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Abstract
We develop a vision system for highly mobile au-

tonomous agents that is capable of dynamic obstacle
avoidance. We demonstrate the robust performance of the
system in artificial animals with directable, foveated eyes,
situated in physics-based virtual worlds. Through active
perception, each agent controls its eyes and body by con-
tinuously analyzing photorealistic binocular retinal image
streams. The vision system computes stereo disparity and
segments looming targets in the low-resolution visual pe-
riphery while controlling eye movements to track an object
fixated in the high-resolution fovea. It matches segmented
targets against mental models of colored objects of inter-
est in order to decide whether the segmented objects are
harmless or represent dangerous obstacles. The latter are
localized, enabling the artificial animal to exercise the sen-
sorimotor control necessary to avoid collision.

1 Introduction
Animals are active observers of their environment [11].

This fact has inspired a trend in computer vision popu-
larly known as “active vision” [2, 3, 26]. The recently
proposed animat vision paradigm offers a new approach
to developing biomimetic active vision systems and ex-
perimenting with them [28]. Rather than allow the limi-
tations of available robot hardware to hamper research, an-
imat vision prescribes the use of virtual robots that take
the form of realistic artificial animals, or animats, situated
in physics-based virtual worlds. Animats are autonomous
virtual agents possessing highly mobile, muscle-actuated
bodies, as well as brains with motor, perception, behavior
and learning centers. In the perception center of the an-
imat’s brain, computer vision algorithms continually ana-
lyze incoming perceptual information. Based on this anal-
ysis, the behavior center dispatches motor commands to
the animat’s body, thus forming a complete sensorimotor
control system.

Biological creatures move through the world with little
apparent effort. Many do so using eyes with a high-acuity

Figure 1: Artificial fishes swimming among aquatic plants
in a physics-based virtual marine environment.

fovea covering only a small fraction of a visual field whose
resolution decreases monotonically towards the periphery.
For example, a person can safely navigate a hallway while
reading a book that occupies her foveal vision while avoid-
ing potential threats identified through peripheral vision.
In fact, a great deal of mobility can be supported by low
resolution peripheral vision, freeing the small, high res-
olution visual area to attend to important matters during
navigation [8]. Spatially nonuniform retinal imaging pro-
vides opportunities for increased computational efficiency
through economization of photoreceptors and focus of at-
tention, but it forces the visual system to solve problems
that do not generally arise with a uniform field of view. A
key problem is determining how to avoid danger when ob-
stacles are detected in the low resolution periphery while
focusing attention on an object of interest fixated in the
high resolution fovea. In this paper we present a solution
to this problem through the combined exploitation of color
information and depth information from stereo disparity.

Building upon the animat vision paradigm, the stereo
and color based motor control algorithms that we propose
in this paper are implemented and evaluated within arti-
ficial fishes in a virtual marine world (Fig. 1). The fish



animats are the result of research in the domain of artificial
life (see [29] for the details). In the present work, the fish
animat serves as an autonomous mobile robot inhabiting a
photorealistic, dynamic environment. Our new navigation
algorithms significantly enhance the prototype animat vi-
sion system implemented in prior work [28, 20, 27]. They
support more robust vision-guided navigation, including
obstacle recognition and avoidance. We briefly review the
animat vision system in the next section before presenting,
in the subsequent sections, our new work on integrating
stereo disparity and color analysis for animat navigation
and perception.

2 A Prototype Animat Vision System
The basic functionality of the animat vision system,

which is described in detail in [28], starts with binocu-
lar perspective projection of the color 3D world onto the
animat’s 2D retinas. Retinal imaging is accomplished by
photorealistic graphics rendering of the world from the an-
imat’s point of view. This projection respects occlusion re-
lationships among objects. It forms spatially variant visual
fields with high resolution foveas and progressively lower
resolution peripheries. Based on an analysis of the incom-
ing color retinal image stream, the visual center of the an-
imat’s brain supplies saccade control signals to its eyes to
stabilize the visual fields during locomotion, to attend to
interesting targets based on color, and to keep moving tar-
gets fixated. The artificial fish is thus able to approach and
track other artificial fishes visually.

2.1 Eyes and Retinal Imaging

The artificial fish has binocular vision. The movements
of each eye are controlled through two gaze angles ��� ��
which specify the horizontal and vertical rotation of the
eyeball, respectively. The angles are given with respect
to the head coordinate frame, such that the eye is looking
straight ahead when � � � � ��.

Each eye is implemented as four coaxial virtual cameras
to approximate the spatially nonuniform, foveal/peripheral
imaging capabilities typical of biological eyes. Fig. 2(a)
shows an example of the ��� �� images that are rendered
by the coaxial cameras in each eye (rendering employs the
OpenGL library and graphics pipeline on Silicon Graph-
ics workstations). The level l � � camera has the widest
field of view (about ����) and the lowest resolution. The
resolution increases and the field of view decreases with
increasing l. The highest resolution image at level l � �
is the fovea and the other images form the visual periph-
ery. Fig. 2(b) shows the 	���	�� binocular retinal images
composited from the coaxial images at the top of the figure.
To reveal the retinal image structure in the figure, we have
placed a white border around each magnified component
image. Vision algorithms which process the four �� � ��

component images are 16 times more efficient than those
that process a uniform 	��� 	�� retinal image.

2.2 Foveation by Color Object Detection

The brain of the artificial fish stores a set of color mod-
els of objects that are of interest to it. For instance, if the
fish is a predator, it would possess models of prey fish. The
mental models are stored as a list of �����RGB color im-
ages.

To detect and localize any target that may be imaged in
the low resolution periphery of its retinas, the animat vision
system of the fish employs an improved version of a color
indexing algorithm proposed by Swain [25].� Since each
model object has a unique color histogram signature, it can
be detected in the retinal image by histogram intersection
and localized by histogram backprojection.

2.3 Saccadic Eye Movements

When a target is detected in the visual periphery, the
eyes will saccade to the angular offset of the object to bring
it within the fovea. With the object in the high resolution
fovea, a more accurate foveation is obtained by a second
pass of histogram backprojection. A second saccade typ-
ically centers the object accurately in both left and right
foveas, thus achieving vergence. The saccades are per-
formed by incrementing the gaze angles ��� �� in order to
rotate the eyes to the required gaze direction.

2.4 Visual Field Stabilization using Optical Flow

It is necessary to stabilize the visual field of the artificial
fish because its body undulates as it swims. Once a target
is verged in both foveas, the stabilization process assumes
the task of keeping the target foveated during locomotion.

Stabilization is achieved by computing the overall trans-
lational displacement �u� v� of intensities between the cur-
rent foveal image and that from the previous time instant,
and updating the gaze angles to compensate. The displace-
ment is computed as a translational offset in the retinotopic
coordinate system by a least squares minimization of the
optical flow between successive image frames [13].

The optical flow stabilization method is robust only for
small displacements between frames. Consequently, when
the displacement of the target between frames is large
enough that the method is likely to produce bad estimates,
the foveation module is invoked to re-detect and re-foveate
the target as described earlier. Each eye is controlled in-
dependently during foveation and stabilization of a target.
Hence, the two retinal images must be correlated to keep
them verged accurately on the target.

�Our improvements, which include iterative model histogram scaling
and weighted histograms, make the technique much more robust against
the large variations in scale that occur in our application. The details of
the improved algorithm are presented in [28].
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Figure 2: Binocular retinal imaging. (a) 4 component images; l � �� �� �� are peripheral images; l � � is foveal image. (b)
Composited retinal images (borders of composited component images are shown in white).
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Figure 3: Gaze angles and range to target geometry.

2.5 Vision-Guided Navigation

The artificial fish can also employ the gaze direction
(i.e., the gaze angles) while the eyes are fixated on a tar-
get to navigate towards the target. The � angles are used
to compute the left/right turn angle �P shown in Fig. 3,

and the � angles are similarly used to compute an up/down
turn angle �P . The fish’s turn motor controllers are in-
voked to execute a left/right turn—right-turn-MC for an
above-threshold positive �P and left-turn-MC for negative
�P—with j�P j as parameter. Up/down turn motor com-
mands are issued to the fish’s pectoral fins, with an above-
threshold positive �P interpreted as “up” and negative as
“down”. The motor controllers are explained in [29].

The remainder of the paper presents our new work on
integrating color and disparity analysis within the animat
vision system for dynamic obstacle avoidance.

3 Disparity and Color for Obstacle Avoidance
Color and stereo algorithms have been discussed exten-

sively in the literature in a variety of passive vision sys-
tems, but rarely have they been integrated for use in dy-
namic obstacle avoidance systems. Color and stereo cues
have recently been integrated together with motion cues to
implement a real-time passive stereo system that can de-



tect and identify moving objects for application to surveil-
lance and human-computer interaction [1]. Disparity and
color cues have also been combined to improve the focus
of attention and recognition capabilities of an active vision
system [12].

Recent work involving autonomous mobile robot sys-
tems have used single image cues for obstacle detection
and avoidance such as stereo disparity [6], optical flow [5],
visual looming [15], peripheral optical flow [8], divergence
of image flow and time-to-contact [7], and appearance
based models of color and shape [21]. Shigang et. al. [23]
have recently proposed a method for autonomous robot
navigation along routes described by landmarks based on
range and color information.

The following sections describe our dynamic obstacle
recognition and avoidance algorithms. Exploiting stereo
and color cues, the algorithms enable the animat to navi-
gate through its virtual environment fixating and tracking a
reference target in the fovea while avoiding obstacles that
appear in its low resolution visual periphery.

3.1 Stereo Analysis
Classical stereo analysis deals with the correspondence

problem with two basic techniques; area-based methods
[18, 13] and feature-based methods [19, 13]. Both types
of stereo algorithms have computational problems. For ex-
ample, in feature-based stereo algorithms the intensity data
is first converted to a set of features assumed to be a more
stable image property than raw intensities. The matching
stage operates only on these extracted image features, con-
sequently, producing sparse disparity maps. In order to
obtain dense disparity maps, one is forced to interpolate
missing values. Furthermore, false matches are basic to
all feature-based stereo algorithms. These problems can
be reduced by introducing additional constraints derived
from reasonable assumptions about the physical properties
of object surfaces and by increasing the number of features
considered in the matching process. In area-based stereo
algorithms intensity values within small image patches of
the left and right views are compared and the correlation
between these patches is maximized. To assure stable per-
formance, area-based stereo algorithms need suitably cho-
sen correlation measures and a sufficiently large patch size,
which is a computationally expensive process. Other meth-
ods extract local Fourier phases of left and right images and
the phase difference at each location is used to estimate dis-
parity [22, 17, 9].

Several approaches take into consideration available bi-
ological and neurophysiological data about the human vi-
sual system [19, 22, 16]. There is biological evidence that
the pattern of light projected on the human retina is sam-
pled and spatially filtered. Very early in cortical visual pro-
cessing, receptive fields become oriented and are well ap-

proximated by linear spatial filters, with impulse response
functions that are similar to partial derivatives of a Gaus-
sian function [30].

Our animat vision approach for estimating stereo dis-
parity draws ideas from early visual processing in the pri-
mate cortex. We implement the receptive fields as steerable
spatial filters that process the input images. The steerable
filter responses at an image location form a feature vec-
tor that is used for solving the correspondence problem.
The outputs of a steerable filter convolved with an image at
multiple orientations provides very rich information about
a local neighborhood around each pixel. Thus matching
image patches from the left and right images of a stereo
pair becomes simpler and the probability of a correct match
increases as the length of the feature vector increases.

“Steerable filter” is a term used to describe a class of
spatial filters in which a filter of arbitrary orientation is
synthesized as a linear combination of a set of basis filters.
Steerable filters, first developed by Freeman and Adelson
[10], have been recently used for estimation of scene mo-
tion [14] and for object recognition [4] and stereopsis [16].
Simoncelli and Freeman have recently introduced a multi-
scale, multi-orientation steerable filter image decomposi-
tion framework called the Steerable Pyramid [24] which
we use as a front-end for our stereo algorithm. It has the
advantage of producing feature descriptions that are both
translation- and rotation-invariant.

Our disparity estimation algorithm starts by decompos-
ing the left and right images into steerable pyramid rep-
resentations. The input images are initially low-pass fil-
tered using a low-pass filter (L�) with a radially symmet-
ric frequency response. Each successive level of the pyra-
mid is constructed from the previous level’s low-pass band
by subsampling it then convolving it with a bank of ori-
ented basis filters (Bi) and a low-pass filter (L�). Other
orientations at each level are synthesized by taking linear
combinations of the basis filtered images. The number of
basis filters that are needed for steering the filter is n 
 �
for an nth�order filter. We use third-order filters, thus re-
quiring four basis filters oriented at ��� �	�� ���, and ��	�

[10]. Fig. 4(a) shows these four spatial basis filters (Bi)
which form a steerable basis set; any orientation of this
filter can be written as a linear combination of the basis
filters. Fig. 4(b) shows the two low-pass filters used to
construct the pyramid. Typically, L��w� is chosen to be
L��w��� in the frequency domain [24]. Fig. 5 shows an
example of a three-level steerable pyramid for a single ori-
entation for an image acquired by the animat’s right eye.

Feature vectors fR�x� y� l� and fL�x� y� l� are then con-
structed from the right and left pyramid responses for each
pixel at each level of the pyramid by combining the re-
sponses of the multi-orientation steerable filters at each
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Figure 4: (a) Four basis filters oriented at ��� �	�� ���, and
��	�. (b) Left: L� low-pass filter, Right: L� low-pass filter.

pixel into a vector that provides a rich description of the
intensities at that pixel in the image. To further enrich the
description of each pixel, we make use of the �R�G�B�
color signals from our color images, including them in the
feature vector. This simple addition improves our match-
ing process considerably by restricting the matching pro-
cess to areas of similar color composition, which can be
considered as a sort of color-feature constraint.

An initial disparity map is estimated at each individual
level by matching left and right feature vectors by mini-
mizing the mean square error (MSE) between left and right
feature vectors. The MSE measure is computed over all the
elements in the vector as follows;

Em �
�

S

X

i�S

�f iR�x� y� l�� f
i
L�x
 dx� y 
 dy � l�


�� (1)

where S is the feature vector size. The MSE measure Em

is computed for a limited range of horizontal and vertical
disparities dx�l� � Dx�l� and dy�l� � Dy�l� within a win-
dow of size Dx�l� � Dy�l� (typically, Dx��� � ��, and
Dy��� � ��). The �dx�l�� dy�l�� value that minimizes
the MSE within this window is taken as the best initial
disparity estimate at pixel �x� y� l� at pyramid level l. A
boundary condition of zero disparity at image borders is
applied. Also a zero disparity condition is applied to lo-
cations where no match is possible, such as across con-
stant intensity areas. The disparity range used lies within
��D�l�

� � D�l�
� 
. The disparity range differs from level to

level and is given as,

Dx�l� �
Dx���

�l
�

Dy�l� �
Dy���

�l
� (2)

A coarse-to-fine-flow-through strategy is then taken
based on the assumption that for level l disparity estimates
jd�l�j � jD�l�

� j are more accurately estimated at the coarser
level l 
 �. Thus at coarse levels, large disparities are esti-
mated presumably more accurately, and these flow through
to the finer levels; small disparities that are estimated from
the finer levels are assumed accurate since they cannot be
estimated at coarser levels due to the loss of high frequency
structure from the original coarse-level images.

(a)

(b)

Figure 5: (a) An image acquired by the animat’s right eye,
(b) A three-level Steerable Pyramid of the image in (a)
shown for a single orientation.

Each disparity estimate �dx�l�� dy�l�� at each level is
median filtered at an appropriate scale before flow-through
is performed (the window size used increases from coarse
levels to fine levels – mainly �� � and 	� 	 for ���� ���
images). The full frame level is then median filtered to give
the final disparity estimate. The median filtering step is re-
quired to correct for outlier disparity estimates that deviate
from the correct expected estimate (a form of smoothness
constraint on the estimates).

The stereo matching algorithm can be made more effi-
cient by exploiting the epipolar geometry of the eyes of the
artificial animal. The eye virtual cameras described in sec-
tion 2.1 have identical focal lengths fc. The eyes mounted
in the animat’s head may be aligned horizontally to within
a scan line. To simplify the matching process we try to re-
duce the vertical disparity search rangeDy as much as pos-
sible by restricting epipolar lines to one row. This is done
by tying the vertical gaze angles together when acquiring
stereo images; i.e., setting �R � �L. The vertical disparity
search range Dy is nevertheless larger than one pixel due
to non-uniform perspective distortions associated with the
large field of view virtual cameras.
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Figure 6: (a) Right and Left images acquired by the an-
imat’s eye and the estimated disparity map. (b) Stereo
sparse random-dot-stereogram with 3% black dots and es-
timated disparity. (c) Pepsi sequence, left: frame 3, center:
frame 0, right: estimated disparity.

Fig. 6 shows disparity maps estimated by the algorithm
for real images, a random-dot stereogram, and retinal im-
ages acquired by our animat.

3.2 Color Obstacle Recognition and Localization
Next we develop a strategy to distinguish between dan-

gerous obstacles and benign objects by combining the dis-
parity cues estimated using the above algorithm with color
cues available naturally from the acquired photorealistic
images.

The animat continuously computes a disparity map
from its stereo retinal input as it navigates through the
virtual world. The estimated disparity map is used as a
bottom-up cue to alert the animat of potential danger from
objects that come too close. The disparity map is first seg-
mented into potential obstacles. Then each segmented ob-
ject is examined and matched against color mental models
of designated dangerous obstacle objects. A match indi-
cates that a candidate object is really an obstacle and is to
be avoided, otherwise the object is considered harmless.
Harmless objects include food particles and sea weeds.

The disparity map d�x� y� is segmented via threshold-
ing. The appropriate disparity threshold is taken to be pro-
portional to the disparity at the fixation point, which is the
reference target that the animat is tracking foveally. This is
given as, dt � �d��� ��; i.e., if the disparity of the localized
object is at least � times the estimated disparity of the ref-
erence target then this object is considered too close (typ-
ically � � ���). Values of d�x� y� � dt are considered to
belong to potential obstacles, while values of d�x� y� � dt
are set to the minimum disparity estimate. This segmen-
tation step focuses the attention of the animat on potential
obstacles while disregarding the rest of the peripheral view,
thus simplifying the system as well as improving its robust-
ness to false alarms.

The corresponding segmented pixels in the right eye im-
age give the actual segmentation of the color objects. The
color histogram of this segmentation is intersected with the
color histogram of the mental models of stored obstacles,
using the color methods described in [28]. A match indi-
cates that this segment contains an obstacle; no match in-
dicates a false alarm and the animat continues in its current
path.

To localize a detected obstacle accurately, the exact
region of support of this obstacle must be properly seg-
mented out from the original segmentation obtained above.
To tackle this non-trivial problem, we make use of Swain’s
color histogram backprojection methods [25]. Briefly, his-
togram backprojection gives large weights to pixel loca-
tions in the image whose color histogram closely resem-
bles the color histogram of the model. This suggests, that
we can use the backprojection itself to get an exact seg-
ment of the detected obstacle; pixel weights in the back-
projection that are greater than an appropriate threshold are
considered to belong to the obstacle. The threshold is de-
termined empirically and for our case we used a value of
0.5 to separate the obstacle from outliers. Once the color
region of support of the obstacle has been determined, the
corresponding region in the disparity map gives the esti-
mated disparities of the obstacle over the region. The up-
dated disparity map is convolved with a circular disc of
area equal to the area of the segmented obstacle’s region of
support. This will blur out any misclassified pixels in the
segmentation while emphasizing the obstacle and facilitat-
ing its localization. The pixel location �xc� yc� of the peak
in the blurred disparity map localizes the obstacle. Fig. 7
shows images of the various segmentation steps.

3.3 Obstacle Avoidance Strategy

The point of localization �xc� yc� obtained from the
peak in the blurred disparity map is used to compute the
steering angles the animat must use to steer clear of the ob-
stacle. The angular location with respect to the right eye is
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Figure 7: (a) Thresholded disparity map of fig. 6-(a). (b) Corresponding color segmentation of potential obstacles. (c)
Backprojection map. (d) The exact region of support of the segmented obstacle. (e) The localization of the obstacle by
blurring the corresponding segmentation of the disparity map.
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Figure 8: Relationship between close objects and large
steering angles.

given as

� � tan���
xc
fc

��

� � tan���
yc
fc

�� (3)

The turn angles given to the animat’s motor controller are,
thus, proportional to �������; i.e., in the opposite direc-
tion, to avoid collision while still fixating on a reference
target to stabilize the visual world.

The merit of using ������� for steering the animat is
twofold: 1) simplicity of computing a steering vector and,
2) the fact that for close objects ��� �� is large, as is de-
picted in Fig. 8. Therefore, the turn maneuver will be large
to avoid the obstacle quickly. The farther away the obsta-
cle, the smaller the turn angles, hence steering will not be
excessive.

Figure 9 shows frames from a top view of a sequence
showing the animat navigating in its environment. The an-
imat is fixating and tracking a target red fish while avoiding
obstacles in the form of other fish obstructing its path. The
figure shows two instances where the animat encounters
an obstacle (frames 156 and 180). These are followed by
frames showing how the animat has successfully avoided
the obstacle by steering its body in the opposite direction
as explained above. The white lines emanating from the
eyes of the observer indicate the gaze direction.

4 Summary and Conclusions
We have presented computer vision research carried out

within the animat vision paradigm, which employs lifelike
artificial fishes inhabiting a physics-based, virtual marine
world. We have successfully implemented a set of active
vision algorithms for artificial fishes that integrate stereo
and color analysis. These algorithms support robust vision-
guided navigation and obstacle recognition and avoidance
abilities, enabling the animat to better understand and inter-
act with its dynamic virtual environment. Our work should
also be relevant to the design of active vision systems for
physical robotics.
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