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A Specialized Multibaseline Stereo Technique for Obstacle Detection
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Abstract

This paper presents a multibaseline stereo technique
specially suited to detecting obstacles. A method is
described for weakly calibrating a set of multibaseline
stereo cameras with high accuracy. This method is then
used to tailor the stereo search space to the special
case where the world in front of the cameras consists
mainly of nearly horizontal planar surfaces (the
ground), where we are interested in deviations from
those planar surfaces (obstacles). The resulting dis-
parity maps are presented and compared to the output
of a traditional stereo algorithm.

1. Introduction

Obstacle detection is one of the fundamental prob-
lems of mobile robotics. In order to navigate in the world,
it is necessary to detect those portions of the world that are
dangerous or impossible to traverse. For a large class of
such navigation problems, the world in front of the robot
can be modeled as a flat plane, and any points that deviate
from the planar model can be considered to be obstacles.
Examples of problems in this class are Automated High-
way Systems (AHS) vehicles, and practically all indoor
mobile robots.

Many different sensors have been used for obstacle
detection, with varying degrees of success. Many groups
(e.g. [3][4]) have chosen stereo vision because of the low
cost and high reliability of the sensors and the fact that the
sensing is passive. We have chosenmultibaseline stereo
because of those reasons and the improved reliability and
accuracy of the recovered structure of the environment
achievable with more cameras.

Conventional stereo systems for navigation often per-
form three steps. The first step is to find matching points

between images. From these matches, it is then possib
compute the 3D coordinates of each point in the ima
Finally, these points are arranged in a map so that poss
vehicle motions can be evaluated.

In this paper we present a method, based on wea
calibrated stereo, that attempts to identify obstac
directly from the stereo imagery. The issue of camera c
bration for multibaseline stereo has been addressed 
variety of ways. In this paper we first present a weak ca
bration technique that produces very accurate results in
general case. Then we present two variations to this te
nique that tailor the stereo search space for the obst
detection problem. Finally, we compare the output of 
three methods and discuss implementation issues.

2. Stereo Calibration

It is a well-known result of camera geometry tha
images from different pinhole cameras of the same pla
surface, represented in 3D homogeneous coordinates,
related by a 3x3 homography matrix. Furthermore, th
homography matrix has a specific structure:

(1)

Where theA matrices are 3x3 matrices containin
information about the intrinsic parameters of the two ca
eras (focal length, aspect ratio, and image center).R is the
3x3 rotation matrix between the two camera axes,t is the
3D translation vector between the two camera focal poin
and  is the 3D normal vector to the plane bein
observed, divided by the normal distance of the plane fr
the focal point of camera 0[6][7][8] . Thus H encodes the
relationship between the points in the image from cam
0, represented byx, and the points from camera 1, repre
sented byx´

Given such homography matrices (H1 andH2) for two
such planes, it is possible to weakly calibrate the set
cameras by simply taking the difference between the t
matrices:
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This matrix is rank 1, being the outer product of two
vectors. Intuitively,A1t is the position of the focal point of
camera 0 in the image of camera 1 (which simply means
that it is just the epipole of camera 1). The other half of the
expression encodes the information about how the two
planes being observed are different.

To perform the stereo computation using this result,
we can simply compute the set of homographies:

(3)

Whereα is a scalar that controls what plane is actu-
ally represented by the homography. The normal vector nα
of this plane for Hα is given by:

(4)

In practice, it is often convenient to aim the camera
toward points that are so far away that their disparity is
effectively zero. The distance at which this is the case
depends on the focal length of the lenses and the length of
the longest baseline. For most configurations, the sky near
the horizon is sufficiently far away.

In this case,n1 goes to zero, and equation (4) becomes

(5)

and α has the normal stereo relationship to 1/d. For
the remainder of this paper, we will derive equations for
the general case, but in the actual experiments we use the
homography of the plane at infinity forH1.

Thus, for any of the planesnα we can compute the
corresponding point in camera 1 for any point in camera 0.
By steppingα through a range of values, we can get a
series of planes and their point correspondences to use in
the heart of the stereo matching algorithm.

The extension of this technique for multiple baselines
is straight-forward. If the same two planes are viewed by
multiple cameras, the corresponding homography matrices
can be interpolated as above. No measurements of camera
geometry are necessary.

In the following sections, we will first describe how
we can compute homography matrices from image data,
and then we will discuss three different methods for
choosing the planes to use to perform the calibration.

2.1. Computing Homography Matrices

Since any given point in a 2D image can be rep
sented by any of an infinite number of homogeneous co
dinates, all scalar multiples of each other, we cann
expect to directly solve equation (1) forH. One way to
represent this is to write the cross-product of the tw
homogeneous coordinates that are supposed to be e
and set it equal to zero. This has the effect of constrain
the two coordinates to be scalar multiples of each other

Thus equation (1) becomes:

(6)

Since, given any solutionH to this problem, all scalar
multiples ofH are also solutions, we can arbitrarily set on
element ofH to whatever value we like and solve for th
other 8. Doing this we get two linear equations per ima
point, and a total of 8 unknowns, so four point correspo
dences are required to computeH.

Ideally, though, we would like to know the paramete
of H to very high precision so that we can accurately co
pute depth using sub-pixel interpolation template matc
ing.

For an AHS vehicle, the goal is to recognize sm
obstacles (as small as 20 cm or so) at long range (60-
m in front of the vehicle). In order to accomplish this, 
combination of telephoto lenses and a large basel
becomes necessary. In this situation, small inaccuracie
the calibration can cause large errors. In one particular 
uation that we have studied, using a 1 m baseline and
mm lenses, a 1 mm error (1 part in 1000) in the compu
position of the camera can cause the epipolar line to be
by as much as 2 pixels in certain parts of the image
extreme disparities. Accurate computation of homograp
matrices is therefore essential.

Thus, some method of accurately determining calib
tion parameters is necessary. The most obvious way to
this is to minimize the residual error between one ima
and the other image when warped by the homograp
Since the relationship between a pixel’s location in o
image and its position after transformation by the homo
raphy is a rational function, some type of nonlinear op
mization must be used. For this, we use a program that
been in use at Carnegie Mellon for several years [4][6]
asks the user to select four matching points to comput
starting point for a Levenberg-Marquart nonlinear optim
zation. The results of this computation are shown 
Figure 1. For this case, the residual error was reduced b
factor of around 50%.
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After accurately computing the homography matrices
of two planes, one issue remains. Since we were able to
compute the homographies only up to a scale factor, the
cancellation of R from the second line of equation (2) is
not possible unless we compute the relative scale factors
of the two matrices.

To accomplish this, we use the fact that the difference
between the two homographies is rank 1 for the correct
scale factor. So we simply have to findβ such that

 is rank 1. In general, because of rounding errors
and imperfect assumptions made by our model, there will
be noβ that accomplishes this exactly. We evaluate how
good any givenβ is by computing the Singular Value
Decomposition of  and taking the ratio of the
largest and second largest singular values. Finding the best
value ofβ then becomes a simple 1D optimization prob-
lem.

In the following sections, we will assume that all
homography matrices have already been normalized byβ
as computed by the above method.

2.2. Depth Calibration Method

If H1 andH2 are computed by viewing planes that are
parallel to each other, then equation (4) becomes

(7)

where  is the common normal vector to both planes.
So we get a set of planes, all of which are parallel to the

original planes.

If the initial planes are chosen such that they a
roughly perpendicular to the camera axis, then  will 
parallel to the camera axis, and the set of planes fr
equation (7) will be planes of constant depth. The geom
try that is recovered allows us to compute the distance
points from camera 0. This corresponds exactly to t
most common stereo vision method.

The multibaseline stereo output from a set of 3 ca
eras calibrated with this technique is shown in Figure 2.

Unfortunately, this method runs into problems in a
environment consisting mostly of surfaces whose norm
are not parallel to the camera axis. This is illustrated
Figure 3. The regions being matched in the left image ha
a different geometry arising from the fact that points th
are higher in the image are actually farther away. T
leads to a different shape within the image, which in tu
leads to imprecise matching.

The method described here describes how to der
pixel-by-pixel differences which can then be summed ov
a window in order to compute the disparity. However, t
same effect could be achieved when computing SSD (s

Left Image Right Image

Residual after choosing 4
points

Residual after optimization

Figure 1: results of homography computation
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Intensity Image Disparity Output

Figure 2: output with depth calibration

Right Image
region

Left Image
region

Difference

Figure 3: depth calibration method applied to a
road surface
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of squared differences) over templates, simply by warping
the templates using the homography for a given disparity
level before computing the SSD.

2.3. Height Calibration Method

An interesting property of equation (7) is that the
direction of the normal vectors of the planes being viewed
do not have to be parallel to the camera axis. We can use
this property to get around the problem with depth calibra-
tion described in the previous section.

An obvious adaptation would be to choose two planes
that are parallel to the ground (note that the plane at infin-
ity can be used forH1 in this case as well). In this configu-
ration, the output of the stereo algorithm would be the
height of each point in the image.

The output of this height calibration is shown in
Figure 4. The triangular section on the lower right repre-
sents pixels for which all possible matches lay outside the
image for this calibration method. The scene being viewed
in this figure is different from the one used for calibration.

The results of this simple height calibration are rea-
sonably good, but it seems to have problems at long dis-
tances. To get at the core of why this is, it is helpful to go
back to equations (1) and (2).

(8)

Note that the quantity(n2-n1)
TA0

-1x is a scalar. This
scalar is the dot product of the direction in world coordi-
nates corresponding to the pixelx, A0

-1x, with the direc-
tion of the ground plane. If the horizon appears in the
image, pixels at the horizon will be perpendicular to the
direction of the ground plane, and this scalar will be zero.
The effect of this will be that pixels on the horizon will all
map to the same location, regardless ofα. Another effect
is that pixels that are close to the horizon will move very

little asα increases, while pixels that are far from the ho
zon will move much more. Pixels that are above the ho
zon will actually move backwards (as if looking at th
ground behind the cameras).

It is clear from this that no single choice of step si
for α will give good results for this method, and the resu
of that can be seen in the upper portion of Figure 4. On 
other hand, the method has several good features:

• the regions being compared between the image
automatically have the correct shape if the surface
being viewed is a plane parallel to the ground

• the mapping from the output of this method (height)
to whether a region should be considered an obsta
cle or not is obvious -- regions that are too high (or
too low) should be considered to be obstacles.

2.4. Combined Method

Although the height calibration method is promising
the problems mentioned above seem to be too extre
make it practical. Ideally, there would be some combin
method which captures the strong points of the heig
method with none of the drawbacks.

The problems associated with the height calibrati
method mostly seem to stem from the fact that the dir
tion of  in equation (7) is far from the camera axis. Th
benefits, on the other hand, stem from the fact that 
planes involved are similar to the ground plane.

Thus, we define a new set of homographies

(9)

WhereH3 is computed for the ground plane, butH2
andH1 are computed from planes such that the differen
between normal vectors lies near the camera axis (suc
with the depth calibration method). With this set o
homographies, the corresponding planes look like:

(10)

Where  is the common normal ofH2 andH1, lying
near the camera axis. An example of this set of planes f
simple camera geometry is shown in Figure 5.

The output of this scheme is shown in Figure
Again, the scene used for output is significantly differe
from that used for calibration.

This sampling method has a number of good prop
ties:

Intensity Image Disparity Output

Figure 4: output with height calibration
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• the template shape is correct for objects whose sur-
face corresponds to one of these planes

• the different planes are all distinct everywhere in
the image

• the allocation of the limited number of disparity
search levels is optimized for road geometry (since
we do not expect the pixels at the bottom of the
image to be 200m away, nor do we expect objects at
the top of the image to be close)

• even if the ground plane does not match up with
one of the constant disparity planes exactly
(because of the curvature of the road and the fact
that the bottom of the image may in fact be very far
away from the vehicle), a planar road surface must
also be roughly planar in the (row,column,disparity)
space of the output of this algorithm (this is not true
for the height calibration case).

In Figure 7, we present the regions used by this
method, for comparison with those used by the depth
method (shown in Figure 3). Since the regions are trans-
formed appropriately for the expected surface normal

direction, the shape of features in the image is correct, 
matching is much more likely to be accurate.

3. Comparison of Results

In Figure 8 we have plotted the error as a function 
disparity for the case considered in Figure 3 and Figure
Here the benefit of this method becomes clear. The de
calibration method (shown with a solid line) achieves
local minimum of error at the correct value, but it is n
less than the value attained in regions where the road 
face has no texture. Thus, the result in this case is an in
rect disparity value. The combined method properly a
strongly identifies the correct minimum.

Another means of evaluating the results of the
methods is to look closely at the shapes of the regions 
are identified by each algorithm as having a particular d
parity value. We can compare the output of the two me
ods by mapping the output shown in Figure 2 into t
space of the output in Figure 6. The results of this ma
ping are shown in Figure 9, with the regions correspon
ing to four disparity levels of the ground displayed as fo
different shades of gray.

As can be seen in the figure, the combined meth
maps the plane of the ground into around five regions, r
resenting five different planes of the type shown 
Figure 5. Details like the fact that the ground slopes dow
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Figure 5: Planes of constant “disparity” for the
second calibration method. Parameters are 1m

baseline, 35mm lenses, 1/2” CCD, cameras
aligned perfectly and 2m above the ground

Intensity Image Disparity Output

Figure 6: output with combined calibration

Figure 7: combined calibration method output for
the situation shown in Figure 3

Right Image
region

Left Image
region

Difference

Figure 8: error for the cases shown in Figure 3
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ward from left to right (relative to the original calibration
plane) are clearly visible. Given the results shown in
Figure 8, it is not surprising that the depth method does
not do as well on the road surface. Although the general
trends are present, the accuracy is affected strongly by the
incorrect feature shape used in matching.

4. Implementation

The algorithms described in this paper have been
implemented both using special purpose hardware, the
Video-Rate Multi-baseline Stereo Machine, and in C code
on a Sun workstation.

4.1. Video-Rate Multi-baseline Stereo Machine

The stereo machine consists of a number of custom-
built 9U VME boards connected in a system. The system
is described in more detail in [2].

The algorithm used by the stereo machine works by
first digitizing the images from each of the cameras (up to
6 in the current design), and then passing the image
through an 11x11 LOG (Laplacian of Gausssian) filter.
The resulting data is then compressed to 4 bits by a non-
linear weighting function. All subsequent processing is
done with 4-bit pixel data.

The 4-bit LOG filtered data is then passed on to the
geometry compensation unit. This unit is of particular
importance because it performs a very general transforma-
tion on each of the input images, to rectify these images
before performing the SAD computation which comes
next. For each postulated distance from the cameras, all of
the images are effectively reprojected as if all objects in
the scene were at that distance. This reprojection is accom-
plished via a 3-dimensional lookup table whose inputs are
the postulated disparityζ and the image coordinates (i,j),
and which outputs the corresponding image coordinate for

each camera (I(i,j,ζ), J(i,j,ζ)). These output image coordi-
nates are given to sub-pixel accuracy (in 1/16ths of
pixel), and the four adjacent pixels are linearly interp
lated to produce the reprojected result pixel. Note that 
lookup table can contain any values whatsoever, so i
possible to correct for lens distortion, or to operate w
one camera upside down, or to use cameras with lense
different focal lengths. The primary limitation of the
geometry compensation circuit is that it assumes that e
4x4 pixel region of the base image will be offset by th
same amount. For the kind of extreme geometry that 
been presented in this paper, this assumption is often n
very good one, and the quality of the output suffers.

Calibration for the stereo machine consists entirely
computing the values to load into these lookup tabl
These values can be computed directly from the homog
phy matrices by the simple formula

(11)

and normalization bya to convert from homogeneous
coordinates to 2D coordinates.

In the next stage of the stereo machine, the abso
value of difference (AD) is performed pixel-by-pixel fo
the base camera (camera #0) paired with each of the o
cameras. The results of the AD computation are summ
over all of the camera pairs, resulting in a sum of absol
differences (SAD) value for each pixel for each dispar
level.

The resulting SAD values are now smoothed by su
ming over a window, producing the SSAD. In the fin
stage, for each pixel, the disparity level with the minimu
SSAD value is found, and the SSAD values of the min
mum and its neighbors are sent to the C40 DSP proces
board, where the disparity levels can be interpolated 
higher accuracy.

The stereo machine processes images at a cons
rate of roughly 30 million pixel-disparities per secon
(counting pixels processed in camera #0), regardless of
number of cameras in use. Thus the frame rate depend
the number of pixels processed and the number of disp
ties searched. When using the maximum values for e
(256x200 image, 60 disparity levels searched), the fra
rate is roughly 6 Hz.

For the experiments presented in this paper, the ste
machine was mounted on a vehicle and driven to a var
of different locations.

Combined Method
Depth Method results

converted to Combined
Method space

Figure 9: comparison of results for ground plane
pixels -- four disparity levels for the ground are

shown in levels of gray
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4.2. C Program Implementation

The implementation in C code emulates the stereo
machine algorithm completely, except for the geometry
compensation. Instead of using a lookup table, the geome-
try compensation is done by computing image coordinates
directly from the homography matrices, for maximum
accuracy. With the exception of Figure 4, all of the output
shown in this paper was computed with this program.

5. Conclusion

A system has been presented that allows very precise
calibration of multi-baseline stereo cameras. Such calibra-
tion is necessary in the case where long focal lengths and
large baselines are necessary to observe objects at long
range, or when maximum depth precision is required.

Building on this method, we have shown two possible
modifications that allow stereo vision to be used to accu-
rately detect planar surfaces in front of a vehicle. This then
allows us to detect regions that do not lie on those planar
surfaces, which can therefore be classified as obstacles.

A key principle of these methods is that distances to
objects whose surface normals are very different from the
camera axis direction can not be measured accurately with
traditional stereo vision algorithms. If these surface nor-
mals are different enough, then the distance to the object
may vary significantly over the areas being considered,
thus violating a key assumption of traditional stereo algo-
rithms.

Other methods to cope with similar situations have
been presented in [1] and [7]. The former presents a
method intended to reduce stereo vision processing while
accounting for vehicle motion, and adaptively adjusts the
parameters of the ground plane as the vehicle moves. The
latter attempts to compute the height of objects in the
scene using a weakly calibrated stereo system by making
some simplifying assumptions.

The methods we have described in this paper have
been tested in a variety of real-world environments and
appear to be very robust to different situations. In future
work we will be building a new frame-rate stereo machine
that is capable of computing point correspondences

instead of relying on a sparse, imprecise lookup table.
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