at a range data point.
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Figure 3.1: Local surface representation - the augmented Darboux frame

3.1 The Local Surface Representation

The goal of our surface reconstruction algorithm is to provide a patchwork of overlap-
ping, interpolation functions, each of which describes the surface locally. Following the
convention of Sander and Zucker, we use an augmented Darboux frame to represent
the local neighbourhood of a point P on a surface S [10, 55, 56). This representation
is described as follows. Let the local neighbourhood of P be represented by a quadric
patch of the form

w = au’® + cv?, (3.1)

with origin at P and the w axis aligned with the surface normal at P, Np, as shown
in Figure 3.1. The orientation of this local frame is such that the u and v coordinate
axes align with two special directions on S at P. These are the directions for which
the normal curvature at P (a directional property) takes on maximum and minimum
values, Kar, and Kaq,, and are referred to as the principal directions Mp and M,
respectively [10]. The scalar quantities £mp and Ky, are similarly referred to as the
principal curvatures at P. Following the convention of {55, 56}, we refer to D(F?) =
(P, Mp, Mp, Np, ka1 M) collectively as the augmented Darboux frame at P,
Assuming that the system providing measurements of the surface is influenced by
random or systematic noise, initial estimates of the augmented Darboux frames at

each surface sample point will be noisy. The curvature consistency algorithm is then
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3. The Curvature Consistency Algorithm

used Lo iteratively refine the components of the extended Darboux frame in such a
way that two neighbouring frames finally represent the same continuous surface patch
at different positions. This will occur when the position, orientation and curvature

vary smoothly across the fitted surface.

3.2 Initial Estimates

The components of D() can be estimated either directly from measurements of
the surface gradient, or indircctly from the parameters of some appropriate local
approximation of § (e.g. a quadric patch). Several methods exist to provide these
estimates [1, 10, 11, 18, 25] which use operator-based methods, feature analysis or
functional analysis. In our reconstruction method we use a least-squares fit of a
parabolic quadric lo cach poiut P and its neighbours, to estimate each component of
D(P).

'The surface measurements are acquired as a grid of discrete points (7, 7). To fit

an osculating parabolic quadric of the form of the form
h(u,v) = au® + buv + cv?, (3.2)

to a point P, first the / x J neighbourhood around P;; needs to be transformed into
a local coordinate system centered at this point. The coordinate system is aligned
with the normal Np, to the surface at point P; and the tangent plane Tp, shown
in Figure 3.1. Notice that {3.2) has an additional parameter b as compared to (3.1).
This is to account for the unknown rotation of the local frame with respect to Np,.

The tangent plane Tp, is obtained by a planar fit to the 7 x J window centered at
P;j. A lincar transformation is then used to map each point in the / xJ neighbourhood
to the coordinate frame of ;.

Using least-squares methods, a parabolic quadric is fit to the points projected
into F;;’s coordinate system. Once the a, b, and ¢ parameters are determined then

Mp, Mp, Kz, and K pq, are determined by
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Mp= (a—c+la—c)>+1D) a2c

(b,—-(u-—c+\/(:——c?2_-—i.-l;';)) a<c

Mp= (=ba—ct+fla=e)+b) a>c

(a—c—yla—c)?+b3,0) a<c (3.3)

Np = (0,0,1)

KAafp = a+c+ (e -c)?4b?
KMp = a+c—+f(a—c)2+h?,

However as can be expected, the frames D(FP) at each point will be subject Lo
the usual effects of noise and quantization error. Various techniques can be used
to optimize estimation in the presence of noise, but they largely fall short when it
comes to estimating directions [56]. We now consider how to improve on these errors

through an iterative refinement of D(P) using the curvature consistency algorithm,

3.3 Iterative Refinement Using Curvature Consistency

The algorithm operates by iteratively minimizing the difference between the descrip-
tion of S at P given by D(P), and that predicted by its local neighbours @, according
to a local model that describes how the frames at @, should appear at 2 when trans-
ported along the surface of that model (Figure 3.2). The particular considerations in

formulating the algorithm are:

- The form of the transport model. This explicitly embeds the expected structure
of the local surface by constraining how D(P)} changes as it is moved across
it. Ideally, the transport model is chosen to enforce the locally constant curva-
ture assumption [46], e.g. by using a torroidal transport model [37]. However,

for computational simplicity, a quadric is often used in approximation of this

constraint.
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F"’a D,
\

-----

Figure 3.2: The local transport model determines how a frame at a neigh-
bouring point @ appears when it is extrapolated over to P.

- The form of the minimization functional. Let £g, denote the set of frames corre-
sponding to cach neighbour of P and £p, the set of frames that results when
cach element of £g, is transported across the surface to P as shown in Fig-
ure 3.2. This functional describes the least-squares difference between D(P)
and €p,. A set of updating functionr for each component of D(P) is determined

by minimizing this functional.

~ Determination of convergence. At each iteration, D(P) is updated and a residual
error is computed by taking T, | D(P) — £p,||°. The sum of these residuals over
S gives an energy measure which stabilizes over time, thus providing a means

of determining when to halt the updating process [55, 56, 15].

For further details on the above issues, the reader is referred to [14, 15, 56]. What is
of importance are the functions updating D(P) from the neighbourhood predictions
as they have a direct bearing on the behavior of the algorithm in the vicinity of
surface discontinuities. They are summarized as follows for the P, Np, s, and x4,

components of D(P):

n p (k)
pl+) = $° (3.4)
a=1 n
n k n k n
N,(;k'H) = ( a=1 N;(-p),’ a=1 N]sz,‘! a=1 Nz(:i) (35)

(To NELY2 4 (T, MO Y2 4 (5, NB )2
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(k)

1l
k41 Karp "
HHREDY ik, (3.6)
as=l ’
() o "'5&)
Kamp = 2 =L (3.7)
a=1

where the superscript & refers to the current iteration step.
The updating function for Mp is expressed in terms of an alternate parameteri-
zation which takes into account the fact that Mp is a dircelion, L.e., that there is a

180° ambiguity in orientation. If we express Mp in tangent plane coordinates as

MED = by cos 05+ 4 By sin 054D, (0,2%)  such that 1) by, by € T

2) bl =152l =1 (3.8)
3) (b -by) =0,

then
Az — A + (A — Agl)? + 1A%
glt) _ gt | A2z = A) \/LSA:; ) L (3.9)
where
Aij = SO(MED B (ME - B)). (3.10)

a=1

Note that this also determines the solution for M(,f“} since Mp = Mp x Np.

3.4 Applying Curvature Consistency to Range Images

Range images are the easiest for surface reconstruction algorithms to be applied to,
as opposed to intensity images. This is because the pixel position information is
provided directly, and does not have to be derived from other image propertics, e.g.,
by shading analysis. The errors introduced in estimation of surface patches are then
mainly due to the systematic errors inherent to the range camera. No Shape-from-X
[37] methods need to be applied to infer the coordinates of pixelized surface samples.

Since the local curvature variation is accounted for in the minimization process, the

curvature consistency algorithm lends itself very well to reconstruct locally continuous

31



3. The Curvature Consistency Algorithm

C*? surfaces. Figure 3.3 demonstrates its application to samples from such a surface.
Migure 3.3(a) shows the samples generated from an ideal underlying surface following
a sinusoidal trace, with amplitude 5 (pixel height units). In Figure 3.3(b) Gaussian
noise of amplitude 3 (pixel height units) has been added. The initial estimate of
the Extended Darboux frames at each sample point is obtained in Figure 3.3(c). The
initial estimate of normals at ecach image sample is obtained using a local fit of planes.
'I'he curvature is estimated by fitting local parabolic quadrics. A 5 x5 neighbourhood
size was used to obtain the initial estimate. Figures 3.3(d) and (e) show the recovered
surface after 3 and 10 iterations respectively of the curvature consistency algorithm
using a 5 x 5 neighbourhood. As can be seen an almost perfect fit is obtained. The
additive Gaussian noise has been smoothed out, recovering the underlying surface.
Further iterations will not affect the surface fit much, The error of fit tends closer
to zero with cach iteration. The iterations can be stopped after the energy residual
passes a certain threshold. The plot of the energy residual is shown in figure 3.3(f)
against the number of iterations.

Figure 3.4 shows the application of the algorithm on natural range images from
a lazer range camera. The imaged object is a toy car. As can be noticed, the noise
level in the data is not as severe as the synthetic image in Figure 3.3. The most
significant noise-effected regions are on either side of the windshield area, where the
range camera has obtained bad estimates of depth. Figure 3.4(a) shows the range
image samples in a grid form and Figure 3.4(b) shows the initial estimate. The
reconstruction algorithm provides a progressively smoother surface fit at iteration 3
in Figure 3.4(c), iteration 5 in Figure 3.4(d), and iteration 10 in Figure 3.4(e). Notice
that unlike Gaussian smoothing or moving average filters, the curvature information

is preserved while smoothing out the noise. The plot of the energy residual is shown

in Figure 3.4(f).
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Figure 3.3: (a) A synthetic range image. (b) Noise added to the range
points (SNR 5/3). (c) The initial estitnate of the darboux frames and surface
patches. Darboux frames and recovered surface after (d) 3 iterations, (e) 10
iterations of the curvature consistency algorithm. (f) Energy residual plot.
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Figure 3.4: (a) A real range image of a toy car. (b) Initial estimate of the
surface patches. Recovered surface after (c) 3 iterations, (d) 5 iterations,

(e) 10 iterations of the curvature consistency algorithm. (f) Plot of energy
residual.
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3.5 Chapter Summary

In this chapter the theory behind the curvature consistency surface reconstruction
algorithm was presented along with some examples of its application to range im-
age reconstruction. From the theory it can be seen that the curvature consistency
algorithm is basically a relaxation procc§s, where the continuity information is propa-
gated through the image with each iteration. A goal of this thesis is to show that in a
local neighbourhood, this relaxation process is equivalent to a multiple measurcment,
fusion problem.

The effort in the rest of the thesis is now to show how to obtain an eptimal estimate
of these parameters using the inputs from the various neighbours. In the next chapter
a similar multiple-measurement fusion problem is set up and solved purely in a control
theory, optimal estimation context. Later in this thesis it will be shown how the
curvature consistency algorithm falls under the same optimal estimation framework.
Using this framework, and by redefining the concept of “noise” in the image, a new
set of update equations will be derived which will result in discontinuity localization

while providing a smooth continuous fit to noisy range image data.



Chapter 4 An Optimal Estimation Problem

The last few chapters established the basis for the surface reconstruction algorithm
used in this thests. In this chapter, we now moveon to establish the optimal estimation
theory on which the discontinuity localization solution is based.

Estimation theory offers a technique to integrate information from different
sources. A more specific and popular example of an estimator is the Kalman filter.
With close similarities between the fields of digital signal processing and estimation
theory, the use of the Kalman filter has seen tremendous use in signal estimation,
image restoration, de-blurring, multi-sensor fusion, and other fields of image process-
ing. The approach in this thesis is to show that the same optimal estimation process
can be used to model interactions between pixels in a local neighbourhood in the
curvature consistency surface reconstruction algorithm. To understand the optimal
estimation theory taking place in this case, it is instructive to consider it separately,
out of the context of the reconstruction algorithm.

In Section 4.1, an introduction to optimal estimation theory is presented. A simple
example of dual-channel, noisy information fusion is set up and an optimal estimate
derived in Section 4.2. In the same section, the example is extended to include sev-
cral sources providing measurements of the quantity being estimated. This example
provides an optimal estimate only from single measurements from each information
source. In Section 4.3, a state-space formulation of the same example is derived. In
this case, multiple noisy measurements from each source are now combined to pro-
vide the optimal estimate. A recursive method of estimating the noise variance of
each channel is also developed. Finally a special case is considered, where the noise
properties of the sources could change over time. In Section 4.4, the lessons learnt
from the optimal estimation example are summarized. These lessons will be useful
when applying the same estimation theory to the curvature consistency algorithm in

the next chapter.
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4.1 Optimal Estimation Theory

Given sets of noisy measurements from multiple channels, over multiple instances of
time, if the problem is to estimate an underlying quantity from them, the solution is
in the form of an optimal estimator:

“An optimal estimator is a computational algorithm that processes measurements
to deduce a minimum error estimate of the state of a system by utilizing: knowl-
edge of system and measurement dynamics, assumed statistics of system noises and
measurement errors, and initial condition information.” [23]

The Kalman filter is one such optimal estimator. Given the lollowing information:
1. a linear system model

2. measurement of the behaviour of the system

3. statistical models of system and measurement errors

4. initial condition information

the Kalman filter enables the processing of the measurement data to estimate the
system state,

An advantage of the Kalman filter is that it generates its own error analysis. [t
tracks the accuracy of the estimates that it generates. 1t is classified as a recursive
filter since there is no need to store past measurements for the purpose of computing
present estimates. All previous information is embodied in a prior estimale.

The Kalman filter equations will not be derived here, since it is beyond the scope
of this thesis. For more details on the development and use of the filter see 23] [71].
More appropriate would be an illustration of some of the concepts behind the filter
and its use which are pertinent to the solution of the discontinuity preserving surface
reconstruction problem. An optimal estimation problem is used to instantiate these

concepts.
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4.2 An Optimal Estimation Problem

Consider the following problem: Two sources of measurement are available, each
making a single measurement ¢;(i = 1,2) of a constant but unknown quantity, p,
in the presence of random, independent, unbiased measurement errors!, v;(i = 1,2),
with known variances. An estimator nceds to be designed to combine the two mea-
surements to produce an optimal estimate of p.

The measurements are described by
qu=p+v and @ =p+w. (4.1)

In the absence of any other information, a linear function of the measurements may

be obtained which gives an estimate of p,

P = Mg+ Mg, (4.2)

where p is an optimal estimate of the constant quantity p and A;, A2 need to be

developed to provide this optimal estimate. Defining the estimation error, ¢, as

€=p—p. (4.3)

The optimality criterion is one which would minimize the mean square value of e.
In addition, the choice of A; and A, should be independent of the value of p. This

condition will hold if the estimate is unbiased, i.e., the expected value of the error

Eld = E[p~p] = 0. (4.4)

Expanding (4.4) using (4.2)

Elef = EM(p+v)+Xa(p+v2) —p| =0 (4.5)

'In applying optimal estimation theory to surface reconstruction, the sources of error are not
technically noise processes, but are treated as such.

38



4. An Optimal Estitmation Problem
= ME(p) + ME(v1) + A2 E(p) + A E(v) = E(p). (4.6)
With E[v)] = E[vg] = 0 and E[p] = p, we obtain
Az =1-—AL (4.7)
Combining (4.1) to (4.7), the mean squared error is computed to be
E[¢] = Alo] + (1 = )’a3, (1.8)

where o? and o2 are the variances of vy and v, respectively. To obtain optimal values
of A; and A;, we differentiate the mean square error with respect to Ay, and sel the

value to zero,

2x 0% —2(1 — A\\)a? =0, (4.9)
yielding
M= and =T (4.10)
'T ol o2 L e '

Using these values of A; and A;, we obtain the estimator

9 2

o T3 oy
= —_—— . 1.11
P (U'i’ +0§) n (0?+03) & 1)

Put in another form, the estimator is

5= (ot 1/}
P (m) " (m) 2. (4.12)

The corresponding minimum mean square error of estimation is

E[é}] = (L2 + iz) . (4.13)

gy o

The optimality of the estimator is exhibited by the minimum mean square error

(4.13), which is less than either of the mean square errors due to each measurement

source.
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These results can be casily generalized to the case where there are N sources of
measurements each providing measurements ¢; (i = 1 .. N) of the static quantity p,

cach with known error variances ¢? (i = 1 .. N). The optimal estimator can be shown

to he
1 ) (1/0%) (4.14)
N = 1 o g;. '
P (l/af+1/a§+...+l/a}"v 2 (1/a)g
The corresponding minimum mean square error of estimation is
1 1 1
D=+ =+t —=1}. 4.15
Be1= (g g+ ) 419

Using {4.12) and (4.14) we draw attention to an important characteristic of this
optimal estimator: Each measurement is weighted by a function of its error variance.
This variance-weighting prevents noisy measurements from entering into the estimate

p. The optimal estimator (4.14) makes sense in the various limits of interest:
o If 0 = 0% = ... = 0%, then the measurements are averaged.
e If one measurement g is perfect (o = 0), then the others are rejected.

¢ Measurements which have low error variances are given more weight over the

oncs which have worse noise propertics.

4.3 State Space Formulation

In the example presented in Section 4.2, single measurements from different sources
were combined in an optimal sense. The theory can now be extended to combine
multiple error-prone measurements from each source. It was also assumed that the
noise or error variances o7 are known a priori for each measurement source i. If we no
longer assume this, we need a method of learning the error properties of each source
using the multiple measurements provided through that source.

In this section, we will assume initially that the measurement error variance is an
inherent property of the input source itself and its value does not change over time.

Due to this, the measurement error variance for each source is a constant quantity
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which needs to be estimated. At the end of the section we will consider the case
where the noise properties of the measurement source can change over time. As an
example of how this may occur in the physical world, measurement sensors are aflected
by external parameters like temperature, pressure changes cte. Assuming that the
changes in noise properties are gradual, the error variance estimation method can be
made adaptive to accommodate these changes

Note that now, two different processes will estimate two separate but related
quantities at each time interval. One process combines measurements [rom different
sources to produce an estimate of the constant quantity p at time k. Variance weight-
ing is used in this process to attenuate the contributions from the sources which are
noisier than the others. The other process recursively estimates the measurement
error variance associated with each measurement source, based on previous measure-
ments through that source.

The noise property embodied in the variance estimate for cach source is learnt
using the prediction error of the constant quaniity p from subsequent measurements,
This results in an iterative process, where a better estimate of the constant quantity

p, and the error variance o? for each source, is obtained with cach iteration.

4.3.1 Accommodating Sequences of Measurements

If we are given NV sources, each provides a measurement of the constant quantity p of

the form

gi(k) = p + vi(k) i=1.N, (4.16)

with error of measurement v;(k), at time (state) k. A linear combination of the

measurements provides the estimate of p at time &

N
(k) = 3 Nilk)ai(k), (4.17)

=0
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where X(k) are the coefficients which are derived as in the previous sections, using
Lhe same optimality eriterion. Again, cach A is just a function of the error variances of
the measurement sources, However, since the error variances are not given quantities,
but have Lo be estimated, the variances a? have to be replaced by the revised estimate
a2k} at time k. A(k) is then given by

1/83(k)
JETOR) + 1/83(k) + o+ 1/ER(R)

Mi(k) = - (4.18)

4.3.2 Recursively Estimating the Noise Variance

'I'he error of estimation for each measurement source ¢ at time k& is calculated by
a(k) = plk) — qi(k). (4.19)
T'he measurement error variance at Lime & for source ¢ is then
2 1 &,
g; (’\') = EZCI'([). (4.20)
=1

When an additional measurement becomes available through that source, the new

estimate of the variance is

2 I k41
ek = —_— 2 9
k1) = 2y LA, (4.21)

This expression can be written in another form which makes explicit the prior estimate

Eo(1& 1
52k = | = 2 2(1.
ai(k+1) k+l(k,'s'=l('([))+k+lc‘(k+l) (4.22)
=k a?(k)+~—1—c?k+l 4.23
—A+l % A,-i-l i( )‘ ( )

Using Eq. (4.23) offers an advantage over Eq. (4.20), in that, past values of % need
not be stored. At time (k+1) all previous values zre embodied in the prior estimate of

the variance 6%(k). Eq. (4.23) represents a recursive estimator for the error variance.
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Eq. (4.23) can be written in another form

B3k + 1) = 6HK) o+ (k4 1) = 53R, (1.21)

in which the new estimate is obtained by summing the prior estimate with an appro-
priately weighted quantity. The quantity ((A + 1) = #2(k)) is the difference between
the squared error of estimation obtained at the present time and the square of its
expected mean. This quantity is the error variance residual. "The error variance
residual should typically decrease with time, as more measurements arrive through
the source and a better estimate of the measurement error variance is obtained.

To start the estimate for cach source i, an initial value is needed for &% At the
start of the estimation process, there is no prior reason to believe thal one source
would give more accurate measurements of the constant quantity p than the other
sources. Bach source should he assigned equal weighting in the estimation of the
constant quantity p. Duc to this reason, the initial measurement error variance for

cach source is set to 1. For N measurement sources this gives

I

M0)=5  Vii=L1.N. (4.25)

4.3.3 Sources With Changing Noise Properties

In accommodating sequences of measurements through different sources, we have so
far assumed that the measurement error variance is constant over time and is an
inherent property of the source itsell. To add another twist to the problem, now
we assume that the measurement error variance of the measurement sources changes
over time. The change in noise properties could be any physical phenomenon beyond
the control of the optimal estimation process. However, the estimation process has
to adapt to the changes in these noise properties.

This can be done casily by making the estimation of the measurement error vari-
ance adaptive. In Eq. (4.20), rather than include all previous estimates of %, culy

the T previous estimates are used. The expression to calculate the measurement error
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. variance is then

k 1 Mk <=
aik) =5 1-L?(!) where, K = l 7 (4.26)
=k T k— 741 otherwise.

ISquations (4.23) and (4.24) then become

G2k +1) = ;%&,?(k) (k1) (4.27)
G}k 4+ 1) =&}k) + (E(k +1) — &2(k)). (4.28)

T+1
In some cases, we would want to give more recent measurements more emphasis in
the measurement fusion process. In this case, the recursive estimation of the error
variance can be adjusted so that the error variance from more recent measurements
arc given a higher weight than older ones. This can be done by using an exponential

(Gaussian) falloff or a triangular fallofl weighting function.

4.4 Chapter Summary

An oplimal estimation problem was formulated to illustrate some of the concepts and
usc of recursive (or Kalman) filtering. The problem presented in this chapter was
carcfully chosen to be directly relevant to the problem of discontinuity preserving
surface reconstruction, discussed in the next chapter.

The lessons learnt so far in this chapter which will directly contribu’e towards the
design of the discontinuity preserving surface reconstruction method are summarized:

Given a set of measurement sources, each providing a sequence of measurements at
discrete intervals of a constant quantity, and each with uncorrelated noise properties,

optimal estimation theory offers the following attributes:

e It provides a framework Lo give an estimate of the constant quantity, which is

optimal in the sense that it has a minimum mean squared estimation error.

. e It tracks the total error of estimation over time, which indicates the confidence
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in the estimate.

¢ Given an initial value, it is possible to learn the error variance atiributed to

cach measurement source.

e Anupdate stage uses the measurements from cach source weighted by o function
of the corresponding error variances to obtain a new estimate of the constant

quantity.
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Chapter 5 Using Estimation Theory In Curvature
Consistency

In Chapter 1, the need for proper application of the continuity (or smoothness) con-
straint to the surface reconstruction problem was discussed. It was stated that the
approach taken in this thesis is to apply the smoothness constraint selectively. In the
last chapter, we developed a multi-sensor fusion problem and arrived at a method to
control the measurement fusion process in such a way that noisy measurement sources
would play less of a role. By construing the curvature consistency algorithm as an
analogous multi-channel measurement fusion problem, we arrive at an automatic and
adaptive mechanism to control the application of the smoothness constraint. This
mechanism will prevent a blind application of the constant curvature constraint dis-
regarding any discontinuitics in the data.

In this chapter we show how the interaction between pixels in a local neighbour-
hood during the curvature consistency variational relaxation, or any relaxation pro-
cess, can also be modeled as a multiple measurement fusion problem. Each neighbour
in a local neighbourhood acts as a measurement source. We call these “pixel-sources”.
Each pixel-source provides a “mecasurement” of a constant quantity, which here is the
sct of Extended Darboux Frame parameters which describe the quadric patch surface
interpolating the image samples in that neighbourhood. It was assumed initially that
the noise in the image is Gaussian. Due to this noise, measurements provided by each
pixel-source are also noisy and follow a Gaussian distribution. The optimal estimation
solution developed in the last chapter then applies directly to the curvature consis-
tency variational relaxation smoothing problem. The variational relaxation stage of
the curvature consistency can now be modified to offer better estimates of the quadric
patch interpolants through the image data.

In addition to demonstrating the link between optimal estimation theory and
inter-pixel interaction during relaxation processes, another key concept is introduced

which helps in accommodating discontinuities in the image sample data: The concept
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of noise in a pixel-source is extended to include another noise component due to
structural discontinuities in the local neighbourhood. Using this component, optimal
estimation theory offers a framework to localize discontinuities while performing noise
smoothing in piece-wise continuous surface regions. The extension of the noise model
to include a discontinuity noise model is an important contribution of this thesis,

In developing the solution to the measurement fusion problem in the last chap-
ter, it was assumed that the noise between the different sources was identically and
independently distributed. No grouping of sources according to noise variance was
considered. However, in the presence of a discontinuity in a neighbourhood, pixel
sources are correlated in terms of their noise variances. The discontinuity divides this
neighbourhood in two subregions, each subregion defined by a similarity in the noise
variance of its constituent pixels. The correlation results from the fact that pixels
belonging to the same subregion in the discontinuous ncighbourhood demonstrate
similar estimation error properties while estimating the Darboux Frame parameters
of the interpolating surface patch. The estimation error properties are however difler-
ent between subregions. To accommeodate this pixel grouping, the optimal estimation
solution needs to be modified. This is done by introducing a new weighting function
which still falls under the optimal cstimation framework, but also takes the pixel
grouping in discontinuous regions into account. With this form of weighting function
true localization of discontinuities can be demonstrated while recovering a smooth

continuous surface covering elsewhere.

5.1 Control Processes at the Pixel Level in Curvature Con-

sistency

In the field of image processing, it is common to see estisnation theory used to combine
multiple images arriving from different sources, at different times, or from different
positions. It is interesting to note that the same information fusion theory can also be
used to describe information flow processes between neighbouring pixels on a single

image in some of the well known image processing algorithms which use relaxation or
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Figure 5.1: Direction of information flow into a 3 x 3 neighbourhood during
a relaxation process

diffusion. Rather than multiple images acting as sources of new information, multiple

pixels in a region act as information channels.

5.1.1 Information Flow in Relaxation Processes

In relaxation processes, due to the interaction of neighbouring pixels, information is
transmitted across the data set. The state of a local neighbourhood is influenced
by its constituent pixels. Each pixel then acts as a channel of information for that
ncighbourhood. Figure 5.1 shows the direction of information flow into a 3 x 3 neigh-
bourhood from the rest of the image. Hence, given a I x J discrete neighbourhood
of image samples centered at pixel P, there are [ x J separate sources of information
Q:, (i = 1...I x J), each contributing a “measure” of the state of that neighbourhood.

In the curvature consistency algorithm, neighbouring pixels interact o determine
cach other's surface patch parameters. It also operates at a I x J pixel neighbourhood
level. Each neighbouring pixel @; in the I x J neighbourhood of P provides a mea-
sure D;(P) of a constant quantity, which is the Extended Darboux Frame D(P) of
the surface patch centered at P. D;(P) is obtained using a local transport model that
describes how the Extended Darboux Frame at Q; should appear at P when trans-
ported along the surface of the model. D(P) then represents the optimum quadric

function which interpolates the data in that neighbourhood. Hence, in information
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fusion terms, a measurement model similar to (4.1} can be set up as
Di(P) = D(P) + v, i=1,2,.,0%J (5.1)

where v; is an error vector assigned to each neighbourhood pixel-source. The compo-
nents of this error vector are the individual error scalars related to cach parameler
of the Extended Darboux Frame. The error is due to noise in the measurements. A
thorough description of this noise follows next, but before that, equation {5.1) will be
extended to include the fact that relaxation processes are iterative. At cach iteration,
a new measure of D{P) will be provided by the neighbours. Hence similar to (4.16),
a state space equation can be set up. At time (state) &, each neighbour of P provides

an estimate of the Extended Darboux Frame D(F) with an error of measurement

vi(k).
Di(P)(k) = D(P) + wi(k), 1=1,2,.., I xJ (5.2)

As will be shown in the next section, the error of measurement v; is not necessarily
constant, but may vary with each iteration, assuming there is cither Gaussian noisc

in the image or some discontinuities in the surface structure, or both.

5.1.2 Defining the Noise Property

Given the variation of the data in the neighbourhood set, each pixel will give a dif-
ferent estimate of what the interpolating surface patch parameters should be. Ience,
the estimated quantity from a particular neighbour will differ from the optimal esti-
mate obtained by combining the different estimates (or measurements) from all the
neighbours. Relaxation processes are iterative, in which the overall state of the image
converges with each iteration to a stable underlying state. Since at cach iteration,
a pixel has new irfurmation flowing in and affecting its own state, its contribution
to the neighbouring pixels changes too. Hence, the measurement error will vary as

the state of the neighbour pixel changes with time. A “noise” property can then be
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attached to each pixel which causes this error variance. In the curvature consistency
algorithm, this noise property determines the accuracy of measurement of the surface
patch parameters from a neighbour.

Here we comce to a crucial area of discussion. How exactly do the errors in the
measurements arise?

We propose that the variation in the information flow during relaxation is due to

two factors:
1. The additive Gaussian noise assumed to be in the image.
2. Discontinuities on the surface which was sampled.

Each reason contributes independently to the error value v in (5.1). The error v can

be broken down into two separate components
V= vg + Vdy (5-3)

where v, represents the error component due to the Gaussian noise in the image, and
va represents the component due to the presence of discontinuities. Each component
can be best analyzed by setting the other’s contribution to zero.

Setting v4 to zero implies that there are no discontinuities on the surface being
sampled. The only reason for error in the measurement of D(P) by the neighbours
is due to the additive Gaussian noise in the image. The additive Gaussian noise
provides variation in the pixel values over the whole image, which results in the pixel
sources in a neighbourhood giving measurements which are different from each other.
In a local neighbourhood then, each pixel can be assumed to be sampled from a
continuous underlying patch. In providing measurements of the Extended Darboux
Frame D(P) over several iterations, every pixel in that neighbourhood is expected
to have similar error variances. A straightforward relaxation process is enough to
smooth out the Gaussian noise and to give a maximum likelihood estimate of the
underlying continuous surface. If o7 (i = 1...] x J) is the noise variance associated

with each pixel Q;, then in the case where the samples at these pixel positions come
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from continuous surface regions,
2 2 "
= =0 = =0 (5.4)

On the other hand setting v, to zero in (5.3), means that the pixels are sampled
from surfaces containing discontinuitics but no random Gaussian noise. In that case,
the surface can be modeled by piecewise continuous surface patches with combinations
of discontinuities in depth, orientation and curvature components. The variation in
the pixel-source measurements during relaxation is now due to the presence of these
discontinuities. If there is a discontinuity within a neighbourhood, image samples
would lie on one or the other continuous patch across the discontinuity. In this
discontinuous region, pixels on opposite sides of the discontinuities provide different
measurements of D(P) from each other, while within a continuous patch there is no
source of error in measurement. If a neighbour Q; provides a measurement of D(/1?),
when ; and P lie on the same continuous patch, the measurement is going to be
exact, i.e., v = 0. However, if Q; lies on the other side of the discontinuity as P, the

measurement is not going to be exact, and can be represented by:

Di(P) = D(P) +v,,. (

by |
puiy |
St

For the pixels on the same side of the discontinuity in a local neighbourhood, the
error variances are going to be equal. They will however, have different variance
values from the pixels on the opposite side.

A typical set of image samples will probably contain both additive Gaussian noise
and surface discontinuities. If in the reconstruction process, only the Gaussian noise
is accounted for, then discontinuities will be considered as being due to the Gaussian
noise process too. If a simple relaxation process is used to eliminate this noise, then
the discontinuities will be distorted as a consequence. On the other hand, if only the
discontinuities are accounted for, then variation in the surface due to the Gaussian
noise will be inferred as discontinuities as well, and in a discontinuity localization

process, there will be edges found everywhere.
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The shortcoming of the original curvature consistency algorithm is that it only ac-
counts for the v, error component in (5.3) and simple relaxation is used to smooth out
this noise. Therefore, it will perform well in recovering surfaces from data containing
only additive Gaussian noise but will fail to preserve any discontinuities.

This situation can be remedied by using a cooperative method, where the pro-
cess of evaluating neighbouring depth samples on the same continuous patch com-
plements the process of evaluating a discontinuity between them. By this method,
the measurement operation (5.2) can be restricted to occur between image samples
which are perceived to be in the same subregion in the discontinuous neighbourhood.
Within each continuous subregion, the measurements from each neighbour will pre-
sumably contain only the v, error component, which can be easily smoothed out by
the relaxation process, without the influence of neighbours from the other side of the
discontinuity.

To restrict the measurement operation in this manner requires knowledge of the
presence of discontinuities in the local neighbourhood. Since discontinuities are not
given a priori, this cooperative process cannot be applied straight off. However,
starting from an initial estimate, with each iteration of curvature consistency the
(dis)continuous nature of the local surface can be learnt. At each iteration, the
measurements from each neighbour can be weighted according to the current belief
that it is on the same continuous patch as the pixel at which the interpolating surface
is centered. In the next section, it is shown how it is possible to use the optimal
estimation techniques discussed in Chapter 4 to learn the discontinuous nature of
the surface between two neighbuuring pixels and to apply curvature consistency in a

piccewise continuous manner.

5.1.3 Optimally Combining Measurements From Neigh-

bours

As has been already shown, the pixel level interactions taking place during the curva-

ture consistency variational relaxation stage is very similar to the information fusion
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example shown in the last chapter. Hence, given the measurement model of (5.2)
at iteration k of the curvature consistency algorithim, using estimation theory and

(4.17), the optimal estimate of D(P) is of the form

IxJ

D(P)(k) = 3° XD P)(k), (5.6)

i=0

where each A; needs to be determined to provide this optimal estimate.

The value of A; can be seen to be the same as was derived in Section 4.3.1.

A(k+1) = 1/oi(k) =l dxJ, (5b7)
‘ 1/63(k) + 1/63(k) + ... + 1/6%m(k) ’
where 62(k) is the current estimate of the measurement error variance for neighbour

Q: in estimating D(P)'. At ecach itcration, the error of measurement is calculated as
ei(k) = D(P)(k) = Di(P)(k), (5.8)
which is then used to calculate the current estimate of the error variance
1 k
Gik) = £ 2_€i(l). (5.9)
=1

As shown in Section 4.3.2, a recursive estimation process can be used to update 62(k)

instead of (5.9)
kY= k-1 + %(c?(k) - &%k —1)). (5.10)

This eliminates the need to store all the values for ¢; over all the iterations. Ouly the
error variance 67(k — 1) obtained in the last iteration is needed.

Many researchers [49] [54] [70] have used the first derivative (difference between
neighbouring pixel quantities) as an estimate of the continuity of the surface. Equa-

tion 5.8 is similar to taking a spatial first derivative in the discrete form (difference

1There is a slight change in notation between (5.7) and (4.18) regarding the index of A;. Since
the estimate of the measurement error variance used in calculating A; is actually obtained in the
previous iteration, the index of ); is changed to & + 1, rather than k.
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equation), except that rather than taking the difference between the neighbouring
quantities, we are taking the diflerence between the current estimate of the quantity
at pixel P, and the estimate by neighbour @; of the quantity at P.

One other property of relaxation processes needs to be modeled in control theory
terms. This property is associated with the change in the noise properties of pixel
sources over time according to new information content flowing into the neighbour-
hood. During a relaxation process, information travels across the image. There is
travel time associated with the information which depends on the neighbourhood size
being used. If Lpsyg = [ x J is a dimension of the local neighbourhood size being
used in the relaxation process then, for information to travel a distance of L pixels
it would take L/L,sq number of iterations. If drastically new information reaches a
neighbourhood from a far region through one of the neighbourhood pixel sources, the
measurement crror variance could change. Hence, the neighbourhood pixels should
be trcated as sources with changing noise properties. Fortunately, this situation has
been already considered in Section 4.3.3. The same solution is applied to the case of
curvature consistency relaxation process. The variance estimation process should be
made adaptive by considering only the T previous estimates in (5.9}, i.e.,

&2(k) = fj Yawy where, k=1 itk <=7 (5.11)
k—7+41 otherwise,
This results in an equation similar to (4.28) which gives a current estimate of the

noise variance of the pixel source whose noise properties changes over time
. . 1 .
o2(k) =63k -1) + ;(c?(k) — ¥k -1)). (5.12)

As mentioned in Section 4.3.3, if more recent measurements need to be favored
over older measurements, then a Gaussian or triangular falloff weighting function can
be applied to (5.11). The more recent the measurement, the higher the weight given

in its contribution to the overall estimate of the noise variance. In this thesis, rather
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than weighting the variance contribution over time, we set * = 1, which implics
63 (k) = e}(k) = [D(PY(K) = DI P)R)] (5.13)

This effectively disregards the history of the error variance, but provides computa-

tional simplicity.

5.1.4 Optimal Estimation in the Curvature Consistency

Formulation

It is now worthwhile to analyze how the original curvature consistency formulation
fits into the optimal estimation framework and vice-versa. In Section 3.3 it was
shown that through a surface transport model (Fig. 3.2) cach neighbour in a local
neighbourhood centered at pixel P provides measures D;( ) of the Extended Darboux
Frame at P. Equations (3.4), (3.5), (3.6), (3.7), and (3.9) show how the individual
components of D;(P) can be combined to give an estimate of D( /7). Analyzing these
equations, it can be seen that the Extended Darboux Frame micasurements 1;(/1?)
from each neighbour are being combined in the form:

. IxJ
D(P) = IiJ Z:D.-(P). (5.14)

This is similar to the form in equation (5.6}, which was derived using an opti-
mal estimation and measurement fusion framework. Comparing cquations (5.6) and

(5.14), the value of A; used in (5.14) can be seen to be a constant:

=1 1 515
'\'“IxJ = (5.15)

What this implies is that each neighbour ¢; is being given the same weight in the
measurement fusion equation (5.14) in cach iteration. This is a natural consequence
of the assumption that each neighbour lies on a continuous underlying surface. Com-

paring equations (5.15) and (5.7), it can be seen that the former equation can be

by §
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derived from the latter by setting

From the diseussion in Sectien 5.1,2, it is known that this situation arises when
Ganssian noise is assumed to be present in the image, but no discontinuities. 1If
discontimtities were present in the image, then they would be distorted by using the

update equation in (5.14).

5.1.5 Modification to the Update ™ juations

In a previous section it was shown that in regions of discentinuities, not every neigh-
bour can be cxpected to give measuremenis of D(P) with the same accuracy due
to Lhe presence of the vy error component in (5.3). A neighbour @Q; which is on the
same side of the discontinuity? as P will possibly give consistently better estimates of
D(P) than a neighbour Q; which is on the opposite side. Due to the more accurate
tmeasurements, Q; would have a lower error variance than @Q;.

If the value of A; is computed as (5.7) rather than (5.15), an optimal estimate of
D(P) would be obtained from all the measurements. It is then possible to weight the
measurements of each neighbour according to its error variance. This kind of variance
weighting encourzges measurements from neighbours which are on the same side of
the discotinuity as P and inhibits the contributions from neighbours which are across
the discontinuity. This achicves the goal discussed in Section 5.1.2 of performing the
curvature consistency relaxation process only between neighbours which are on the
same continuous subregion in the discontinuous neighbourhood, hence climinating
the vy error component in Eq. (5.3).

At the beginning of the curvature consistency iterations, the error variance values
&k} arc not available. Hence, initial values arc nceded for them. There is no prior

rcason to believe that one neighbour would give more accurate measurements of D(P)

¥This reasoning applies best in an I x J neighbourhood to step and roof edges when 1 and J are
odd numbers. This way the central point is always one side or the other of the discontinuity
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. than the others. In this case each neighbour should be assigned equal weighting in
the measurenient update equations. The initial error variance for cach source is set

to 1, i.e.,
1

MO) == Viii= Ll x (5.17)

What this achieves in the modified curvature consistency algorithin is that at first, full
variational relaxation is allowed to take place over the whole image, smoothing out. the
Gaussian noise, and admittedly, starting to distort the discontinuities. However, as
the itcrations progress, the error variance of cach neighbour in a local neighbourhood
is learnt, and just after a few iterations the discontinuity localization process starls
playing a major role. The consequent iterations then follow a stable pattern where the
curvature consistency relaxation process takes place only within piccewise continnous
regions and not across them,

At this point, it should be remembered that D( ) is actually a vector compaosed of
the Extended Darboux Frame components, i.e., D(P) = (P, Mp, Mp, Np, ka8, )
Hence in calculating D(P) from the neighbourhood measurements @i, cach com-
ponent of D(P) needs to be determined through this optimal estimation pro-
cess. Each component of D(P) would have an independent A; component asso-
ciated with it, i.e., A\ = (,\,-p,)\;‘\,,.,/\,-M,.,/\.-N,,,)\,-,‘Mp,z\,-,wp). In a similar vein,
0F = (031 Tt Ot ps Ol a,?‘MP,a,?KMP ). In other words, cach component of D(/?)
is updated independently using the corresponding component of A;, which in turn is
determined by the corresponding component of o?

Using the above discussion, we arrive at the modified curvature consistency update
cquations which usc optimal estimation theory as a basis. Equations (3.4}, (3.5), (3.6),
(3.7), and (3.9), which are the update equations for cach of the components of the

Extended Darboux Frame D(P), are now written as follows:

Plk+1) ZA.p(k)P(A) (5.18)

. Np(k+ 1) —_ (2?:[ INPNZP.(k) E lAlNPNUP.(L) Z =1 leNlp.(L)) (519)

\/(En ’\iNf- :.-p.(l"'n2 + (2: iNp y;r.(k))2 + (Et lepr.(L))z
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T

wrp (k1) = 37 Ninyg, iMpa (K) (5.20)
=1
Rt (k1) = 37 N, Kt (K) (5.21)

t=

Mp(k 4+ 1) = bycos 0(k + 1) + bysin0(k + 1), (0,27) such that 1) by, by € Tp
2) b)) = liba]| = 05.22)
3) (51 . 52) - 0,

(Azz — An) + /(A — Az)? + 4AL,

Ok +1) = tan™" 77 ) (5.23)
12
where
Ai = 3 intp (Mpi(k) - bi)(Mpi(k) - §;). (5.24)
i=l

Iach component of J; is calculated as

Nij(k+1) = /6, (k)

= — = ———, V5,7 € (P,Mp,Mp,Np,Kptp, Erp),
1/68.(k) + l/agj(k)-f-....-}- l/aﬁj(k) R pyMp, Np,Katpy Kmp)

(5.25)

where

. 1 ) .
ah(ky =&k - 1)+ ;(C?,-(k) — o5k =1)), V57 €(P,Mp,Mp, Np,Krtp,Kpp),
(5.26)

and
("J(k) = I.)J(P)(k) - D'J(P)(k)1 VJ?J € (P! A”PsMPsNF‘vN-.\IPaK'Mp)- (5-27)

The coefficients A developed in (5.7) and more specifically for each component of
D(P) in (5.25), are the weighting functions assigned to each pixel in a neighbour-
hood. The properties of the optimal estimator using this kind of variance weighting

were presented in the last chapter in Section 4.2. The variance weighted curvature
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Figure 5.2: (a) A simulated noisy range image of a step junction. (b) Ini-
tial estimate of the surface patches. (c) Underlying surface recovered using

the original curvature consistency algorithm after 40 iterations.

(d) Sur-

face reconstruction using the curvature consistency modified to incorporate

variance weighting.

29



5. Using Estimation Theory In Curvature Consistency

consistency update equations demonstrate similar properties:

1. Neighbours which demonstrate low error variances in estimating the interpolant
patch parameters are given more weight over the ones which have high error

variances,

2. If 62 = 62 = ... = ¢}, for all neighbours @Q;, then the mcasurements are

averaged. This is the case in regions of ideal continuity.

3. If one measurement D;( ) is perfect (o = 0) from a neighbour @Q;, then the

contributions from the others are rejected.

FFigure 5.2 shows the results of applying the modified curvature consistency update
equations Lo a synthetic range image of a noisy step junction. Figure 5.2(c) shows the
results of applying the original curvature consistency algorithm using a 5 x 5 neigh-
bourhood area after 40 iterations. As expected, the step edge is distorted completely
while obtaining a smooth surface fit. Figure 5.2(d) shows the results of applying the
variance weighted update equations after 40 iterations. From this figure it can be
scen that although discontinuity localization has been achieved, a smooth continuous
surface is not obtained. After just a few iterations the surface patches congeal to
formm many piccewise continuous local neighbourhoods. This result shows that there
is something else we need to take into consideration while modifying the curvature
consistency algorithm to fit the optimal estimation framework. The concept missing
here is of pixel groupings in discontinuous regions. In other words, in the optimal

estimation framework, we need to consider non-I1D measurement sources.

5.2 Accommodating Pixel Groupings in Discontinuous Re-

gions

In the optimal estimation framework developed in Chapter 4, and applied to curvature
consistency in the last section, an assumption was made that the noise in the different
sources was 11D (Identically and Independently Distributed). No correlation between

the different sources was assumed with respect to their noise properties. However, in
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the case of surface samples on a discontinuous region of a surface there is a grouping
according to similarity in estimation error variances. In this case, pixels on the same
side of the discontinuity are correlated in their error variances, This correlation comes
about due to the inclusion of the noise component vy due to discontinuities in the
noise model defined in (5.3). The vy noise component can be safely assumed to be
uncorrelated between neighbours over the whole image, however in the presence of an
edge, pixcels on the same side of the edge are correlated in the vy noise component.
This correlation necessitates the inclusion of the concept of pixel groupings in the
neighbour weighting process.

The variance weighting method developed in the last section gave us only partial
results, It achieved the goal of discontinuity localization, but did not give a smooth
surface description, To propagate a continuity constraint, relaxation needs to oceur
within pixel neighbourhoods. However, in using the variance weighting method from
the last section, this relaxation process was being curtailed in continuous regions. In
the simple variance weighting process it is possible for a single pixel source to take
full control of the rclaxation process in a local neighbourhood. This could happen
if initially this pixel source provided more accurate predictions than the rest of the
pixels in the neighbourhood. This pixel source would then get maximum weight in
the next iteration and possibly in the consecutive iterations. Soon, there would be no
inflow of information into that neighbourhood through the relaxation process. The
surface patch covering that neighbourhood would *frecze” and take on the Extended
Darboux Frame parameters that this influential pixel source estimates.

In the prescnce of a discontinuity, the continuity constraint needs to be propagated
through relaxation only within the subregions partitioned by the discontinuity, but not
across the discontinuity. If pixels in one subregion give better estimates of the surface
patch paramecters than the other subregions, then the whole set of pixels should be
given higher weights than the rest. Within this highly weighted continuous subregion
however, the distribution of weights amongst the pixels should be relatively uniform.
The inter-region difference in weights will prevent the continuity constraint from

being applied across the discontinuity. The intra-subregion similarities in weights
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(a) (b)

Figure 5.3: A 5x5 neighbourhood mask straddling a (a) step discontinuity,
(b) a roof discontinuity. The mask is centered at P. The discontinuity divides
the neighbourhood into two subregions A and B.

would encourage relaxation to take place within the subregions, hence providing a
continuous surface fit within each partitioned subregion.

The above operation can be illustrated with Fig. 5.3. Figure 5.3(a) shows a 5 x 5
neighbourhood centered at P straddling a step discontinuity, and Figure 5.3(b) shows
5 x 5 neighbourhood straddling a roof discontinuity. In both cases, pixels in subre-
gion A consistently provide better estimates of the surface patch covering, centered
at point P than the pixels in subregion B. All the pixels in this subregion should
have higher weights than the pixels in subregion B during the weighted curvature
consistency process. However, amongst themselves, pixels in subregion A should
have similar weights, and similarly pixels within subregion B should have similar
weights. This would stop the flow of the continuity constraint information across
the discontinuity, but relaxation would take its normal course within each continuous

subregion.

5.2.1 Mapping Error Variances to a New Function

A new weighting functions needs to be used to accommodate grouping of pixels. This

weighting function should still be under the optimal estimation framework, in the
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Weights

Error Variance

Figure 5.4: Distribution of weights according to a Gaussian error function,

sense that the mean square error of estimation after combining information from
all the pixel sources should be less than the mean squarc error due to each pixel
source separately. In addition, to accomplish pixel groupings in discontinuons re-
gions, weights should be assigned in such a manner that groups of pixels rather than
individual pixels should be favored in these regions.

The desired weighting function should now have the following propertics:
1. The lower the error variance, more the weight given to the source,
2. The function should be bounded as the error variance approaches zero.

3. Groups of pixels providing more accurate predictions should be given higher

weights.

4. Within continuous regions or subregions (across discontinuities) if the prediction

errors are similar between the pixel sources, the weighting should be similar too.
A mapping function which encapsulates these desired propertics is one which

follows a {iaussian trace (Fig. 5.4)

y=e 7/, (9.28)

where «y is 2 smoothing control parameters which will be discussed later in this section,
Instead of using simple variance weighting, each source’s error variances should he

mapped onto this modified Gaussian function to generate a value, which is normalized
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. across Lhe sources to obtain the final weight.
The weights for the elements of D() to be used at cach iteration step are then

calculated as

Wi(k) = =25 (5.29)
Ai(k) = Wi(k)/ Zl Wi(k) (5.30)

"T'his function is monotonically decreasing, as shown in Fig. 5.4. Property 1 would
then be satisfied, i.c., the lower the error variance, the lesser the weight given to
the pixel. Property 2 is satisfied since the function is bounded at the value 1 as
the error variance approaches zero. The - parameter controls the spread of the
weight distribution. This parameter is adaptive over the local neighbourhoods, and
is calculated for cach iteration, and for each local neighbourhood. The adaptive
method to derive values for + is discussed next, where it will also been shown how

this new function satisfies properties 3 and 4.

5.2.2 Making v Adaptive

The v parameter controls the amount of smoothing. As used in (5.30) it determines
the spread of the weighting function. The standard deviation of the Gaussian {unction
is determined by 8§ = 4/2. The spread of the Gaussian weighting is determined by
the spread in the estimation error variance values of all the pixel sources in the
neighbourhood.

Some other researchers ([54] [49] [41]) have used functions similar to (5.30) in their
adaptive smoothers, but have left the parameter which determines the spread of the
Gaussian as a user-set parameter. According to their reasoning, by setting high val-
ues for this parameter, more smoothing rather than discontinuity localization would
occur, and by setting low values, discontinuity preservation would be favored over
smoothing. This parameter being user-set in some ways defeats the whole purpose of

. having an “adaptive” data smoother. We intend to make this un adaptive paramerer

in our implementation. The value of this parameter is determined by taking the mean
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of all the error variance values,

9 ixJ )
'7= [x.]lg:la‘(k). (l).u;l)

In fact, therein lics the strength of our adaptive smoother. With the spread of the
function directly related to the mean of the error variances, there would always be
pixels sources on both sides of the standard deviation., This means that unless each
pixel source has exactly the same error variance as the others, there will always be
some which will be given more weight than the others. If however, the 4 parameter
is kept constant as cited above, there is a danger of selting it too low, in which
case noise may be interpreted as discontinuities, or too high, in which case legitimate
discontinuities may be smoothed over.

The effect of using a Gaussian mapping function is illustrated in Iig. 5.5. The
figure shows the weight distribution over two 3 x 3 neighbourhoods taken from the
range image shown in Fig. 5.2(a). The samples in the first neighbourhood have been
obtained from a continuous surface region. The second set of image samples are
obtained from a neighbourhood which contains a step edge discontinuity.

In the neighbourhood containing samples from the continuous region, cach pixel
source shows similar estimation error properties. These error variances represented
by the 'x’ symbols on the plots, are mapped onto the X-axis in Fig. 5.5(a). The
error variances can be seen to be clustered close together over a small range. After
obtaining the value of v using (5.31), the weights for cach pixel source are obtained
using the Gaussian weighting function in (5.30). Since the estimation error propertics
between pixel sources in this neighbourhood are similar, the weights assigned to themn
are relatively similar too.

Pixel sources in one subregion of the discontinuous neighbourhood show better
estimation error properties than the other. As can be ucen from Fig. 5.5(b), the
error variance is distributed over a larger range on the X-axis. All the samples from
the subregion which give worse estimates are mapped on the higher end of the X-

axis. After mapping them on the Gaussian trace it can be seen that between the
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Figure 5.5: Distribution of weights for the depth component according
to a Gaussian function amongst pixel sources in a 3 x 3 (a) continuous
neighbourhood, and (b) discontinuous neighbourhood. The ‘x’ symbols on
the X-axis represent the error variance estimate of the different pixel sources;
the **’ symbols represent the corresponding weights assigned according to
the Gaussian function; the ‘0o’ symbol on the X-axis is the mean of error
variances of all the pixel sources; the ‘+' symbol shows the corresponding
mapping of this mean onto the Gaussian trace.
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Figure 5.8: (2) A simulated noisy range image of a step junction. Surface
reconstruction using a 5 x 5 neighbourhood size after 40 iterations (b) using
the original curvature consistency algorithm, (c) using variance weighting in
the algorithm, (d) using Gaussian weighting.
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two subregions there is a large difference in the assigned weights. However within
each subregion (mapped on cither sides of the *+' symbol), the weights are relatively
similar,

Using Fig. 5.5 as an illustration, it can be seen that the Gaussian weighting
function proposed in (5.30) does satisfy properties 3 and 4 presented in the lasi
section. In continuous regions or subregions divided by discontinuity, pixel sources
are assigned similar weights and they are grouped together in their weighting.

Having cstablished the legitimacy of the new weighting function, we modify the
curvature consistency algorithm and apply it to the same image of a noisy step junc-
tion as in Fig. 5.2. The result is presented in Fig. 5.6. For reference purposes,
the surface recovered using the original curvature consistency algorithm is shown in
Fig. 5.2(b), the surface recovered using variance weighting is shown in Fig. 5.2(c) and
finally the surface recovered using the Gaussian weighting is shown in Fig. 5.2(d). As
can be seen from Fig. 5.2(d), the Gaussian weighted curvature consistency algorithm
provides us with a surface fit with the smoothness of the original curvature consis-
tency algorithm, and the discontinuity preservation features of the variance weighting

method.

5.3 Chapter Summary

In this chapter, two diverse areas of research: surface reconstruction theory and opti-
mal estimation theory, were linked and the curvature consistency algorithm modified
to performn discontinuity localization while smoothing in continuous regions of a noisy
range image,

It was shown that during the curvature consistency iterations, each pixel in a local
neighbourhood acts as an information channel during variational relaxation. At each
iteration, the surface patch parameters are updated using contributions from each
pixel in a neighbourhood. Similarities were shown between the curvature consistency
update equations and the multiple measurement fusion equations.

The concept of noise in the pixel sources was redefined. Two separate components
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3. Using Estimation Theory In Curvature Cousistency

of the noise property were identified. One of these components was associated with
discontinuities present in the neighbourhood. The optimal estimation framework
provides a method to weight down contributions from measurement sources with high
noise levels. Using this framework, a pixel source weighting method was incorporated
into the curvature consistency update equations. With the new inverse variance
weighting method, the continuity constraint was prevented from being applied across
discontinuities, Since, pixel sources in a neighbourhood containing a discontinuity are
correlated in their noise properties, another weighting function was developed. This
function accomplished pixel grouping by mapping the error variances onto a Gaussian
trace.

The discontinuity localization method which has resulted from this chapter has
been made completely adaptive. In fact the only parameter to set is the neigh-
bourhood mask size. Even this parameter can be made constant by using the same
neighbourhood mask for most reconstruction operations. In the next chapter it will be
demonstrated Lhat the discontinuity localization property of the modified surface re-
constructor remains invariant with diflerent mask sizes. It will also be shown that the
algorithm is robust over different scales of discontinuities and adaptive over regions

with different noise properties.
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Chapter 6 Results and Discussion

I this ehapter some of the practical tssnes related to the modified curvature con-
sisteney algorithim are discussed. A detailed analysis is performed on some of the
parameters related Lo the surface fitting and discontinuity localization process, Sev-
eral results of applying Lhis algorithm to synthetic and real rang. iniages are presented
to validate the robustness of the algorithm.

It is assumed that the surface sampled in the range image contains continuous
regions separitea by discontinuitios, which are mainly in depth and orientation. The
performance of the modified curvature consistency algorithm on all these regions will
be analyzed. The changes in the surface patch estimates over the iterations of the
modified curvature consistency algorithm are characterized in a genesid manner. This
is followed by a more detailed analysis of the changes in surface patch parameters,
and weighting values in selected neighbourhoods over different images. Pixel neigh-
bourhoods straddling step edges and roof edges are analyzed separately due to the
difference in Lthe behaviour of the algorithm in their vicinity. This is followed by results
of applying the algorithm to images containing more complex artificially generated
surfaces, and to real range data.

One practical issue dealt with in this chapter is iteration control and convergence.
To gel a good surface fit, each image reqaires a different number of iterations of the
modified curvature consistency algorithm. Each iteration produces a new global crror
of fit over the images. The global error of fit at cach iteration provides a measure
of the amount of change the surface patches have gone through from the previous
iteration. The method of computing the global error of iit in the original curvature
consistency algorithm is modified to take into account the fact that all pixels may
not contribute equally to the update of the interpolant surface patch parameters. A
new method of calculating the global error of fit is then developed for the modified

curvature consistency algorithm,
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6. Results and Disenssion

Using the global error of fit, convergence propeitios of the modified algorithm are
compared to the convergence properties of the original algorithm for different kind of
surfaces. A discussion is also presented on the state of the surface patehes at ideal
convergence, Le,, when the global error of fit is zero. The conditions necessary o
achieve this state are also presented.

A claim which is made in this thesis about the maodified curvidkure consisteney
algorithm is that it is adaptive over different image properties. The discontinuity
localization feature is shown to be robust and adaptive over changes in seale and
noise properties in an image. To validate the claims that this algorithm is robust
over scale-space, experiments are conducted using different mask sizes and by using
discontinuitics of different scales. To demonstrate adaplability over noise, the algo-
rithm is applied to images containing regions with varying toise properties and using

masks of different sizes.

6.1 Qualitative Analysis

In this section details and experiments are presented to demonstrite the operation of
the modified curvature consistency algorithm. It is shown how the Gaussian weight-
ing function encourages relaxation to take place only within continnous regions of the
range image samples, or within continnous subregions partitioned by discontinuities,
Over several iterations of the modified curvature consistency algorithim, the changes
in the surface estimates are tracked. In addition, certain relevant neighbourhoods are
chosen, and the prediction error variance of cach neighbour and the corresponding
weights are tracked over these iterations for certain interpolant patch parameters.
Using this method, the modified curvature consistency algorithm ts analyzed guali-
tatively.

Step edges and roof edges are treated separately in this analysis. In a curvature
consistency framework, with the presence of a step edge in a neighbourhood, the
surface patch paramecter which is effected most by the discontinuity is the position

(P) paramecter (depth in a range image context). For roof edges, the parameters
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6. Results and Discussion

affected most are the normals (N) or one of the principal curvatures (s or £3). Due
to the difference in the effected parameters, the algorithm operates differently in the
vieinity of the two kinds of discontinuities. It is worth analyzing the changes in the
surface pateh paraumeters separately for the two. First, a general behavioral pattern

of the algorithm is established which can be observed on all kinds of surface data,

6.1.1 General Behaviour of the Algorithm

In the first iteration of the algorithm, ull pixels in a local neighbourhood play an equal
role in the update of the interpolant patch parameters. Due to the equal confidence
given to all neighbours, at {irst the empbasis is on applying the constant curvature
constraint. During these initial iterations, some of the additive Gaussian noise is
smoothed out, and the algorithm performance is very similar to the original curvature
consistency algorithin. Since the estimation error properties of the constituent pixels
have not been learnt yet, surface patches at pixels straddling discontinuities undergo
some deformation. However, after just a few iterations the estimation error variance
of cach neighbour is learnt and the parameters of patches at discontinuity points start
being corrected. The surface patch estimates at the discontinuity points start being
influenced by neighbours in one subregion more than others. With further iterations,
the variational relaxation process continues only within continuous neighbourhoods,
and within continuous subregions partitioned by the discontinuities. The propagation
of the constant continuity constraint is not allowed across discontinuities due to the

weighting between neighbouring subregions.

6.1.2 Localization of a Step Edge

The bebaviour of the algorithm as described above can be seen in action in the surface
plots shown in Figure 6.1 for an image containing a step discontinuity. The two key
features of the algorithm are seen to be satisfied: In continuous regions of the surface
data, the surface patches are smoothed by applying the continuity constraint; In the

discontinuous region of the image samples, the continuity constraint is inhitited to
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give true discontinuity localization,

The most interesting region to walch is the one straddling the step edge. The
surface patches in the vicinity of the edge initially get distorted when the continuity
constraint is applied with almost equal weights given to cach neighbour, As can be
seen in Figures 6.1(b) and (c), at iteration 2 and 4 respectively, the positions of the
set of pixels straddling the top of the edge are effected by neighbours on both sides
of the discontinuity almost equally. It can be scen from the figures that the positions
of pixels on top of the step edge are pulled down and the ones at the hottom of the
edge are pulled up. This state of affairs lasts only for thosc few iterations. Onee
the estimation crror propettics of cach neighbour of those pixels are learnt and the
weighting in the update equations starts taking effect, they are now influenced by
pixels in one subregion more than others. The pixels near the top are influenced
more by their neighbours on top of the step edge, and the pixels near the hottom
start being influenced more by the ncighbours al the bottom of the edge. With
iterations 10, 20 and 50 in Figures 6.1(d), () and ([) respectively, these pixels move
back to the top or bottom of the edge, depending on the subregion which supports
them the most.

For pixels close to the step edge, the Extended Darboux Frame parameter which
undergoes the maximum change during the iterations is the position parameter
P. TFigures 6.2 and 6.3 show the estitnation error variance and weight distribution
amongst pixels in two different neighbourhoods during the update of Lhe position pa-
rameter. The first neighbourhood is a 5 x 5 neighbourhood similar Lo the one shown
in Figure 5.3(a) straddling the step edge discontinuity. I'he other neighbourhood is
a 5 x 5 neighbourhood in a continuous region of the range samples, away from the
discontinuity.

Figure 6.2(a) shows the estimnation error variance of cach pixel in the neighbour-
hood containing the discontinuity after the first iteration. Recall that for the first
iteration, the weights assigned to all the pixels were equal. The error viriance values
are mapped on the X-axis, and the corresponding weights mapped using the Gaus-

sian weighting function presented in Section 5.2 of the last chapter. At this point,
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G. Results and Discussion

the segregation of pixels according to their estimation error propertics starts taking
place. The neighbours which belong to the subregion at the bottom of the step edge
provide the worst estimate of the position parameter of the surlace patch. Using the
Gaussian mapping function they are given low weighting for the update stage in the
next iteration. After the 4th iteration (Figure 6.2(b)), the segregation of subregions
according to their estimation properties is well underway. The constant curvature
constraint starts being applied only between the continuous subregions. By itera-
tion 10 (Figure 6.2(c)), discontinuily localization has been achieved. At this stage
and after (Figure 6.2(d)), the curvature consistency algorithm continues to performs
smoothing, but only within continuous subregions of the neighbourhood.

Figure 6.3 demonstrates the effect of the same algorithm on the estimation error
variance and weighting of pixels in a continuous neighbourhood of the sample data.
Due to the presence of high amount of additive Gaussian noise, initially the pixels in
the neighbourhood provide estimates of the position parameter with varying degrees
of accuracy (Fig. 6.3(a)). However, the estimation error properties of all the pixels
start to show some similarities as the surface patch parameters are refined even more
(Figure 6.3(b)). Soon they all start giving similar estimates of the surface patch
position parameter, and hence are assigned similar weights (Figure 6.3(c) and (d)}).
At this stage the continuity constraint is being propagated freely over the whole
neighbourhood, with each neighbour playing an almost equally important role in

refining the interpolant surface paich parameters.

6.1.3 Localization of a Roof Edge

The behaviour of the modified curvature consistency for roofl edges is similar to the
general behaviour desciibed before. Whereas the parameter of the surface patch
effected most in the presence of a step edge is the position P, in the presence of a
roof discontinuity, the surface normal N or one of the principal curvatures (k) or x3)
go through the maximum change.

The effect of the original curvature consistency algorithm and of the modified one

can be seen in Figure 6.4. Figures 6.4(c) and (d) show the surface structure after
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6. Results and Discussion

(a)

(c)

()
Figure 6.4: Surface reconstruction of a simulated noisy range image con-
taining a roof discontinuity. (a) The original image, (b) initial estimate of
surface patches. Using a 5 x 5 mask, distortion of the edge after (c) 10
iterations and (d) 20 iterations of the original curvature consistency. Preser-

vation of the edge after (e) 10 iterations and (f) 20 iterations of the modified
algorithm.

()
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Figure 8.5: The estimation errors and the corresponding weights for the
Normal component of the Extended Darboux Frames at a pixel straddling
the roof discontinuity while applying the modified curvature consistency al-
gorithm. Using a 5 x 5 mask, the estimation error variance and correspond-
ing weights after (a) 1 iteration, (b) 5 iterations, (c) 10 iterations, {d) 20

iterations,
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6. Results and Discussion

10 and 20 iterations respectively, of the original algorithm. It can be seen that the
surface patches close to the roof edge are distorted in their normals and curvature
cotnponents,

Initially, the surface patches at pixels straddling the discontinuity have a high
curvature component, while the ones away from the discontinuity have a lower cur-
vature component. The directions of the normals are different between pixels across
the discontinuity. Due to the continuity constraint, in the relaxation process of the
original algorithm, the high curvature values of pixels straddling the discontinuity are
forced lower and the low curvature values of their neighbours which are further from
the discontinuity, are forced higher. This process coupled with the averaging of the
normal component results in surface patch estimates which are more continuous in
their normals and curvatures. However, this continuity constraint also destroys the
roof edge by making it bulbous.

From Figures 6.4(e) and (f), it can be scen that the modified curvature consistency
algorithm applies the curvature and normal continuity constraint only between pixels
which arc on the same side of the roof discontinuity. Figure 6.5 tracks the weighting
of pixels in a neighbourhood straddling the roof discontinuity during the refinement
of the normal (V) component of the interpolant surface patch. The neighbourhood
analyzed is similar to the one shown in Figure 5.3(b). In accordance with the general
behaviour of the modified curvature consistency algorithm, each neighbour plays an
cqual role initially in the refinement of the normal component. This results in a slight
distortion of the surface patch estimate in the discontinuous neighbourhood. However,
after the first iteration, the estimation error properties of the neighbours, with respect
to the normal component, are quickly learnt (Figure 6.5(a}). In Figure 6.5(b), it can
be scen that after the 5th iteration the grouping of weights according to subregions
is well established. At iterations 10 and 20 (Figures 6.5(c) and (d)) and subzequent
iterations, the discontinuity localization is fully achieved. During the update of the
normal component, pixels in only one subregion play a major role. The influence of
the pixels in the subregion across the discontinuity is curtailed due to the low weights

assigned to them.
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(d)

Figure 6.68: Surface reconstruction of an image containing discontinuity in
position, as well as curvatures and normals. (a) Original data of a discon-
tinuous sinusoidal trace in grid form, (b) initial fit of surface patches to the
image. Using a 3 x 3 mask, (c) surface reconstruction after 20 iterations of
the original curvature consistency algorithm, (d) surlace reconstruction after
20 iterations of the modified algorithm.

6.1.4 Discontinuity Localization in Complex Images

Surfaces in real images are assumed to be composed of continuous arcas and a com-
bination of step and roof discontinuities. The neighbouring surface patches may be
discontinuous not just in their positions, but also in their normals, curvatures and
principal directions. So far, the images anaiyzed have contained rither step disconti-
nuities or roof discontinuities. Using images containing combinations of discontinu-
ities of different types and range images obtained from a laser range finder, it will be

demonstrated that the modified algorithm performs well on more complex images.
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(c)

Figure 6.7: (a) Range image of an owl statue acquired with the

NRCC/McGill laser range-finder. (b) Reconstructed surface after 8 itera-

tions of the original algorithm. (c) Reconstructed surface after 8 iterations
of the modified algorithm.
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6. Results and Discussion

Figure 6.8: Surface reconstruction of an image of two overlapping rocks,
acquired using the NRCC/McGill University laser range-finder; (a) Original
range data in grid form; (b) Initial fit of surface patches to the image; (c) Sur-
face reconstruction after 50 iterations of the original curvature consistency
algorithm; (d) Surface reconstruction after 50 iterations of the modified al-
gorithm.
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Figure 6.6(a) shows an artificially generated image of a surface following a sinu-
soidal trace. A step discontinuity is introduced in the image. The surface is dis-
continuous not just in position, but also in the normals and curvatures across the
discontinuity. After noise is added to the ideal image data, the first estimate of the
surface patches is shown in Figure 6.6(b). Using a 3 x 3 mask the resull of applying
the original curvature consistency algorithm (Figure 6.6(c)) is contrasted with the
result of applying the modified algorithin (Figure 6.6(d)). It can be visually veri-
fied that the modified algorithm is better at localizing the discontinuities in depth,
normals and curvatures.

To demonstrate the application of the original and the modified algorithms on
range data obtained from real ohjects, experiments were conducted on images gath-
ered from the NRCC/McGill lalser range finder camera [52]. Figure 6.7(a) shows a
range image of an owl statue. The surface in this image consists of several natu-
ral discontinuities like the step edge discontinuity around the rim of the eyes, and
a roof discontinuity at the nosc position. In addition there are concave discontinu-
ities between the body of the owl and the wings. If segmentation of the owl surface
is required, then it is imperative to preserve discontinuities between different sur-
face regions. After 8 iterations, the original algorithm blurs away most of the edges
and completely loses some of the finer curvature discontinuities (IFigure 6.7b). The
modified algorithm, on the other hand, preserves most of the edges and structure
(Figure 6.7c).

A similar result is demonstrated for a range image of two overlapping jagged rocks
in Figure 6.8(a). The jaggedness and the boundary between the two rocks are scen
to be better preserved by using the modified algorithm (Figure 6.8(c)) rather than
the original one (Figure 6.8(b)).

6.2 Iteration Control

One problem in using the original curvature consistency algorithm is to establish

when to stop iterating. As described earlier in Section 3.3, one approach is to track

84



6. Results and Discussion

the global crror of fit between iterations (15, 37, 56); when it falls below a particular
threshold, the process is stopped. The same approach can be taken for the modified
algorithm as well. However the convergence behaviour is slightly different between
the original and the modified curvature consistency algorithms.

In the original curvature consistency, the error of fit of a surface patch in a single

I x J neighbourhood centered at P at iteration number & is:

IxJ

eo(k) =3 ((P(k) = Pi(k))* + (Mp(k) — Mpi(k))® + (6.1)
(Mp(k) ~ Mpi(k))* + (Np(k) — Np;(k))? + (6.2)
(kitp (k) = Kapi(R)}2 + (KAap(k) = Kpapi(R))) (6.3)

where D(P)(k) = (P(k), Mp(k), Mp(k), Np)(k), 5t (k), 1o (k) are the updated
estimates of the Extended Darboux Frame parameters of the interpolant patch after
iteration k& and D;(k) = (Pi(k), Mp;(k), Mpi(k), Np)(K), £a1p,(F), kamp;(K)) are the
estimates of these parameters provided by neighbour ;. To calculate the global error

of fit, the e, for all neighbourhoods in the image are summed.

widthxheight

e(k) = Z,: ep,; (6.4)

In the modified curvature consistency algorithm, the neighbours are weighted
during the update stage for each parameter. In the presence of a discontinuity,
this weighting will have an impact on the error of fit calculation. In providing
the updated patch parameters D(P)(k), each neighbour Q; is assigned a certain
weight AP)E) = (Ap(), Maap (k) Matn (8), A (), Meyy, (K), Dy, (R)). - Sirmilarly
each neighbour should be assigned the same set of weights while calculating the error

of fit in the neighbourhood. Equation (6.1) then becomes:

IxJ
ep(k) = Z ((P(k) — Py(k})? * Api(k) + (6.5)
(Mp(k) = Mpi(k))? * Apspi(K) + (6.6)
(Mp(k) = Mpi(k))? * Appi(k) + (6.7)
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(Np(k) — Npg(k)) % Ay pilk) + (6.8)
(karp(k) = ""Mf'u‘(k))z * ’\Mrpi(k) -+ (6.9)
(Kpp (k) = Ratp; (R))P) % Ay il(K) (6.10)

The global error of fit in the modified curvature cousistency algorithm can he
expected to converge more rapidly to zero than in the original algorithm. 1In the
modified algorithm, due to the weighting process, the surface patches may become
morc dependent on one subregion of the neighbourhood more than others. In thal
case the surface patch parameters arc influenced by less numbers of neighbours, and
hence go through less of a change from one iteration to another. Since the global error
of fit is just a measure of the change taking place in the image from one iteration to
the next one, it converges to a zero value much faster. The original algorithm suffers
from a slower convergence purely due to the fact that there are more neighbours
involved in influencing the surface patch estimates, hence there is more potential for
change in the surface patch parameters from one iteration to another.

The global error of fit for the step image and the roof image, shown in Figure 6.1
and Figure 6.4 respectively, are tracked for both the original and the modified cur-
vature consistency algorithm. The results are shown in Figure 6.9. The modified
curvature consistency algorithm out-performs the original one with respect to rate of
convergence. For the step image (Fig. 6.9(a)), in the early iterations both algorithms
are matched in the rate of convergence, but in the later iterations the modified algo-
rithm provides a lower global error of fit. For the roof image (Fig. 6.9(b)}), the global
error of fit in the original algorithm does not even converge. In this case however, the
modified algorithm actually forces the global error of fit to convergence.

With both versions of the algorithm the iterations can proceed infinitely. The
convergence only tends to zero (real valued) but never reaches it. Practically, it is
therefore prudent to stop the iteration when the global error of fit reaches a certain
tolerable value. Iterative algorithms for surface reconstruction converge very slowly
in general (63). A local Fourier analysis of the error function from one iteration to

another is done in [6]. To paraphrase Terzopoulos in [63):
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Figure 6.9: Comparison of global error of fit when the original (solid line)
and modified (dashed line) curvature consistency algorithm are applied to
the image containing (a) the step discontinuity, (b) the roof discontinuity.
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Such an analysis shows that the high frequency components of the error-
those components with wavelengths on the order of the grid spacing- are
short lived. On the other hand, low frequency components persist through
many iterations, Thus a typical behaviour of an iterative algorithm is
that the error decreases quickly during the first few iterations while the
high-frequency components are being liquidated, but then settles down
to a slow, asymptotic behaviour when only low-frequency components
remain. The point is that although relaxation is inefficient al completely

liquidating the error, it is very efficient at smoothing it out.

In the ideal case of convergence, all neighbours should lic on the saine piccewise
continuous surface. Since we arc dealing with a patchwork of local surface fits, this
implies that all the local surface patches are C? continuous with cach other at the
extents of the neighbourhood support. Depending on the surface transport model we
choose in the curvature consistency algorithm, it is possible that at ideal convergence
each neighbour lies on the same contiuirous patch.

An iso-surface check can easily determines whether two points are on the same
surface or not. The idea behind using the iso-surface check is as follows. Il a neighbour
(; has prediction error zero for the surface patch parameters centered at P, then after
applying the transport model, P should fall on the trace of the surface patch centered
at @;. If ideal convergence has been reached, then the reverse should also be true:
When the transport model is applied to the patch centered at P, then Q; should also

fall on the trace of this surface patch.

6.3 Adaptiveness of the Modified Algorithm

In certain images it is pussible for image properties to vary across the image. The
image nay contain discontinuities of different scales and of different types (step, roof
or a combination of both). The noise over the image may vary across the image. This
may happen for example in a range image taken with the camera at a small angle

to the surface being imaged. In this case, the laser beam from the laser range-finder
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camera would not he perpendicular to the surface, but would subtend an angle with
the surface, Due to this slight foreshortening of the surface, samples from the surface
further away from the laser recciver optics may be more noisy than the ones closer
to it. In these cases, it is imperative that the surface reconstruction algorithm adapt
to the changing properties of the surface and give a consistent surface fit. In this
section, the discontinuity localization property of the modified curvature consistency
is shown to be robust over changes in these image properties.

In the curvature consistency algorithm, all the computations are done locally, us-
ing data in a neighbourhood defined by a mask size. These local computations provide
the ability to use, compute and store information related to each neighbourhood sep-
arately from the other surrounding neighbourhoods. If image properties are different
between two neighbouring regions, the algorithm can adapt to this difference. Due to
this local processing the algorithm has the capability to adapt to changes in surface

structure, noise level and scales over the same image.

6.3.1 Scale Space Robustness

The idea of discontinuities in data is intuitively connected to the concept of scale.
At one scale some surface structure may be considered important while at a larger
scale, to be undesirable noise and smoothed over. In several applications such as volu-
metric fitting to range data, segmentation (parts decomposition) is performed on the
reconstructed surface. One approach to segmentation is to look for surface features
marked by extremal values of curvature (e.g. negative local minima, concave discon-
tinuities, etc.) {15, 17, 31}. Parts are then segmented along boundaries comprised of
these features. It is thus important that the reconstruction algorithm be largely scale
invariant over the same image, i.e., surface features of all scales be preserved during
the reconstruction process. The robustness of the segmentation algorithm depends
on these features.

The concept of scale is also related to the neighbourhood mask size used in a
convolution process. The mask size determines the granularity of the features being

measured. In the convolutions used for the curvature consistency variational relax-
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ation process, the size of the mask determines the number of neighbours providing
estimates of the interpolant surface patch parameters. In the original curvature consis-
tency algorithm, increasing mask sizes distort discontinuities at higher rates, Larger
neighbourhood sizes distort discontinuities even more rapidly than the smaller ones.
However, in the modified algorithm this is not true, The discontinuity preservation
property of the modified algorithm remains intact between differently sized masks.
The idea of scale space filtering in 2D images has been developed by Witkin in
[72]. Koendrik [36] showed the equivalence between scale space filtering with heat
conduction or diffusion equations. He stated two criteria for the diffusion equation
formulation. These criteria were extended by Perona and Malik in [49]. Any paradigm

for generating multi-scale “semantically meaninglul” description of images must sat-

isfy:

1. Causality: No spurious details should be generated passing from finer to coarser

scale.

2. Immediate Localization: At each resolution, the region boundaries should be

sharp and coincide with the semantically meaningful boundaries at that resolu-

tion.

3. Piecewise Smoothing: At all scales, intra-region smoothing should occur pref-

erentially over inter-region smoothing,

From the results in this section it will be seen that all the above criteria are
satisfied by the modified curvature consistency algorithm when applied to surface
range data. No spurious details are introduced when the mask size is increased.
The region boundaries are sharp and coincide with the boundaries in the original un-
corrupted image. At all scales, the smoothing takes place within subregions separated
by discontinuities but not across them.

The localization properties of the original and modified algorithms are demon-
strated in Figures 6.10 and 6.11 respectively. The image displayed in these figures
contains discontinuities of varying scales, with the scale becoming smaller with height.

Four different neighbourhood sizes have been used in the reconstruction process. After
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Figure 6.10: Scale space performance of the original curvature consistency
algorithm on an image containing discontinuities of varying scales. {a) Orig-
inal image, surface reconstruction using a (b) 3 x 3 mask, (c) 5 X 5 mask,
{(d) 7 x 7 mask, (e) 9 x 9 mask.
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W

Figure 6.11: Scale space performance of the modified curvature consis-
tency algorithm on an image containing discontinuities of varying scales. (a)
Original image, surface reconstruction using using 2 (b) 3 x 3 mask, (¢) 5x5
mask, (d) 7 X 7 mask, (e) 9 x 9 mask.
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the same number of iterations with increasing mask size the distortion of discontinu-
ities is progressively worse (Figure 6.10) when the original algorithm is applied. In
Figure 6.11, the discontinuity localization property of the modified algorithm can be
scen to remain stable over the different scales of discontinuities and using different
mask sizes. For the same number of iterations, the step edge is localized with each
mask size. The major difference in the use of the different mask size is the smoothness
of the continuous data regions.

The mask size basically determines how fast information travels across the image
during the relaxation process. With smaller masks, the rate of propagation is lower
than with larger masks. Therefore, to achieve the same smoothness of the surface,
a reconstruction process using a smaller mask would need more iterations than one

using a larger size mask.

6.3.2 Noise Level Robustness

Due to the fact that the computations taking place in the original curvature con-
sistency algorithm are local to a neighbourhood, it exhibits an adaptive behaviour
over noise, i.e, if the noise properties differ across the image, the original curvature
consistency algorithm adapts to the noise variance. In each neighbourhood, the curva-
ture consistency algorithm provides a maximum-likelihood estimate of the inlerpolant
surface patch, using information supplied by pixels only in that neighbourhood. The
same adaptive behaviour over noise can be expected from the modified curvature
consistency algorithm. However, it remains to be shown that the discontinuity local-
ization property of the modified algorithm remains invariant over the different noise
levels within the same image.

In Figure 6.12, the noise level robustness of the modified curvature consistency
algorithm is demonstrated. The image contains 4 separate regions, each with differ-
ent levels of Gaussian noise added to the range positions. Each step discontinuity
separating the four regions are of the same height. The region in the middle has the
highest amount of noise with with standard deviation of 5. Figure 6.12(b) shows the

reconstructed surface after several iterations. It can be clearly seen that the algorithm
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(b)

Figure 8.12: Noise adaptation of the modified curvature consistency algo-
rithm. (a) Original image with noise of standard deviation | (outermost), 2,
3 and 4 (innermost) added to the surface regions. (b) Surface reconstruction
after 2% iterations using a 5 x 5 mask.

adapts to the changing noise levels in the image, and performs the same discontinuity
localization regardless of the magnitude of noise.

It is also interesting to evaluate the noise-adaptive propertics of the algorithm
over scale space. Figures 6.13(a) shows an image with a much higher variation in the
standard deviation of the noise. The middle region of the image has a SNR of 10.
Figures 6.13(b) to (e) show the reconstructed surface after applying 50 iterations of
differently sized masks. It can be seen that with each change in scale, the algorithm
manages to localize the discontinuities to a different degrees. The 3 x 3 mask in
Figure 6.13(b) has the most trouble in providing a smooth estimate of the surface in
the noisiest region. The discontinuity localization works in most neighbourhoods, but
in certain regions artifactual discontinuities are localized. In some other regions, the
discontinuities are destroyed when they shouldn’t be. Due to the high level of noisc
and a small neighbourhood support, by the iime the weighting process starts having
an effect, smoothing of the surface samples according to the curvature consistency
algorithm has not taken place fully. Noisy samples start being localized as surface
discontinuities after a few initial iterations. This problem is reduced somewhat in
regions with lower noise levels, or with increasing neighbourhood mask sizes. With

decreasing noise levels, the first few iterations achieve most of the smoothing, before
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Figure 8.13: Noise space adaptation of the modified curvature consistency
algorithm at multiple scales. Image contains regions with signal to noise
ratios of 10 (outermost region), 3.33, 2, and 1 (middle region}. (a) Original
image, surface reconstruction using a (b) 3 x 3 mask, (c) 5 x 5 mask, (d)
7 X 7 mask, (e) 9 x 9 mask.

95



G. Results and Discussion

the weighting process takes over the discontinuity localization. With a larger mask
size more samples play a role in the surface patch estimation hence, most of the
smcothing has already taken place before the weighting process kicks in.

When the noise levels in the image are low, a mask of any size would perform
equally well. However, when the SNR starts approaching 1, a larger mask size will
obviously perform better than a smaller one. Without an estimate of the maximuin
noise standard deviation in the image, it is difficult to establish the mask size to be
used. However, by trying to estimate the noisc variance a priori defeats the purpose
of making the algorithm completely automatic and adaptive. An alternative which
could be the subject of further resecarch is to take a multi-grid approach similar to
the one proposed by Terzopoulos in {65]. He recognized that in relaxation methods
constraint propagation is very slow between widely separated processing clements.
By processing the surface at multiple scales, coarser representation of the surface can
be used to constrain the finer ones and allow finer representations to constrain and

improve the accuracy of coarser ones.
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Chapter 7 Conclusions

In this thesis a link is demonstirated between relaxation processes and multiple-
measurement fusion problems. Optimal estimation theory is shown to apply to both
arcas. Using optimal estimation theory as a basis, a new method is proposed in
the curvature consistency framework to estimate interpolant surface patch parame-
ters from neighbouring pixels. The main difference between the estimation theoretic
method of integrating ncighbourhood information and the original algorithm’s up-
date equations is that in the former, an inverse-variance weighting is performed to
give more emphasis to neighbours which provide better estimates of the interpolant
surface patch parameters.

By including discontinuitics as a cause of noise in the pixel-source, the disconti-
nuity localization feature of the optimal estimator is justified. Since some correlation
exists between pixel-sources in subregions partitioned by a discontinuity, the optimal
estimator is adjusted to take this pixel grouping into account. The variance weighting
is changed to a Gaussian weighting, with an automatically set 4 parameter adaptively
controlling the spread of the Gaussian. The smoothing of surface patch parameters
is now performed in such a fashion that intra-region smoothing is encouraged, and
smoothing across discontinuities (inter-region smoothing) is discouraged.

The scale-space robustness of the discontinuity localization method was demon-
strated. It was shown to meet all the requirements enumerated by Perona and Malik
in [49] to determine the robustness of filter behaviour over scale space. It was demon-
strated that the algorithm adapts to changing noise properties within the same image.
This was made possible mainly due to the automatic setting of the v parameter.

As claimed at the beginning of the thesis, this algorithm is free of user set param-
cters. In fact the only parameter a user may need to set is the mask size. However
it has been shown that if the noise levels are not perceptually very high (no de-

tailed quantitative analysis of the eflect of noise levels has been done) different mask
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sizes give the same discontinuity localization and smoothing performance, the only
difference being the number of iterations required to achieve the same result, 'To
accommodate high levels of noise in the image, a multi-grid approach similar to the
one proposed in [65] may be investigated as an extension to this research.

An attractive feature of this algorithm is that the {dis)continuity of the local sur-
face region is learnt over the iterations. This information is stored in Lhe error variance
associated with each pixel-source in a given neighbourhood. To avoid computational
complexity, the parameter 7 was set to | in cquation (5.11). This cffectively disre-
gards the history of the error variance. As an extension to this research, the effect
of setting 7 to a value higher than 1 may be investigated. Another extension would
be the study of various weighting functions and their effects in weighting down older
contributions to &2(k) in (5.11).

The mandate of the algorithm presented in this thesis has been edaptation to dis-
continuities, not their explicit detection. Since the weighting function acts on every
parameter of the extended darboux frame D(P), discontinuitics in depth, orienta-
tion curvatures, and the principal directions should be localized. As an interesting
extension of this thesis, it would be worthwhile to study the use of the crror vari-
ances associated with each parameter in explicit discontinuity detection, and in region
partitioning.

It is my hope that this research and specially the new estimatlion theoretic ap-
proach to looking at relaxation processes, contributes a new direction in the study of
adaptive noise elimination techniques. It is my hope to derive a more general frame-
work for the use of optimal estimation theory in relaxation processes and to provide a

basis for a more general adaptive smoother which can be applied to any sort of data.
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