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Abstract
The surface growing framework presented by Besl and

Jain [2] has served as the basis for many range segmenta-
tion techniques. It has been augmented with alternative fit-
ting techniques [17], model selection criteria [11, 15], and
solid modelling components [6]. All of these surface grow-
ing approaches, however, require global thresholds. Range
scenes typically cannot satisfy the global threshold assump-
tion since it requires data noise characteristics to be con-
stant throughout the scene. Furthermore, these approaches
can only be applied to range scenes where large seed re-
gions can be isolated. As scene complexity increases, the
number of surfaces, discontinuities, and outliers increase,
hindering the identification of large seed regions.

We present statistical criteria based on multivariate re-
gression to replace the traditional decision criteria used in
surface growing. We use local estimates and their uncer-
tainties to construct criteria which capture the uncertainty
associated with extrapolating estimated fits. Our criteria
allow small robust seed regions to grow to large surface
patches without the use of global thresholds. To make the
best use of these criteria, we restrict the surface expansion
process to very localized extrapolations. This increases the
sensitivity to discontinuities and allows regions to refine
their estimates and uncertainties as they expand. Our ap-
proach has a small number of parameters which are either
statistical thresholds or cardinality measures, i.e. we do not
use thresholds defined by specific range distances or orien-
tation angles.

1 Introduction
Surface growing range segmentation [2, 4, 7, 17, 11,

15, 6] is a local-to-global approach to surface reconstruc-
tion. Seed regions — initially isolated from discontinu-
ities — are expanded until the boundaries of the surfaces
are detected. The initial regions must be selected such that
they avoid straddling discontinuities and avoid including
the outliers range sensors introduce along discontinuities.
If either of these constraints is violated, the reconstruction

∗The authors would like to thank the National Science Foundation for
funding this research under grants IRI-9217195 and IRI-9408700.

may contain surfaces which bridge across the discontinu-
ities (under-segmentation).

The growing process involves repeatedly searching for
data which is consistent with the current region’s fit. A
location consistency test is used to identify potential in-
liers. Then, an orientation consistency test checks local sur-
face normal estimates against the current fit. The former
serves to collect inliers, identify step discontinuities and
avoid outliers while the latter serves to identify crease dis-
continuities.

The benefit of surface growing is that it leverages off
regions of high quality data while searching for discon-
tinuities. Its strengths become increasingly important as
range sensors are used in more unstructured environments
– where the number of surfaces, discontinuities, and out-
liers increase. Existing regularization (see [3] for a re-
view) and image region growing [5, 1] techniques, demand
a high degree of local data integrity in image plane neigh-
borhoods, faltering when presented with the numerous dis-
continuities and outliers from unstructured environments.
Even robust estimators, designed for immunity to outliers,
are thwarted by the intrinsic structure in the outlying sam-
ples from across discontinuities [16].

Current surface growing techniques, however, have two
shortcomings. The first is a dependence on global thresh-
olds. For instance, points are identified as inliers if their
residual distances are within 3σ range units of the current
fit. Unfortunately, the noise in a range image varies with
depth, orientation, and surface reflectance (see Figure 1).
Therefore, a global scale parameter may not be available.
Second, current surface growing techniques rely on large
seed regions. But as scene complexity increases, it be-
comes increasingly difficult to isolate large seed regions.

Here, we extend multivariate regression analysis tech-
niques, developing criteria to control surface growth. Our
criteria are based on local estimates and their uncertainties.
This allows us to expand very small seed regions – even
though the estimates from these small regions may be very
uncertain. Our criteria are best used when surface extrapo-
lation is localized, allowing estimates and uncertainties to
be refined during the expansion process.

Our location compatibility test is based on “single point
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Figure 1: (a) Ground truth for a Perceptron range image. Data courtesy of the University of South Florida [10]. (b) Robust scale estimates
for each ground truth surface. (c) Robust scale estimates for local regions on each ground truth surface.

prediction intervals” (SPPI). The local fit and scale esti-
mates are used to define a region about the current fit to
search for candidate data. These intervals adjust to the cur-
rent region size, estimates, and confidence; allowing small
fits to recover from poor initial estimates while still protect-
ing a region from incorporating outliers or samples from
across large step height discontinuities.

Our orientation consistency test is based on the distri-
bution of estimated regression surfaces. The “normal pre-
diction interval” (NPI) compares a local surface normal es-
timate against the current fit. This criterion takes into ac-
count the uncertainty in the two normal estimates, avoiding
extrapolation into areas which have high confidence but in-
compatible normal estimates.

Finally, we add a criterion to the surface growing pro-
cess which tests a set of points as a group against the cur-
rent estimated fit. The “simultaneous prediction intervals”
(SPI) improve discontinuity detection by identifying when
the set of candidate data favors one side (or halfspace) of
the estimated fit. Figure 2(b) illustrates such a case, where
points from the upper half of a step discontinuity fall within
the limits imposed by the location or SPPI test. By testing
the candidate data as a set, this situation — and hence small
step discontinuities — can be detected.

Basing our criteria on the multivariate regression model
has a number of benefits. Aside from using only local esti-
mates, the model allows for any surface order approxima-
tion (although we do not address the model selection prob-
lem here). Additionally, the multivariate regression model
allows for various dependent-independent variable combi-
nations, allowing the same criteria to be used for both sur-
face and space curve reconstruction.

We begin with a review of multivariate regression,
present condensed derivations of the three criteria, and fi-
nally discuss the alterations to the basic surface growing
model necessary to make the best use of these criteria.

2 Multivariate Regression
The multivariate regression model provides great flex-

ibility for working with various surface orders (planar,
quadratic, cubic) and ranks (surfaces, space curves), pro-
vides great inference power, and is a fairly good match to
physical range sensors (i.e. sensor measurements have in-
dependent and dependent components). When concentrat-
ing on surfaces modelled as one dependent variable and two
or more independent variables, regression surfaces are of
the form1

ŷ = B̂′x (1)

where for linear surfaces, x(q×1) is a vector

x = [ 1 x1 x2 ]′, (2)

and for quadratic surfaces

x = [ 1 x1 x2 x2
1 x1x2 x2

2 ]′, (3)

etc. However, the general multivariate regression model
[13, Chapter 6] is

Y = XB +U (4)

where Y(n × p) is a matrix of n observations of the p-
dimensional dependent variables, X(n× q) is a matrix of n
observations of the (q− 1)-dimensional independent vari-
ables (the first column of X is a vector of 1’s), B(q× p) is
the matrix of regression parameters, and U(n× p) is a ma-
trix of independent, identically distributed random distur-
bances (typically with mean 0 and covariance matrix Σ).2

The maximum likelihood estimates of B and Σ,3

B̂ = (X ′X)−1X ′Y, Σ̂ =
1
n

Y ′
(

In−X(X ′X)−1X ′
)

Y, (5)

1Throughout the text, we use the nomenclature from multivariate re-
gression. The resulting criteria can then be easily mapped to a surface re-
construction setting.

2Real sensors are not iid (Figure 1); however, locally Σ varies slowly,
so in a local region Σ is approximately constant.

3The maximum likelihood estimates require nonrandom independent
data. If the independent data are randomly distributed, the maximum like-
lihood estimates are interpreted as “conditional on X”.



yield estimated residuals Û = Y−XB̂. If U is a normal data
matrix from Np(0,Σ) (i.e. each row of U is an independent
p-dimensional Gaussian random variable with mean zero
and constant covariance), then

1. B̂ is an unbiased estimate of B,
2. E[Û] = 0,
3. B̂ and Û are multivariate normal,
4. B̂ and Û are statistically independent, and B̂ and Σ̂ are

statistically independent,
5. Σ̂’s distribution is Wishart, a matrix generalization of

chi-squared, specifically nΣ̂∼Wp(Σ,n−q), and
6. the covariance between elements of B̂ is

COV(β̂i j, β̂kl) = σ jlgik, where G = (X ′X)−1.

3 SPPI: Single Point Prediction Intervals
Given a region of data and an estimated fit, our first goal

is to define a volume about the fit that restricts the search for
candidate data to add to the fit. The search volume should
contain the current fit’s data and reflect the uncertainties in
the fit estimates. Thus, when a surface is small, containing
little data, the uncertainties in the estimates are high and the
search volume should be fairly large (in comparison to the
region size). This allows for small seed regions to recover
from bad initial fit estimates. On the other hand, as surfaces
grow larger, the fit uncertainties reduce, and the search vol-
ume should be a tighter bound about the fit. In this manner,
outliers and samples from nearby surfaces can be avoided
during the surface growing process, resulting in large sur-
face segments which yield more accurate surface estimates.

We start with an estimated fit B̂ and consider a datapoint
(x f ,y f ) that was not used in calculating the estimate B̂. (Us-
ing the generality of equation 4, the dependent variables are
y f (p×1) and the independent variables are x f (q×1) where
the first element of x f is a 1). Assuming Gaussian errors, y f
is distributed as y f ∼ Np(B′x f ,Σ) and y f ’s residual to the fit
B̂ can be shown to be distributed as

y f − B̂′x f ∼ Np(0,(1+x′f (X ′X)−1x f )Σ), (6)

with the increase in covariance caused by the uncertainty
in the estimate B̂. Since this residual is based on B̂, and B̂ is
independent of Σ̂, a quadratic form involving y f − B̂′x f and
Σ̂ can be composed, resulting in the statistic4

n−q
n

(y f − B̂′x f )
′Σ̂−1(y f − B̂′x f )

1+x′f (X ′X)−1x f
∼ T2

(p,n−q). (7)

This statistic is a Hotelling T2 random variable, which is
related to the more familiar F random variable. For the case

4Composing quadratic forms between Gaussian random variables and
independent Wishart random variables is a standard means of creating a
univariate statistic with a distribution known as the Hotelling T2. See [13,
pages 73–79].
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(a) (b)
Figure 2: A step height of 4σ and a data density of 3 samples/unit.
(a) Seed region with SPPI hyperbola. (b) SPPI filtering allows sur-
face to grow and avoid outliers. Step discontinuity is detected by
SPI (Section 5).

of univariate dependent variables (p = 1 as is typically the
case in surface reconstruction), equation 7 is equivalent to

n−q
n

(y f − B̂′x f )
2(

1+x′f (X ′X)−1x f

)
σ̂2
∼ F(1,n−q) ∼ t2

(n−q). (8)

Placing a bound on the statistic in equation 7, i.e.
Pr[T2

(p,n−q) < T2
(p,n−q);α] = 1−α, the single point prediction

interval (SPPI) for the value of the dependent variables
y f (p×1) measured at x f (q×1) are the zeros of the implicit
function

n−q
n

(y f − B̂′x f )
′Σ̂−1(y f − B̂′x f )

1+x′f (X ′X)−1x f
= T2

(p,n−q);α. (9)

Converting equation 9 to an inequality creates a crite-
rion which tests whether a point (x f ,y f ) — not used in esti-
mating B̂ — is close enough to the estimated fit B̂ to poten-
tially be considered one of its inliers. The residual distance
is normalized by the estimated covariance and scaled by an
amount reflecting the uncertainty in Σ̂ and B̂ and scaled by
the normalized distance from x f to the mean of X (the inde-
pendent variable values on which B̂ and Σ̂ are based). Thus,
SPPI intervals increase the further a fit is extrapolated.

All samples whose independent variables lie within
the extrapolated region and whose dependent variables lie
within their respective SPPI’s can be considered candidate
data (see Figure 2). Note, equation 9 is multivariate and can
define different search shapes for different combinations of
independent and dependent variables (Figure 3).

4 NPI: Normal Prediction Intervals
The normals comparison framework is based on regres-

sion surfaces with a single dependent variable and two in-
dependent variables.5 We test the compatibility of the es-
timated normals for surfaces B̂1 and B̂2 at a given point
~p = [x1x2]′, which requires extrapolating the surfaces’ nor-
mal functions and uncertainties to the point ~p.

5A similar criterion could be constructed for local tangent directions
for the case of reconstructing space curves.



Two Sheet Hyperboloid One Sheet Hyperboloid Ellipsoid Point, Space Curve, & Plane
(Plane) (Space Curve) (Point Process) Prediction Comparison

(a) (b) (c) (d)

Figure 3: Traces of SPPI (equation 9) for p + q− 1 = 3 with (a) p = 1 (plane), (b) p = 2 (space curve), and (c) p = 3 (point cloud). A
comparison of the three prediction interval regions for the same variance structure is shown in (d).

The normal function for a fit B̂ maps a point ~p to the nor-
mal vector to the surface B̂ at ~p, i.e. n̂(B̂,~p) = n̂(B̂, [x1,x2]′).
We define the normal function by writing our regression
surface parametrically

S(x1,x2) =
[

x1 x2
[

1 x1 x2 · · ·
]

B̂
]′
, (10)

taking the partials of S with respect to x1 and x2, and finally
taking the cross product of these partials

n̂

(
B̂,

[
x1
x2

])
=

 −B̂′ ∂x
∂x1

−B̂′ ∂x
∂x2

1

 . (11)

Note the normal function does not have unit length. As
defined in equation 11, the normal function is Gaussian dis-
tributed on the y = 1 plane since it is a linear mapping of
B̂ which is Gaussian distributed (see Section 2 and [13,
Thereom 3.2.1, page 62]). Normalizing the normal func-
tion would result in a non-linear mapping of the distribu-
tion onto the unit sphere, resulting in non-Gaussian random
variables (see Figure 4).

The complete distribution for n̂
(

B̂, [x1 x2]′
)

can be deter-
mined directly from the distribution of B̂ (given in Section
2). Since only two of the three components of n̂ are random,
we concentrate on the distribution of

n̂B̂ =

[
n̂x1

n̂x2

]
B̂

=

[
−B̂′ ∂x

∂x1

−B̂′ ∂x
∂x2

]
. (12)

Using the covariance of linear forms [13, page 30] and the
covariance of the components of B̂ given in the Section 2, it
can be shown that the distribution of a regression surface’s
normal at the point ~p is given by[

n̂x1

n̂x2

]
B̂
∼ N2

([
nx1

nx2

]
,σ2
[

∂x
∂x1

∂x
∂x2

]′
G

[
∂x
∂x1

∂x
∂x2

])
(13)

y

n

y = 1

2
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nx1

2
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Figure 4: An estimated normal’s distribution is Gaussian in the
space of [nx1 nx2 1]′ but is not Gaussian if normalized.

where [nx1 nx2 ]′ is the true normal, σ is the true scale, and

G = (X ′X)−1 =

[
m mX̄ ′1

mX̄1 X ′1X1

]−1

=

[
G11 G12
G21 G22

]
. (14)

To simplify, let H =
[

∂x
∂x1

∂x
∂x2

]′
G
[

∂x
∂x1

∂x
∂x2

]
,[

n̂x1

n̂x2

]
B̂
∼ N2

([
nx1

nx2

]
,σ2H

)
. (15)

4.1 Normal Compatibility Criterion
Our goal is to construct an orientation consistency cri-

terion, allowing the comparison of extrapolated normals
from two surfaces B̂1 and B̂2 at a given point ~p. Here, we
use the distributions derived in the previous section to con-
struct a criterion which does not require knowledge of the
population parameters (σ, B1, or B2). The resulting NPI cri-
terion is suitable for all regression surface orders and can
even be used to compare estimated normals at a point for
two surfaces of different surface orders.

We assume the two fits B̂1 and B̂2 are derived from inde-
pendent sets of samples. Under these conditions, the two
estimated normals are independent; and when the two fits
are derived from the same underlying surface,6,7(

n̂B1 − n̂B2

)
∼ N2

(
0,σ2 (HB1 +HB2

))
. (16)

Using the linear property of Gaussian distributions,

a′
[
σ2
(
HB1 +HB2

)]−1/2 (
n̂B1 − n̂B2

)
√

a′a
∼ N1(0,1) (17)

for all vectors ~a [13, Corollary 3.2.1.1 & 3.2.1.3, page 62].
Furthermore, since the two fits are derived from inde-

pendent sets of samples, we have two independent scale es-
timates, σ̂B1 and σ̂B2 . These independent scale estimates de-
fine two independent chi-squared random variables

mB1

σ̂2
B1

σ2 ∼ χ2
(mB1

−qB1
) mB2

σ̂2
B2

σ2 ∼ χ2
(mB2

−qB2
) (18)

6Explicit assumption: when B̂1 and B̂2 are describing the same sur-
face, they are also describing the same scale parameter σ.

7We use subscripts B1 to refer to parameters estimated for surface B1,
i.e. mB1 is the number of points used to estimate B̂1.



where the q’s are the number of parameters in each fit.
Since these chi-squared random variables are independent,
their sum is a chi-squared random variable with the sum de-
grees of freedom [9]

1
σ2

(
mB1 σ̂2

B1
+mB2 σ̂2

B2

)
∼ χ2

(mB1
+mB2

−qB1
−qB2

). (19)

Equations 16 and 19 are independent (see Section 2) and
combine to form a t random variable, where for all ~a

a′√
a′a

[
σ2
(
HB1 +HB2

)]−1/2 (
n̂B1 − n̂B2

)
√

1
σ2

(
mB1

σ̂2
B1

+mB2
σ̂2

B2

)
/(mB1

+mB2
−qB1

−qB2
)

∼ t(mB1
+mB2

−qB1
−qB2

).

(20)

Equation 20 represents a conversion of the multivariate
problem of comparing two two-dimensional random vari-
ables (the normals to the two surfaces) to an infinite set of
univariate statistics. Since this statistic must be true for all
vectors ~a, we only need to examine the vector ~a at which
the statistic attains its maximum value.8 It can be shown
that [13, Corollary A.9.2.2, page 480]

max
a

(a′x)2

a′a
= x′x. (21)

Therefore, we can reduce the infinite set of statistics de-
fined in equation 20 by squaring the statistic and applying
the property of the maximum just described, arriving at the
single univariate statistic(

n̂B1 − n̂B2

)′ [HB1 +HB2

]−1 (n̂B1 − n̂B2

)
(

mB1
σ̂2

B1
+mB2

σ̂2
B2

)
/(mB1

+mB2
−qB1

−qB2
)
∼ t2

(mB1
+mB2

−qB1
−qB2

).

(22)

Setting a confidence bound on this statistic, we obtain a
criterion for comparing the estimated normal from two sur-
faces at a particular point.

5 SPI: Simultaneous Prediction Intervals
SPPI’s define an interval or region about a current fit

which is likely to contain the dependent variable y f at a pre-
scribed independent variable location, x f . As a search for
candidate data, SPPI’s test each point individually for po-
tential inlier status. However, this test alone tells us noth-
ing about the candidate data set as a whole. Consider the
case where all the data points in the extrapolated region fall
just within the upper bound of their SPPI’s. Figure 2(b) il-
lustrates such a case, where points from the upper half of
the step fall just inside of the SPPI’s for the lower half of
the step. Although each point passes an individual inlier
test, the likelihood of all the data points falling near the up-
per tail of their respective distributions is collectively small.
This situation should indicate that the candidate data is at
least partly composed of samples from across a small step

8Union Intersection Principle, see [13, Chapter 5].

discontinuity. Thus, if we use a test on the collection of can-
didate data, we can identify smaller step heights than with
SPPI’s alone.

There is another motivation for testing the candidate
data as a set. While the candidate data are assumed to be in-
dependently distributed, their residual values relative to an
estimated fit are not independent. In fact, it can be shown
that the covariance between the residual9 r∗i measured at x∗i
and residual r∗j measured at x∗j is given by

COV [r∗i ,r
∗
j ] = x∗i

′(X ′X)−1x∗j Σ i 6= j. (23)

The collection of candidate points needs to be com-
pared as a set against its “simultaneous prediction inter-
val” (SPI). For the case of one-dimensional dependent vari-
ables, the simultaneous prediction interval reduces to a k-
dimensional Student-t random variable for which there ex-
ist multiple approximate interval solutions [12, 8]. Here,
we derive a summary statistic which is itself univariate yet
still applicable to multivariate dependent variables.

Consider a set of k points, not used to estimate B̂ and Σ̂,
represented in the matrices Y∗(k× p) and X∗(k×q). The set
of k residuals to the regression surface are given by R∗ =
Y∗−X∗B̂, where each residual (row of R∗) is from a different
distribution (equation 6) and the residuals’ pairwise depen-
dence is given by equation 23. Since each row of R∗ has
a different distribution and the rows are not independent,
we cannot treat R∗ as a normal data matrix [13, page 65].
However, we can operate on R∗ as a single random variable
by “vectorizing” R∗. The variable R∗V is the (kp× 1) vec-
tor formed by stacking the columns of R∗(k× p). Consid-
ering the distribution of each r∗i and their interdependence,
the distribution of R∗V is given by

R∗V ∼ Nkp(0,Σ⊗A), (24)

where “⊗” is the Kronecker matrix product [13, Appendix
A] and A = Ik +X∗(X ′X)−1X∗′.

Since R∗V is a kp-dimensional normal random variable,

a′R∗V ∼ N1(0,a′(Σ⊗A)a) (25)

is univariate normal for all fixed vectors a(kp×1) (see the
definition of a multivariate normal [13, pages 60-62]).

Furthermore, since the regression surface’s estimated
covariance is Wishart, i.e. nΣ̂∼Wp(Σ,n−q), then

nc′Σ̂c
c′Σc

∼ χ2
(n−q) (26)

is a chi-squared random variable with n−q degrees of free-
dom for all fixed vectors c(p×1) [13, page 67].

Given equation 25 is true for all vectors a(kp×1), then it
true for vectors of the form a = c⊗1k, where c is the (p×1)
vector used in equation 26 and 1k is a (k×1) vector of ones.

9We use the “asterix” to indicate these points were not used in calcu-
lating the estimated fit.



Thus, we can combine equations 25 and 26 (R∗V and Σ̂ are
independent) to form a series of t statistics

(c⊗1k)′R∗V/
√

(c⊗1k)′(Σ⊗A)(c⊗1k)√
n

n−q c′Σ̂c/c′Σc
∼ t(n−q) (27)

parameterized by c, each with n−q degrees of freedom.
Using techniques similar to those in Section 4, equation

27 can be reduced to the single univariate statistic10

k(n−q) r∗′Σ̂−1r∗

n+k +k
(

X
∗
1−X1

)′
Σ̂−1

X

(
X
∗
1−X1

) ∼ t2
(n−q) (28)

where r∗ is the mean of the new residuals, X1 and X
∗
1 are

the sample means of X1 and X∗1 (where X = [1n X1] and X∗ =[
1k X∗1

]
) and Σ̂X is the sample covariance of X1.

Placing a confidence bound on this statistic yields our
SPI criterion which tests the k candidate data points for
“group” inlier status. As in the SPPI and NPI case, the SPI

criterion takes into account local fit and noise estimates and
the uncertainties associated with these estimates. Addition-
ally, the SPI criterion factors in “where” the candidate data
is drawn and the dependence between the new residuals, al-
lowing the mean residual to grow with the average degree
of extrapolation (using the Mahalanobis distance in X1). Fi-
nally, the SPI criterion is a univariate statistic suitable for
segmenting both surfaces and space curves of arbitrary or-
der.

6 Surface Growing
To use the SPPI, NPI, and SPI criteria in a surface grow-

ing algorithm requires a few adaptations to the basic sur-
face growing model. We limit the presentation to extracting
connected regions. This will allow us in the future to com-
pare our techniques with other segmentation algorithms us-
ing the University of South Florida’s Segmentation Com-
parison Tool [10].

As with all the surface growing algorithms, we start with
a set of seed regions. Here, we leverage off the criteria’s
ability to factor in uncertainty, and seed with small surface
patches extracted from a robust local operator. We chose
to construct our seed regions using MUSE [14] due to its
abilities to withstand outliers and extract multiple surfaces
in a given region.

To use the NPI criterion, we calculate robust normal es-
timates for every pixel assigned to a seed region. To com-
pensate for MUSE’s window based extraction, the initial
normals are calculated by finding least-squares fits in 5×5
neighborhoods centered at each pixel, limiting the fit to
only those points which fall within the SPPI limits of the
pixel’s seed surface. This allows the initial normals to be
based on pixels from different MUSE windows, yet still

10Detailed derivations will be made available on our web-site.

limit the calculation to pixels that are likely to be from the
same surface.

To allow for a greedy surface expansion algorithm
(where we do not need to expand every seed region), we
order the seed surfaces based on an estimate of the confi-
dence in the seed fit. The confidence in a surface increases
with its area and number of points, while it decreases with
increasing scale. Therefore, we order the seed segments by

n
∣∣∣Σ̂X

∣∣∣/σ̂. (29)

A seed region will not be expanded if its pixels have already
been assigned to other surfaces.

Applying the criteria to surface growing is rather straight
forward. A set of candidate points is selected and tested
for location compatibility using the surface’s SPPI limits.
Points already assigned to a non-seed surface are allowed
to switch surfaces only if the new region provides a higher
confidence estimate of the reconstructed point (i.e. the
width of the SPPI interval is less for the candidate surface
than for the surface it is currently assigned).11 The points
surviving are tested for orientation compatibility using their
initial normal estimates (if available) and the current sur-
face’s NPI limits. Finally, any points remaining are tested
as a group using the SPI limits.

The main adaptation to the surface growing algorithm
is in selecting the candidate points. Most surface growing
techniques gather all the points connected to the current re-
gion that pass their location and orientation tests. How-
ever, we want to use the group location compatibility test
(SPI) to assist in identifying step discontinuities. To use this
criterion effectively, we localize the selection of candidate
points. Otherwise, we could be testing a group of points
from across several different boundaries. We localize the
expansion by selecting a point on the boundary of the re-
gion and gathering the pixels within a prescribed radius on
the image plane. The points within this radius (a 3 pixel
radius works well) not already assigned to the region form
the initial candidate set. To insure the region remains con-
nected during expansion, the points surviving the SPPI and
NPI tests are check for connectivity with the current region
and only the connected subset is tested against SPI. If the
set of points passes the SPI test, they are added to the re-
gion, and the surface estimates are recalculated. Another
candidate location is selected and process repeats until the
surface can no longer expand. Another surface is then se-
lected for expansion.

After a complete pass through the seed surfaces, the
expansion process is repeated to refine discontinuity lo-
cations. Points near crease discontinuities can typically

11Requiring a surface to produce a higher confidence estimate is another
diversion from existing techniques. Most techniques define the “better”
surface at a point using the residual distance, not the SPPI widths.
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Figure 5: At h = 4σ, a reconstructed step contains two surfaces,
each with 96% of the data from their side of the step and less than
0.5% of the data from across the discontinuity.

pass the SPPI test for either of the surfaces involved in the
crease. Furthermore, due to the uncertainty in the initial
normal calculation at a crease, these points may also pass
both surfaces’ NPI test. To refine crease locations, we re-
move the constraint that a point can only be assigned to the
surface producing the smallest SPPI interval, and replace it
with a constraint based on the intersection of the two sur-
faces (see [6]).

7 Analysis
One of the major strengths of the prediction interval

framework lies in the ability to reconstruct very small mag-
nitude step discontinuities. The SPI facilitate localized
queries along the boundary of a region, identifying when a
local expansion attempts to cross a discontinuity. Figure 5
illustrates the abilities of SPI. Here, we ran repeated simu-
lations on 30×30 datasets containing a single step disconti-
nuity of various magnitudes. The step divided the data into
one 600 pixel region and one 300 pixel region. The predic-
tion interval region growing system was seeded with two
6×6 regions, one on each side of the discontinuity. To mea-
sure the performance, we calculated the fraction of each re-
gion reconstructed by the largest extracted segment. For
very small step heights, a single bridging fit was extracted,
covering 95% of the data from both regions. However, by
h = 4σ, two surfaces were extracted, with the largest ex-
tracted surface covering 95% of its side of the step while
covering less than 0.5% of the other side of the step.

This is a significant result since without SPI, the theoret-
ical limit for surface growing12 is between 5σ and 6σ. This
theoretical limit is twice the location threshold which must
be set to 2.5σ to 3σ in order to identify and gather the inliers
to a region. Also note, the prediction interval performance
is achieved without a known or globally estimated scale pa-
rameter.

Figure 6 shows a prediction interval based segmentation
on a scene composed of a series of 4σ steps. For com-
parison we include a segmentation from Fitzgibbon et al.’s

12The limit for window based robust operators is even higher [16].

Raw Data

−15
−10

−5
0

5
10

−15
−10

−5
0

5
10

85

90

95

100

105

110

115

−15
−10

−5
0

5
10

−15
−10

−5
0

5
10

85

90

95

100

105

110

115

−15
−10

−5
0

5
10

−15
−10

−5
0

5
10

85

90

95

100

105

110

115

UE Reconstruction SPPI, NPI, SPI Reconstruction

Figure 6: Small step heights (h = 4σ, data density 2 samples/unit)
are bridged by the UE segmenter, however, the prediction interval
segmenter handles the small steps correctly due to the SPI.

range segmenter (UE segmenter [6]). The UE segmenter
was chosen for comparison since it had the best overall per-
formance in [10] and because it is the closest in style of
those discussed in [10] to the prediction interval segmenter.
The parameters for the UE segmenter were set using the
techniques discussed in [6] and [10]. In particular, the lo-
cation threshold was set at 2.5σ. The UE segmenter results
in bridging fits whereas the prediction interval segmenter
properly reconstructs the steps.

8 Results
Figure 7 shows our segmentation technique on one of

the Perceptron test data sets from the University of South
Florida’s Segmentation Comparison Project [10]. Follow-
ing their framework, we limit the extraction to planar sur-
faces. The Perceptron data required a data smoothing stage
prior to the initial normals calculation; although, we re-
verted back to the original data during reconstruction. For
comparison, we include segmentation images from the al-
gorithms tested in [10]. Qualitatively, our technique per-
forms favorably, erring slightly on the side of oversegment-
ing. Instead of reconstructing 7 surfaces on the octagon
“nut”, our segmenter extracted 9 large regions. The top
of the “nut” is difficult to extract since the noise varies
by a factor of three across the surface (see Figure 1(c)).
The oversegmentation on the front surfaces of the “nut”
are caused by slight curved distortions in the data (even
though the objects have planar faces). The oversegmenta-
tions, however, are locally consistent and should not pose
a problem when the segments are combined to form a solid
model. On the inner radius of the “nut”, we extracted two of
three surfaces present. Only the UB segmenter performed
better on that region of the data. The crease discontinuities
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Figure 7: Segmentation comparison. Single isolated points not
shown (extreme inliers/near outliers).

on the object in the center of the scene were well localized
by our segmenter. Two of the seven crease discontinuities
on this object were overshot by 3 to 5 pixels; however, the
other creases are well localized and compare very favorably
to the other segmentation algorithms. Finally, we do over-
segment the background and the groundplane. We are cur-
rently investigating methods to address this problem.

9 Conclusion
Surface growing has the potential to address the issues

involved with reconstructing range scenes from unstruc-
tured environments. By extending multivariate regression
analysis techniques, we have developed criteria that bound
the search for candidate data to add to a region’s fit and
that evaluate the compatibility of the candidate data to the
existing fit. Our criteria differ from those currently em-
ployed by not requiring a global scale parameter, global
range threshold, or a global orientation threshold. Rather,
our criteria are locally adaptive, varying the range and ori-

entation thresholds for each surface based local confidence
measures. Furthermore, we supply the SPI criterion which
tests candidate points for group inlier compatibility, thereby
increasing the sensitivity to small discontinuities.

In the future, we plan to extend the surface growing al-
gorithm with solid modelling constraints as in [6], incorpo-
rate a model selection methodology to extract higher order
surfaces, and perhaps most importantly quantitatively com-
pare our surface growing segmentation technique against
other range segmentation techniques using the University
of South Florida’s segmentation comparison tool [10].
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