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Abstract

A unique imaging modality based on Equal Thickness
Contours (ETC) has introduced a new opportunity for 3D
shape reconstruction from multiple views. We present a
computational framework for representing each view of an
object in terms of itsobject thickness, and then integrat-
ing these representations into a3D surfaceby algebraic re-
construction. The object thickness is inferred by grouping
curve segments that correspond to points of second deriva-
tive maxima. At each step of the process, we use some
form of regularization to ensure closeness to the original
features, as well as neighborhood continuity. We apply our
approach to images of a sub-micron crystal structure ob-
tained through a holographic process.

1 Introduction

The problem of shape-from-X has been a central research
topic in the computer vision community. These include–
but are not limited to–shape from shading [4, 11], texture
[8], contour [14], color [2, 1], etc. These techniques have
been applied from images obtained in controlled environ-
ments to natural outdoor scenes that may include more
than one view. In this paper, we introduce a new imag-
ing modality, and the corresponding method for shape re-
covery that has not yet been addressed by the computer vi-
sion community. This is based on equal thickness contour
(ETC), which is obtained through a holographic process.
One imaging source example is holographic electron mi-
croscopy of sub-micron crystal structures. Conventional
electron microscopy presents projected images with little
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or no depth information. In contrast, electron holography–
with coherent illumination–provides both magnitude and
phase information that can be used to infer object thickness
in terms of ETCs from each view of the sample. The holo-
graphic images contain interference fringes with spacings,
in the best case down to less than an angstrom, where in-
terference is between the transmitted and diffracted beams.
Similar imaging technique includes satellite radar inter-
ferometry, where the phase difference between two radar
returns–at two different times–from the same spatial loca-
tion is used for change detection [9]. It has been demon-
strated that minute geological changes (as a result of earth-
quake or movement in the earth’s crust) can be recovered
with this approach.

A simulation of ETCs for a synthetic object is shown in
Figure 1. The main issue is that this mode of representa-
tion is inherently ambiguous since objects with completely
different geometry can produce similar ETCs, as shown in
Figure 2. Thus, multiple views of an object is essential
for 3D shape recovery. In practice, however, these images
may have low contrast, be noisy, contain artifacts, and may
have shading; as a result, it is difficult to compute closed
contours from these fringe patterns. Figure 3 shows three
views of a real crystal structure that will be used for shape
recovery. There is a small angle of rotation between differ-
ent views, as reflected by the changes in the fringe patterns.

Our method for shape recovery consists of five steps,
some of which build on existing techniques developed in
the computer vision community. The protocol for shape
recovery is shown in Figure 4. Dominant features in these
images are roof edges corresponding to crease lines; how-
ever, it is well-known that it is difficult to extract these fea-
tures directly in the presence of scale-change and noise.
Here, we have adopted a stepwise refinement of images to
extract a desirable representation. The first step of the pro-
cess enhances peaks and valleys of the original data with
adaptive smoothing. Next, crease points are extracted and
grouped on the basis of collinearity and convexity. It is
assumed that grouping does not produce closed contours,
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(a) (b)

Figure 1: (a) Thickness of a synthetic pyramid and (b) the
corresponding equal thickness contours.

(a) (b)

Figure 2: An object with these cross sections generatesap-
proximatelythe same ETC when viewed from the top.

(a) (b) (c)

Figure 3: Three views of a cubeoctahedral object with a
diameter of 100 nano-meters.
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Figure 4: Protocol for recovering 3D shape from holo-
graphic images

and an interactive snake is provided to establish the bound-
ary conditions, based on innermost and outermost fringes1.
The grouping strategy is very conservative to allow closure
of small gaps, and at times it successfully provides closed
contours. The contour representation (based on lines of
second derivative maxima) provides the basis for obtaining
object thickness at each point in the image. We have devel-
oped a regularized approach to computing object thickness,
subject to continuity and smoothness constraints. The final
step of our protocol is to integrate object thicknesses ob-
tained from each viewing orientation into a 3D surface rep-
resentation. The approach is based on a modification and
extension of the algebraic reconstruction technique [3, 7],
which is essentially a tomographic process.

In the rest of this paper, each step of this computational
process is described with results from real data, followed
by concluding remarks in Section 6.

2 Crease Detection

The original images are processed with a variation of adap-
tive smoothing [12] to enhance the roof edges correspond-
ing to points of local maximum principal curvature. Here,
each point in the image is made smoother as a function of
its inverse local Laplacian. Hence, when the Laplacian is
large, no smoothing is performed.

We have experimented with localization of creases for
computation of local curvature maxima based on the first
and second fundamental form, and with maxima computed

1The emphasis is on having a robust system, so that the science project
can proceed uninterrupted.
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from the second directional derivative. Although the re-
sults appear to be similar subjectively, we have used the
second method due to its simplicity. The main rationale is
that computation of curvature involves different orders of
derivatives and a division operation.

The second derivative along any direction~n can be com-
puted as:

fnn = fxxcos
2� + 2fxysin�cos� + fyysin

2� (1)

where� is the angle betweenx axis and~n. Specifically, the
second derivative along the�

4
direction,~p, is given by:

fpp =
1

2
fxx + fxy +

1

2
fyy (2)

Thus,

fxy = fpp �
1

2
(fxx + fyy) (3)

From (1), it is straightforward to see thatfnn is maximum
at:

fnn =
fxx + fyy +

q
2(f2xx + f2yy) + 4f2pp � 4fpp(fxx + fyy)

2
(4)

along the direction:

� =
1

2
arctan(

2fxy
fxx � fyy

) =
1

2
arctan(

2fpp � (fxx + fyy)

fxx � fyy
)

(5)
The main benefit of this technique for finding the creases is
that only the second derivatives along three fixed directions
are needed.

3 Grouping

At the completion of the previous stage, the crease points
are linked to form curve segments that are then represented
with a series of consecutive line segments. The next step
of the computational process is to close the gaps as much
as possible to improve the accuracy of shape recovery.

Grouping has been an active area of research in the com-
puter vision community [6, 13], and we have based our
grouping strategy on the work of many other researchers.
In general, grouping can be based on collinearity, convex-
ity, and symmetry. Symmetry is a strong constraint, not im-
plemented here in order to evaluate the current constraints
for shape recovery (the symmetry constraint will be be-
tween adjacent contours). There are several steps in the
grouping process. These include neighborhood formation,
choice of an appropriate cost function, and the search pro-
tocol. The neighborhood formation is based on triangu-
lation to ensure that there will be no intersection among

various hypotheses. The local cost function between two
adjacent line segments is chosen to be:

local cost =
Li + Lj

Gij

cos� Where � <
�

6
\Gij < Thresh

(6)
Li, Lj , Gij, and� are length of line segmenti, length

of line segmentj, length of gap, and the turning angle be-
tween two segments, respectively. The cost function –with
hard small thresholds– is designed to be very conservative
and to close gaps based on collinearity. The convexity con-
straint is a binary test applied during the search process.
Actual search procedure is based on a special type of dy-
namic programming (DP) for efficiency. DP is essentially
a sequential decision-making process. LetP be a set of
states,D be a set of possible decisions,F : P �D 7! F
be a cost function, and : P �D 7! P be a function that
maps the current state and a decision into the next state. In
a single step, the maximum possible value, starting from
statepi, is given by:

H1(pi) = max
d2D

F (pi; d) (7)

By the same token, choosing a decisiond that maximizes
the value of a sequence forn states starting frompi is found
by:

Hn(pi) = max
d2D

[F (pi; d) +Hn�1( (pi; d))] (8)

The above recurrence relation, together with the cou-
pling relation of Equation (6), specifies contour formation
so that certain constraints are satisfied. In this formula-
tion, the decisiond corresponds to any of the candidate
line segments that correspond toLj in Equation (6). An
example of the grouping with all the original noise in the
image is shown in Figure 5. The grouping for this example
takes less than a second; but the bulk of processing is in
establishing the neighborhood relation among nearby line
segments. We have augmented our system with a snake
model (using second derivative features as external forces)
to ensure that the outer and inner fringes remain closed at
this point of the computational process. These two con-
tours provide the boundary conditions for the next step of
the process.

4 Reconstruction of object thickness

The goal of reconstructing object thickness is to calculate
a 2D image in which each point corresponds to the object
thickness in a certain direction. First, we will introduce a

4



(a) (b)

Figure 5: Grouping results: (a) original; (b) closed gaps.

simple interpolation method between the boundary condi-
tions that were derived earlier. This will serve as the initial
condition for refinement based on local contour informa-
tion.

4.1 A simple interpolation method

Let C1 andC2 represent two 2D curves withC2 inside of
C1. The problem is how to construct a surfacef(x; y),
such that:

f(C1) = 0; f(C2) = H (9)

whereH is a constant. It is well known that there are in-
finitely many surfaces that satisfy these constraints, and
the literature in shape-from-contour has addressed this is-
sue extensively [14]. However, we are only interested in
a simple interpolation that will serve for initialization. Let
d1(x; y) andd2(x; y) be the distance transformation (com-
puted from chamfer images) ofC1 andC2, respectively:

d1(p = (x; y)) = MinsfD(p; C1(s))g (10)

d2(p = (x; y)) = MinsfD(p; C2(s))g

whereD(p; C(s)) is the distance from pointp to a point
C(s) on the curve, thenf(x; y) can be constructed by:

f(x; y) =
d1(x; y) �H + d2(x; y) � 0

d1(x; y) + d2(x; y)
=

d1(x; y)

d1(x; y) + d2(x; y)
H

(11)
An example is shown in Figure 6.

4.2 Thickness gradient

In practice, it is very difficult to extract closed contours,
which complicates the reconstruction process. However,

(a) (b) (c)

Figure 6: Simple interpolation: (a) The initial curves; (b)
Interpolated surface, intensity indicates surface height; (c)
Level sets of the interpolated surface.

local contour segments provide the means for partial cor-
rection and updating in a local surface neighborhood. Ad-
jacent contour segments are either parallel or intersect at a
small angle. Consider troughT and ridgeR contour seg-
ments that are adjacent to one another, and assume that
from T toR the object thickness decreases by a constant,
say 1, on the surface. IfT andR are parallel withd dis-
tance apart (see Figure 7(a)) and the thickness decreases
linearly, then the magnitude of gradient for points between
T andR is given by: jj 5 f jj = 1

d
. On the other hand,

if the two segments are not parallel–see Figure 7(b)– then
for each pointp, there should be a curve passing through
p that intersectsT andR at p1 andp2, respectively. The
tangent of this curve is in the direction of thickness gradi-
ent, which could also be obtained by tracking the gradient
direction fromp1 to p2. SinceR andT are level set seg-
ments, it is easy to show that the normal to these segments
at any point and the gradient of object thickness are in the
same direction. WhenR andT are close to each other
and the intersection angle between them is small, we can
approximate a curvel, passing throughp, by two line seg-
mentspp01?T; pp

0
2?R, wherep01pp

0
2 is an approximation

top1pp2. Hence,l � jp01pj+jp
0
2pj. These line segments are

estimated from distance transforms (chamfer images[10]),
dt(x; y) anddr(x; y) that are computed from trough and
ridge segments. Thus,dt = jp01pj anddr = jp02pj, and the
magnitude of the gradient is given by:

jj 5 f(x; y)jj =
1

dr(x; y) + dt(x; y)
(12)

4.3 Regularized object thickness construc-
tion

The gradient feature, computed in the previous section, is
noisy and scale-limited. We have developed a regularized
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Figure 7: Measure of gradient estimates from local contour
segments: (a)T andR are parallel; (b)T andR are not
parallel.

approach for constructing the object thicknessf(x; y). We
define a suitable energy function to reflect the closeness to
data and a smoothing term:

�2 =

Z Z
(fx � p)2 + (fy � q)2 + �(4f)2dxdy (13)

wherefx; fy denote thex andy derivative off ; andp; q are
thex andy direction gradient information computed ear-
lier. The smoothness is enforced by the Laplacian of the re-
constructed object thickness4f . This is physically a nat-
ural constraint since the object is constructed from facets.
Following the Euler equation, the surfacef that minimizes
(13) is:

(fxx � px) + (fyy � qy) � �4 (4f) = 0 (14)

This equation is solved iteratively [5] from an initial guess
corresponding to the interpolation derived from the bound-
ary conditions:

fk+1(i; j) = �(fkxx � px)� (fkyy � qy)

+
�

4
(4fk(i� 1; j) +4fk(i; j � 1)

+4 fk(i+ 1; j) +4fk(i; j + 1))

�
�

4
(fk(i� 1; j) + fk(i; j � 1)

+fk(i + 1; j) + fk(i; j + 1)) (15)

There is a certain ambiguity in filling up the region in-
side the inner contour as given by the initial condition. This
ambiguity originates from the choice of planar fit or fur-
ther interpolation from the inner contour to the center of
the mass. This is a higher-level process and can only be re-
solved at the multiple-view integration. Figure 8 shows the
reconstructed object thickness for each view of the object
shown in Figure 3.

(a) (b) (c)

(d) (e) (f)

Figure 8: Reconstructed thickness from the ETC in Fig-
ure 3. (a,b,c) planar fit; (d,e,f) interpolating inside inner
contour.

5 3D shape recovery

In the preceding section, we developed an approach to re-
cover the object thickness at each point along a certain
direction. This is the thickness between front and back
surfaces. In this section, we show how to integrate object
thickness representation from different views into a 3D ob-
ject. Our method extends the algebraic reconstruction tech-
niques [3, 7]. However, we have a small number of views–
three in our case–and the angles between these views are
on the order of 7-8 degrees. The first step in 3D reconstruc-
tion is to align the object thickness representation bases in
their location at center of mass. The 3D object boundary is
then initialized as a polytope, which corresponds to the in-
tersection of thickness extremes in 3D space. The 3D sur-
face is then iteratively refined, based on object thickness
information from each view. For simplicity, we present the
details of our solution in 2D. Extension to 3D will be given
in Appendix A. Let

� g(i; j) be the 2D object image. g(i; j); i =
0; :::; I; j = 0; :::; J; is a discrete image that repre-
sents a binary objectA and the background�A:

g(i; j) =

�
1; if (i; j) 2 A
0; if (i; j) 2 �A

(16)
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� P(�; k) be the computed thickness from angle� at a
pointk as discussed in previous section,

� p(�; k);��
4 � � � �

4 be the thickness computed from
g(i; j). This thickness (as shown in Figure 9) is given
by:

p(�; k) =
JX
j=0

g(lk; j)

cos(�)
(17)

where(lk; j) is the intersection point of line PN and
the horizontal liney = j, andg(lk ; j) is just a linear
interpolation of the point around(lk; j):

g(lk; j) = g(i1; j)�(i2�lk)+g(i2 ; j)�(lk�i1) (18)

Thus,p(�; k) is a linear combination of image pixels
g(i; j); i = 0; :::; I; j = 0; :::; J .

x

y

y=j

P

k

N

p

    (lk,j)

(i1,j) (i2,j)

θ

(a)

Figure 9: Projection of a 2D binary image on a line.

� b(A); b( �A) be the boundary points. The boundary
point of the object is defined as:

b(A) := f(i; j)jg(i; j) \ [�g(i� 1; j) [ �g(i; j � 1)

[�g(i + 1; j) [ �g(i; j + 1)] = 1g (19)

where\ and[ correspond to the logicaland andor
operations.�g(i; j) is the inverse ofg(i; j).

Similarly, the boundary point of the background is de-
fined as:

b( �A) := f(i; j)j�g(i; j) \ [g(i� 1; j) [ g(i; j � 1)

[g(i + 1; j) [ g(i; j + 1)] = 1g (20)

� p̂ 2 b( �A) of point p 2 b(A) be the neighborhood
points, wherêp is defined over a 3-by-3 neighborhood
of p in the background and is in the normal direction
of the object’s occluding contour at pointp.

Assume that we haveN thicknesses of a 2D objectA
alongN directionsP(�n; k); n = 0; :::; N , each thickness
hasMn points. To reconstruct anI � J imageg(i; j) for
the corresponding thicknesses, we define a cost function:

�2 =
NX
n=0

MnX
m=0

(p(�n;m)�P(�n;m))2+�
X

(i;j)2b(A)

(K(i; j))2

(21)
whereK is the product of the curvature of the boundary

conditions andj 5 gj3. Since, using the curvature would
have complicated the optimization process.K is computed
from the binary images as:

K = gxgyy � 2gxgygxy + gygxx (22)

where,

gx(i; j) = g(i; j) � g(i � 1; j)

gy(i; j) = g(i; j) � g(i; j � 1)

gxx(i; j) =
1

2
(g(i � 1; j) + g(i + 1; j))� g(i; j)

gyy(i; j) =
1

2
(g(i; j � 1) + g(i; j + 1)) � g(i; j)

gxy(i; j) =
1

2
(g(i; j) + g(i � 1; j � 1)

�g(i � 1; j)� g(i; j � 1)) (23)

TheK term of the boundary point serves as a penalty term
for smoothness, and the cost function is minimized with
the gradient search scheme. There are two major differ-
ences with the ART method. First, we do not convert the
2D image into a 1D array vector, and second, we only cal-
culate the derivative of� with respect to points inb(A) and
b( �A). These points are updatedaccording to the following
criteria:

1. If @�
@g(p) > 0 and @�

@g(�p) > 0, changeg(p) from 1 to 0.

2. If @�
@g(�p)

< 0 and @�
@g(�p)

< 0, changeg(�p) from 0 to 1.

The reconstruction protocol is shown in Figure 10. The
results of shape recovery for a synthetic and real object (of
Figure 3) are shown in Figures 11 and 12, respectively.

6 Conclusion

In this paper, we introduced an imaging mode, in terms
of equal thickness contours, that is being investigated for
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  Compute p(θ,κ), b(A),b(A)
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Done

Compute  change in
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(a)

Figure 10: Protocol for shape evolution

(a) (b)

(c) (d)

Figure 11: 3D shape reconstruction for a synthetic cube:
(a,b,c) ETCs; (d) reconstructed shape.

(a) (b)

Figure 12: 3D shape recovery from three views shown in
Figure 3: (a) View1; (b) View2

scientific studies. Next, we introduced a novel approach
for shape recovery from multiple views and applied our
approach to interference images of a sub-micron crystal
structure. Our approach consists of three primary steps.
These include 1) image representation in terms of contours
corresponding to creases, 2) object thickness representa-
tion from contour data, and 3) shape recovery from object
thickness obtained from each view. We are currently evalu-
ating the accuracy of our approach with respect to a model
system with objective of determining the number of views
required to achieve a certain accuracy. Furthermore, since
each view can produce up to two possible object thick-
nesses (depending upon how the inner region is filled in)
we are exploring various ways to select among these hy-
potheses either during image acquisition or shape recovery.
In addition, we plan to apply our method to other interfer-
ence patterns obtained from natural outdoor scenes.

A 3D algebraic reconstruction

The 3D extension of the algebraic reconstruction of Sec-
tion 5 is accomplished by replacingg(i; j) of Figure 9 with
a cubeg(i; j; l), and the 1D projectionp(�; k) by a 2D pro-
jectionp(~�; k1; k2), where~� = (�1; �2; �3), and�1, �2, and
�3 correspond to the angle between the projection direc-
tion with thex, y, andz axes. The projection can now be
computed by:

p(~�; k1; k2) =
LX
l=0

g(sk1 ; sk2 ; l)

cos(�3)
(24)

where(sk1 ; sk2; l) is the point of intersection between the
direction and planez = l and��

4 � �3 �
�
4 . g(sk1 ; sk2 ; l)

is a bilinear interpolation in 2-by-2 neighborhood, and the

8



projection is a linear combination of the imageg(i; j; l).
The corresponding energy function is defined as:

�2 =
NX
n=0

M1nX
m1=0

M2nX
m2=0

(p(~�n;m1;m2)� P(~�n;m1;m2))
2

+�
X

(i;j;l)2b(A)

(K(i; j; l))2 (25)

whereN is the number of projections of sizeM1n-by-M2n

points, andK is the mean curvature of the boundary sur-
face.
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