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ABSTRACT

We present a principled method of obtaining a
weighted similarity metric for 3D image retrieval,
�rmly rooted in Bayes decision theory. The basic idea
is to determine a set of most discriminative features by
evaluating how well they perform on the task of clas-
sifying images according to prede�ned semantic cate-
gories. We propose this indirect method as a rigor-
ous way to solve the di�cult feature selection problem
that comes up in most content based image retrieval
tasks. The method is applied to normal and pathologi-
cal neuroradiological CT images, where we take advan-
tage of the fact that normal human brains present an
approximate bilateral symmetry which is often absent
in pathological brains. The quantitative evaluation of
the retrieval system shows promising results.

1 Introduction

On-line image data is expanding rapidly in quan-
tity, content and dimension. Existing content-based
image retrieval systems [5, 7, 8, 15, 16] depend on
general visual properties such as color and texture to
classify diverse, two-dimensional (2D) images. How-
ever, subtle, domain-speci�c di�erences of image sets
taken within a single domain, are di�cult to capture
using these global measures. Furthermore, little is
known about three-dimensional (3D) volumetric im-
age indexing, image semantics and systematic meth-
ods for feature selection. These are the motivations
for our current research.

In this paper we present a principled method of
obtaining a weighted similarity metric for 3D image
retrieval, �rmly rooted in Bayes decision theory. The
basic idea is to determine a set of most discriminative
features by evaluating how well they perform on the
task of classifying images according to prede�ned se-
mantic categories. O�-line, combinatorial search tech-
niques are used to minimize a classi�cation metric,
cross-entropy, e�ectively generating a set of most use-
ful features for image classi�cation. These features are
then used as the index features for image retrieval. We
propose this indirect method as a more rigorous way to
solve the di�cult feature selection problem that comes
up in most content based image retrieval tasks. It is
our hypothesis that, since the user is mostly interested
in the semantic content of the images, the metric that
does well at classifying the images will also do well

in �nding similar images. Classi�cation and retrieval
share consistent evaluation criterions in terms of im-
age semantic similarity.

3D grey-level volumetric images composed of nor-
mal and pathological neuroradiologic CT scans form
the application domain for this research. These images
are used as front-end indices to retrieve similarmedical
cases in a multimedia medical case database, like the
National Medical Practice Knowledge Bank, currently
under construction [10]. The purpose is to use the re-
trieval results to aid diagnosis, specialist consultation,
patient surgical planning, and medical education. Im-
age classi�cation in this domain is to classify images
based on their pathology (normal,blood,stroke), i.e.
the semantics of an image. This domain also provides
us with quantitative evaluation criterions to judge the
performance of a retrieval system. Under this com-
plete feature selection/retrieval evaluation loop the
performance of a 3D image retrieval system can be
improved quantitatively.

The remainder of this paper is structured as fol-
lows: in Section 2 we discuss 3D image preprocessing.
Section 3 presents how the features are selected as
potentially relevant to classifying images according to
pathology type. Section 4 describes the machine learn-
ing framework and optimization techniques by which
we search over a space of distance metrics for one that
performs well for classi�cation purposes. Section 5 de-
�nes a cost matrix which can be used to bias the clas-
si�cation result and provide a quantitative description
of the performance of a classi�er. In Section 6, we il-
lustrate how this newly found metric can be used as a
similaritymetric for image retrieval, and we argue that
quantitative evaluation criteria can be applied to the
resulting system. We conclude with Section 7 where
we also discuss future work.

2 3D Image Preprocessing

A 3D neuroradiology image can be expressed as a
stack of 2D images (Figure 1). An ideal head coordi-
nate system can be centered in the brain with positive
X0; Y0 and Z0 axes pointing in the right, anterior and
superior directions respectively (Figure 2, white coor-
dinate axes). Ideally, a set of axial (coronal,sagittal)
slices is cut perpendicular to the Z0(Y0; X0) axis. In
clinical practice, due to various positioning errors, we
are presented not with the ideal coordinate system,



Figure 1: A 3D image which is composed of a set of
clinical CT scans (axial), only a portion of a patient's
head is captured as shown in a side view on the lower
right corner. This is a case of acute right basal gan-
glion bleed.

but rather a working coordinate system XYZ in which
X and Y are oriented along the rows and columns of
each image slice, and Z is the actual axis of the scan
(Figure 2, black coordinate axes). The orientation of
the working coordinate system di�ers from the ideal
coordinate system by three rotation angles, pitch, roll
and yaw, about the X0, Y0 and Z0 axes, respectively.

Figure 2: Ideal head coordinate system X0Y0Z0 vs.
the working coordinate system XY Z. Rendered head
courtesy of the Visible Human Project.

Table 1 gives a sample of the 3D dataset we work
with. They are all clinical CT images except the bot-
tom MR image which is placed here for comparison.
Notice, some of the voxel sizes of the CT images are far

Table 1: A Sample of Input 3D Image Data

Size Voxel (mm) Pathology

512x512x23 0.5x0.5x5 (1-10) Epidural
0.5x0.5x8 (11-23) Acute Bleed

512x512x21 0.5x0.5x5 (1-10) Stroke
0.5x0.5x8 (11-21)

256x256x20 0.5x0.5x5 (1-11) Stroke
0.5x0.5x8 (12-20)

514x518x19 0.5x0.5x5 (1-11) Basal ganglion
0.5x0.5x10 (12-19) acute bleed

176x236x187 0.98x0.98x1.2 (1-187) Normal

from cubical: the voxel height to its bottom-face-edge
ratio can be as large as 10/0.5 = 20/1. Compared with
MR images, it is common that CT scans are usually
sparsely and unevenly spaced (large, varied spacings
between 2D slices) for minimizing radiation to the pa-
tients. If the images are collected from di�erent scan-
ners in di�erent hospitals, each set of images may start
and end at di�erent portions of the brain and may be
scanned in di�erent angles or along di�erent axes.

Until two 3D images are properly registered and
segmented, existing techniques for content-based re-
trieval using color, texture, shape and position on 2D
images cannot be applied directly for meaningful re-
sults. The current techniques for deformable regis-
tration of dense normal neurological images [18, 2,
4, 17, 11] are not directly applicable to pathological,
sparsely- and partially-sampled brain images. For this
type of data, no robust 3D registration algorithm yet
exists that the authors know of. One basic observa-
tion of neuroradiologic images has helped us to get
around the more di�cult 3D image registration and
segmentation problem stated above, that is normal hu-
man brains present an approximate bilateral symmetry
which is often absent in pathological brains. Using this
simple guidance, we developed a robust algorithm to
automatically extract the ideal midsagittal plane (the
plane X0 = 0 in Figure 2) of a given 3D brain image
[9]. The yaw and roll angle errors in the input im-
ages can be corrected by re-sampling the original 3D
image. The region of interest (ROI) in a brain image
can present itself as asymmetrical regions from simple
comparisons of the two halves of the re-sampled brain
image.

Strictly speaking, the pitch angle in each 3D image
is not corrected after the midsagittal plane is identi-
�ed. However, the images used in our experiments are
taken in the same hospital and from the same CT scan-
ner, and the technicians who took the images follow
the same orbital meatal line1 while scanning. From
now on we assume the pitch, yaw and roll angles are

1This is an approximate line from the angle of the orbit to
the external auditory meatus and then go up about 12 degrees
or so.



corrected in each 3D image, and the symmetry axis
(plane) is centered in the middle of the image.

3 Feature Extraction

Each 3D image is composed of a set of 2D slices.
Each 2D half slice is used as the basic descriptive unit
for testing our approach. This is justi�ed under the
assumption that the normal human brains are approx-
imately symmetrical, thus each half of a brain slice
is potentially equivalent to the other half. This is
also useful in identifying normal slices in an other-
wise pathological 3D brain image, and which half of
a pathological brain contains the lesion(s). Also, 2D
images are easier to display than 3D images.

The �rst step of our approach is to extract a set
F of easily computed features from each half slice.
Three types of features are extracted: (1) Global sta-
tistical properties of the half slices are computed in-
cluding features like the mean and standard deviation
over the cropped slices. (2) Asymmetry features are
obtained by comparing the half slices pixel-wise with
their left-right counterpart. Two techniques are used
to obtain those features. One is simply subtracting
out a mirrored image of a 2D slice from the slice itself
to obtain a di�erence imageD, such that asymmetries
show up as large positive or negative density values.
Several features are counts of how many remaining
pixels under di�erent thresholds on D (signi�cant dif-
ference pixels). The other technique: for each pixel, a
Gaussian model of intensity is built, with its smooth-
ing parameter set at 5, 9, or 15 respectively. Then
the di�erence between the pixel and its counterpart in
the symmetrical half slice is recorded. If that coun-
terpart pixel fell signi�cantly outside the estimated
gray-value distribution, i.e. the di�erence with the es-
timated mean was greater than 3, 4, or 5 standard de-
viations, it was 
agged as being signi�cantly di�erent.
(3) By masking the original slice with the threshold
images obtained in step (2), features were obtained
that pertained only to these areas where asymmetries
were present, i.e. values and di�erences within the
asymmetrical regions.

There are total of 48 3D images which is divided
into a training set containing 31 3D images and a hold-
out test set containing 17 3D images, amounting to a
total of 1250 half slices. A total of 50 features are
extracted from each 2D half slice of a 3D image.

4 Feature Selection by Classi�cation

A set of discriminative features for image retrieval is
found by evaluating how well the features perform on
the task of classifying the images according to seman-
tic categories. Three image categories are considered
in this work. They are normal, blood (with light col-
ored lesions) or stroke (i.e. infarct, with darker colored
lesions). It is our hypothesis that the metric that does
well at classifying the images will also do well in �nd-
ing similar images, since similarity is exactly de�ned
in semantic terms.

We use Kernel Regression (KR), a memory based
learning (MBL) technique[1], to classify the images in
di�erent categories. MBL methods keep all the train-
ing data explicitly around, and calculate the posterior
probability of a given a feature vector x by referring
to all previously labeled instances. This can be imple-
mented e�ciently using augmented KD-trees[13].

We can compute the posterior probability P (cjx) of
a class c given x via Bayes law:

P (cjx) =
P (xjc)P (c)

P (xjc)P (c) + P (xj�c)P (�c)
(1)

The prior probability P (c) of a class c can be easily
estimated from labeled training data by dividing Nc,
the number of instances in class c, by the total number
of instances N in the training set:

P (c) � P̂ (c) = Nc=N (2)

The conditional densities P (xjc) in (1) can be ap-
proximated using Parzen window density estimation
[6, 3]. Intuitively, this is done by placing an identi-
cal Gaussian kernel on each of the instances xi in a
given class, and approximating the density by a (ap-
propriately normalized) sum of the identical Gaussian
kernels:

P (xjc) � P̂ (xjc) =
1

Nc

X
j2c

G(x;xj ; �) (3)

where G(u; �; �) is a multivariateGaussian kernel, and
� acts as a smoothing parameter.

If we plug in (2) and (3) into Bayes law (1), it can
be shown that the posterior probability P (cjx) can
be approximated by a weighted sum over the labeled
instances, where each instance xi is assigned a value
f(xi) of 1 if it belongs to the class, and 0 otherwise:

P (cjx) � P̂ (cjx) =

P
iG(x;xi; �)f(xi)P

iG(x;xi; �)
(4)

KR uses the above formula to approximate the pos-
terior P (cjx), and thus simply calculates a weighted
average of the classi�cation function f , averaged over
the entire training set of training instances xi and
weighted by a Gaussian kernel centered around x.

A good set of discriminative features is then found
by searching in the space of distance metrics for a met-
ric that optimizes classi�cation performance. Kernel
regression, as most instance based methods, su�ers
from the curse of dimensionality: in high-dimensional
spaces, it is hard to get a good coverage of the space
such that the assumptions of the underlying density
estimation techniques are satis�ed. The set of po-
tential features obtained in previous section is rather
large, and many are presumed to be either not so rel-
evant or to provide redundant information.

To look for a distance metric in this feature space,
a combinatorial search over the space of features is



performed. Each distance metric is tested using leave-
one-out cross-validation on a training set, containing
roughly two-thirds of the available data. The rest of
the data was set aside for evaluation purposes. The
error metric we seek to minimize is cross entropy [3]:

E = �
X
i

X
c
�iclnP̂ (cjxi) (5)

where �ic represents the 1-of-mmultiple class member-
ship encoding. In classi�cation problems, minimizing
the cross-entropy is equivalent to maximizing the like-
lihood of the training data[3]. Thus, a distance metric
that achieves this is presumed to yield good classi�ca-
tion performance. The actual search was done using
the general memory-based learning system (GMBL)
developed by Andrew Moore et al. [12], adapted by us
to calculate cross-entropy as an error criterion rather
than classi�cation error. This system applies a battery
of combinatorial search strategies to the given prob-
lem, ranging from exhaustive search over small sets of
features to hill climbing.

From about 50 candidate features extracted from
each 2D half slice, typically 5 or 6 features are iden-
ti�ed to be the most discriminative feature subset for
best classi�cation results. Often, we have found that
there are several feature subsets that have quantita-
tively equivalent discriminating power.

5 Evaluation of the Distance Metric

When a given distance metric has been found from
the last section, its performance is evaluated on an
independent test-set, consisting of one third of the
2D slices in our dataset. It is convenient to view
this evaluation in a decision-theoretic framework. A
given distance metric de�nes a speci�c instance of
kernel regression that outputs an estimated posterior
probability for each of the classes. This needs to be
translated into a classi�cation decision, by minimiz-
ing the expected cost associated with choosing class
�: � = argmini

Ps

j=1 �(�ijcj)P (cj jx) where �(�ijcj)
is the cost incurred when choosing class �i given that
the true class is cj [6].

In the domain of medical image retrieval, it is im-
perative to minimize the false negative rate FNR,
i.e. minimize the occurrence of pathological cases
(blood,stroke) being classi�ed as normal. This mo-
tivates a cost matrix structure Cij = �(�ijcj), where
a false negative penalty P is incurred for the two cases
where either a blood or stroke image is classi�ed as
normal, whereas other cases simply incur a unit cost
or zero, if class chosen is the correct class. Thus, given
three classes: 1. normal, 2. blood and 3. stroke, we
typically use a cost matrix of the form:

C =

"
0 P P
1 0 1
1 1 0

#
: (6)

In Figure 3 we show, for one particular distance
metric, how false negative rate FNR varies with in-

creasing P, along with these other performance met-
rics: the overall classi�cation rate CR, false positive
rate FPR, true positive rate TPR, and confusion rate
CFR, as de�ned in Table 2. As can be seen in the
�gure, the classi�cation performance CR drops as we
attempt to decrease FNR, since increasing P will also
lead to increasingly more false positives.

Figure 3: Classi�cation rate (PR), True positive rate
(TPR), False positive (FPR), False negative (FNR)
and Confusion rates (CFR) vary while the false neg-
ative penalty P increases.

The use of the cost-matrix and such summary
graphs provide a good quantitative overview of the
strengths and weaknesses of a particular distance met-
ric, and can also be used to select an appropriate value
for P . This is important in scenarios where the classi-
�er associated with the distance metric is used to aid
the retrieval process, as discussed in the next section.

6 Application to Image Retrieval

A similarity metric has been found to perform well
for classi�cation, i.e machine learning is used to �nd
the best semantically meaningful metric. The same
distance metric can now serve as an image index vec-
tor for retrieving images by �nding the nearest neigh-
bors in the feature space, as is conventionally done in
content-based image retrieval.

Figure 4 shows a randomly chosen query image
from the hold-out test set on the left, and its �ve near-
est neighbors retrieved from the database on its right.
The column B of Table 2 shows the evaluation on the
retrieved result.

Several advantages to combine an image retrieval
system with a classi�er are

Smaller feature space: Current indexing feature
space is reduced from 50 dimensions to 5 or 6 dimen-
sions, retrieval speed is increased.

Unlabeled image retrievable: Either a labeled or



Figure 4: The �rst �ve retrieved half slices. The left most is the target image containing a stroke. Descending
order of similarities is from left to right. The pathologies in the retrieved images are:normal (with partial volume
e�ect),stroke, stroke,stroke,stroke.

unlabeled image database can be used for retrieval.
In the case images are not labeled (in medical image
databases, usually each 3D image is labeled as a whole,
but its 2D brain slices are not labeled), the found clas-
si�er can be used in a decision theoretic framework to
classify the images in accordance with a cost matrix.

Tunable performance: Besides more discriminative
features are used for indexing, the performance of a
chosen classi�er can be tuned towards the performance
a user desires by varying its cost matrix.

Consistent quantitative evaluations: Once the re-
trieved images are labeled, a set of quantitative evalu-
ations can be given to the retrieved results as de�ned
in Table 2. The same evaluations can be applied to
classi�cation results or retrieval results.

Multidimensional and multimedia data re-
trieval: Given a 2D slice, a set of similar slices are
retrieved. If the user desires, the 3D images contain-
ing these slices and their collateral information can
also be retrieved.

Although the classi�cations are done on 2D half
slices, one can attempt to classify 3D images as well.
We have experimented with a varying cost matrix and
a simple rule that says if the same pathology appears
in more than 2 adjacent 2D slices, the 3D brain is
considered pathological. The column A in Table 2
shows the classi�cation result on 3D images when P =
4 in its cost matrix.

7 Conclusion and Future Work

The main novelty of our approach is to construct
a similarity metric suited to semantic image retrieval
by �nding a metric that does well at classi�cation. It
is instructive to compare this with the Rosetta system
of [5]. There, the semantic category is de�ned on the


y by querying with a set of query images, and the
statistics of the query set are used to construct a met-
ric. In contrast, our approach relies on the a priori
analysis of the database in terms of pathology seman-
tic categories, and the database can be queried using a
single image. In addition, our search method can elim-
inate non-discriminative features that are common to
all categories. Thus, whereas Rosetta is more a gen-
eral purpose tool, our approach might be better suited
for application speci�c databases where the di�erences
between semantic categories are subtle, as in the med-
ical imaging domain.

3D image retrieval is a relatively new area, espe-
cially when one is seeking for the semantics of the
images. Our initial attempt has shown that given the
proper application domain and an e�ective feature se-
lection scheme we can achieve good results for retriev-
ing relevant cases using a 3D image database. We
believe that feature selection by image classi�cation is
a powerful tool for any image retrieval practice regard-
less of image dimensionality. The experimental results
support our hypothesis that the distance metric that
does well at classifying the images will also perform
well as a similarity metric for image retrieval.

In any application domain, coming up with the po-
tential feature set is still an important and not easily
automated step. Candidate features need to be se-
lected using considerable domain knowledge. In our
case, the bilateral symmetry property in normal brains
has been exploited to construct features predictive
of pathologies due to asymmetry. One weakness in
demonstrating the e�ectiveness of this approach is the
small number of 3D images we have. We expect the
database to grow much larger in the near future, so
that a larger hold-out test set can be used.

Future work includes the study of di�erent sets



Table 2: Evaluation Measurements for Classi�cation
and Retrieval: A - classi�cation result on hold-out test
3D images, B - retrieval result (top 5 only) for an
infarct query image (Figure 4)

Measurement De�nitions A B

T = # of instances 17 5
P = # pathological instances in T 7 5
N = # of normal instances in T 10 0
TP= # of correctly classi�ed
pathological instances 7 4
P as N=# pathological instances
which are classi�ed as normal 0 1
N as P=# normal instances which
are classi�ed as pathological 6 0
B as S= # of instances which are
blood but classi�ed as stroke 0 0
S as B=# instances which are
stroke but classi�ed as blood 0 0

CR = 1 - (P as N + N as P +
B as S + S as B) / T 0.65 0.8
TPR = TP/P 1 0.8
FNR = P as N / P 0 0.2
FPR = N as P /N 0.6 0
CFR = (B as S + S as B) / P 0 0

of most discriminative features for di�erent purposes
or on di�erent subsets of the database, and dynamic
switching from one set of features to another during re-
trieval. For example, within the same pathology such
as bleed the anatomical location of the lesion serves as
the dominating cue for further detailed classi�cations,
but for tumors, the dominating cue for further classi-
�cations would be lesion texture. We expect feature
weights to vary accordingly from the initial classi�ca-
tion. An analogy can be made between classi�cation
based image retrieval and appearance-based learning
[14], where an object recognition process is followed
by a pose estimation process performed on di�erent
appearance manifolds. Finally, we also would like
to combine visual features with collateral information
such as age, sex, and symptoms of the patient to ob-
tain a better retrieval rate and faster retrieval speed.
The basic framework presented here has provided us
with such an information fusion capability.
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