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Abstract

A technique is presented for representing linear features
as probability density functions in two or three dimen-
sions. Three chief advantages of this approach are (1) a
unified representation and algebra for manipulating points,
lines, and planes, (2) seamless incorporation of uncertainty
information, and (3) a very simple recursive solution for
maximum likelihood shape estimation. Applications to un-
calibrated affine scene reconstruction are presented, with
results on images of an outdoor environment.

1 Introduction

Feature-based techniques have long been an active topic
of research in computer vision, and have led to impor-
tant advances in structure-from-motion, stereo, tracking,
and recognition. However, most work to date has focused
specifically on one type of feature, typically points [1, 2] or
lines [3, 4]. Given that real-world scenes contain different
types of features (e.g., corners, edges), it is important to
develop integrated techniques that better exploit the infor-
mation in an image sequence.

This type of integration is complicated, however, by the
fact that points, lines, and planes generally require dif-
ferent representations and reconstruction equations. For
example, Fig. 1 depicts different instances of an intersec-
tion operation, as applied to combinations of points, lines,
and planes. Despite being conceptually similar, these op-
erations typically have different mathematical realizations,
yielding different equations for each combination of fea-
tures. This problem is not limited to intersections; the same
is true for projections and other coordinate transformations
which must be reformulated for each type of feature.

In order to unify different types of features within a com-
mon mathematical framework, this paper introduces an al-

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: The Intersection Operation. Exact (a-c) and clos-
est (d-f) intersections between any combination of point,
line, and plane features are computed with the same for-
mula in the implicit approach. (g-i) show other variations
that are computable in the same manner.

gebra for operating on linear features represented implicitly,
as probability density functions in two or three dimensions.
In general, the distribution could be of any form – e.g., a
line segment with no uncertainty could have all its density
spread uniformly between two endpoints. However, in this
paper, we restrict our attention to cases when we can model
a feature and its uncertainty as a Gaussian density function
p, represented as a matrix 
 encapsulating both mean and
covariance information:

p(X) = k exp(�
1
2
X

T

X)

The feature itself is expressed as the maximum likelihood
contour of p, given by the locus of points X minimizing a
set of quadratic equations:

argminX(XT

X) (1)
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In the case of a point, Eq. (1) has one solution, whereas
a line and plane will give rise to a one and two parameter
family of solutions, respectively. In this paper, we use this
implicit representation to model both image features and
scene features. In particular, image features are represented
by a 3 � 3 matrix 
2D with X = [x y 1]T , and scene
features by an 4 � 4 matrix
3D withX = [X Y Z 1]T .

A key property of this formulation is that points, lines,
and planes are represented in exactly the same way, i.e.,
with the same parameters. Furthermore, intersections and
transformations operate directly on the probability density
function, and therefore apply equally to all types and combi-
nations of linear features. For example, all of the operations
in Fig. 1 are achieved via the same formula (matrix addi-
tion). More generally, the implicit representation offers the
following advantages:

� Uniformity: the same representation and operations
apply to all types and combinations of linear features,
i.e., points, lines, and planes. Furthermore, features
in the image plane and in the scene are modeled in a
uniform manner, greatly simplifying 2D to 3D trans-
formations.

� Uncertainty: measurement uncertainty (i.e., covari-
ance information) is an integral part of the implicit
representation, and is transformed along with the fea-
ture itself.

� Maximum Likelihood Estimation: the intersection
operation can be recast as a maximum likelihood esti-
mation approach, yielding the closest point/line/plane
in a weighted least-squares sense.

� Affine reconstruction: the implicit representation en-
ables 3D reconstruction from uncalibrated images, in
which a metric 3D coordinate system is not immedi-
ately available.

As a means for integrating different types of features in
the context of scene reconstruction, the implicit approach
is related to previous reconstruction approaches that incor-
porate both points and lines. In particular, McLauchlan
and Murray [5] developed an approach for reconstructing
points and lines using a recursive filtering technique. While
points and lines were represented and reconstructed differ-
ently, the same filter mechanism was used to integrate mea-
surements over time. Morris and Kanade [6] demonstrated
a factorization method that integrated point, line, and plane
features. In their approach, lines and planes were repre-
sented by two and three points, respectively. Whereas both
of these previous approaches offer a unified computational
framework for representing points and lines, they do not
provide a unified representational framework, i.e., points
and lines are represented differently.

In contrast to the traditional approaches wherein geo-
metric features are represented by a parameter vector (e.g.,
a plane in terms of its normal and offset), our proposed ap-
proach represents features as probability distributions over
spatial locations. This replaces the traditional method of
assigning uncertainty to the values of the parameters (e.g.,
a covariance matrix for the plane coefficients). This con-
ceptual shift allows us to treat different geometric objects
in a uniform fashion.

The implicit approach also relates to the Grassmann-
Cayley algebra, which provides an elegant framework for
representing points, lines, and planes, and their intersec-
tions via the meet operation, and has recently been applied
to the task of scene reconstruction [7, 8]. One limitation of
the Grassmann-Cayley algebra however, is that it is inher-
ently exact—it is unclear how to incorporate uncertainty
information or to perform maximum likelihood estimation
in the Grassman-Cayley framework.

The remainder of the paper is structured as follows. Sec-
tion 2 introduces the implicit representation and contrasts it
with other feature-based representations used in computer
vision. Section 3 describes how this representation may be
used to compute intersections by formulating and solving
a maximum likelihood estimation problem, and Section 4
describes other transformations in the implicit framework.
We describe how to combine these operations in order to
perform scene reconstruction in Section 5.

2 Implicit Feature Representation

A parametric, or explicit, representation describes an ob-
ject as a function of a fixed set of variables. For exam-
ple, 2D points may be represented in Euclidean (x; y) or
polar (r; �) coordinates. A 3D line can be specified by
two points (X1; Y1; Z1; X2; Y2; Z2), a point and two an-
gles (X;Y; Z; �; �), or the intersections with two planes
(U1; V1; U2; V2). Of course other representations are possi-
ble. Note that the number of parameters depends both on
the dimension and the type of feature being represented.

In contrast, we propose to model features non-
parametrically, by probability density functions in a 2- or
3-dimensional space. In this implicit representation, a fea-
ture is described by a displacement D̃ from the origin and
a symmetric, positive-semidefinite, inverse covariance ma-
trix�. � encodes the shape and orientation of the feature,
as a Gaussian function centered at D̃. More specifically,
the eigenvectors (principle directions) of� specify the ori-
entation and the eigenvalues the spatial extent of the feature
in each principle direction.

We denote homogeneous 3D pointsX = [X Y Z 1]T

in uppercase, and homogeneous 2D points x = [x y 1]T

in lowercase. Points in Euclidean coordinates are denoted
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x=a

+
y=b

=
x=a

y=b

Figure 2: Features are represented implicitly as Gaussian density functions. The maximum-likelihood (0-distance) contour
is shown solid, whereas the unit distance contour is dashed. The maximum-likelihood intersection of two such densities is
given by the summation of inverse covariance matrices.

with a tilde: X̃ = [X Y Z]T and x̃ = [x y]T . Given �
and D̃, we can write the Mahalanobis distance of a point
to a feature:

M(X) = (X̃� D̃)
T
�(X̃� D̃)

= X
T

�
� ��D̃

�D̃T
� D̃

T
�D̃

�
X

If we define


 =

�
� ��D̃

�D̃T
� D̃

T
�D̃

�

then Eq. (1) defines the feature as the isocontour corre-
sponding to M(X) = 0. Under the Gaussian assumption,
this contour corresponds to the maximum likelihood esti-
mate of the feature’s position and extent. A primary advan-
tage of this implicit approach is that points, lines, planes,
and their uncertainty are represented in exactly the same
parameter space.

For instance, consider


1 =

2
4 1 0 �a

0 0 0
�a 0 a2

3
5 
2 =

2
4 0 0 0

0 1 �b
0 �b b2

3
5


1 represents the vertical line x = a, as the solution space
to the implicit equation
[x y 1]T
1[x y 1] = 0. Similarly,
2 implicitly represents
the horizontal line y = b. Fig. 2 pictorally shows these fea-
tures and their associated density functions. Now consider
the point of intersection of these two lines: [x y] = [a b].
This point may be represented implicitly by:


3 =

2
4 1 0 �a

0 1 �b
�a �b a2 + b2

3
5

since [x y] = [a b] is the sole solution to
[x y 1]T
3[x y 1] = 0.

Note that 
3 = 
1 + 
2. This is no coincidence—
for a point X to be on both lines, it must satisfy both

X
T

1X = 0 and XT


2X = 0. When 
1 and 
2 are
positive-semidefinite, these two conditions are equivalent
to the single constraint:

0 = X
T

1X+XT


2X

= X
T (
1 +
2)X (2)

Thus, addition of matrices in the implicit representation
corresponds to computing feature intersections. In the fol-
lowing sections, we recast the intersection operation as a
maximum likelihood estimation approach and demonstrate
how the implicit approach simplifies other reconstruction-
oriented operations.

3 Implicit Intersection and Estima-
tion

In this section we consider the problem of computing
the intersection of a set of implicitly-represented features

1; : : : ;
n. When the features all share at least one point
in common, a direct generalization of Eq. (2) specifies the
point, line, or plane of intersection:

n\
i=1


i =

nX
i=1


i (3)

Eq. (3) provides a simple,unified mechanism for computing
intersections between any combination of linear features,
such as those shown in Fig. 1(a-c). However, we would
also like to cope with the situation in which features do not
intersect exactly, e.g., Fig. 1(d-i), but there exists a point,
line, and plane that are closest to the set of features, i.e., the
maximum likelihood intersection. In other words, we wish
to minimize the weighted sum of squares distance to each
feature, given by:

nX
i=1

X
T

iX = XT (

nX
i=1


i)X (4)
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The solution to this minimization problem is given by

Eq. (1), where 
 =

nX
i=1


i. This result demonstrates

that Eq. (3) applies not just to exact intersections, but also
computes the point that is closest to a set of features, i.e.,
the maximum likelihood point of intersection. It will be
shown in this section that the optimal point 
point, line



line, and plane 
plane are obtained by decomposing 

into a sum of component matrices


 = 
1 +
2 +
3 +C

where



point = 


1 +
2 +
3 +C



line = 


1 +
2 +C



plane = 


1 +C

Observe that in combining features in the manner of
Eq. (3), we are summing inverse covariance matrices of
Gaussian distributions. In this respect, the implicit ap-
proach is similar to the Kalman filter and other recursive
linear estimators that incrementally update a Gaussian state
estimate and covariance matrix. In the present case, how-
ever, the state vector is dispensed with altogether, being
represented implicitly in the covariance matrix. A key
advantage of this technique, in addition to the simplified
update procedure, is that we do not have to define different
filters for different types of features, enabling operations
on any combination of linear features.

3.1 Decomposing Ω


 =
Pn

i=1
i implicitly describes the maximum likeli-
hood point of intersectionD and the cumulative covariance
�, given by

� =

nX
i=1

�i

D̃ = �
+

nX
i=1

�iD̃i

where �+ denotes the pseudo-inverse of �. This expres-
sion forD is obtained by expanding and differentiating the
right hand side of Eq. (4) and setting the result to 0.

The line or plane closest to a set of features is determined
by minimizing the integral of Eq. (4) over the space of all
lines or planes. Towards this end, we rewrite
 as follows:


 =

�
� ��D̃

�D̃T
� D̃

T
�D̃+ C

�

where C is given by

C = (

nX
i=1

D̃
T
i �iD̃i)� D̃

T
�D̃

Eigenvector decomposition of � gives

� =
dX
i=1

�i

where
�i = �iẼiẼ

T
i

d is the dimension of the space (2 or 3), �i are the eigen-
values of �, ordered from largest to smallest, and Ẽi are
the corresponding eigenvectors. Given this decomposition
of � it is convenient to express
 as follows:


 =

dX
i=1



i +C (5)

where



i =

�
�i ��iD̃

�D̃T
�i D̃

T
�iD̃

�

C =

�
0 0
0 C

�

In order to find the closest line and plane to a set of
features, we evaluate the distance from each point on the
line/plane to the features and integrate this distance over
a unit area region. In particular, a line may be described
by X + sV1 and a plane by X + sV1 + tV2, where the
last coordinates of V1 and V2 are 0. For brevity, denote
Vs = sV1 andVs;t = sV1+tV2. The respective integrals
are

EΩ
X;V1

=

Z
kVsk�1

(X+Vs)
T

(X+Vs) ds (6)

EΩ
X;V1;V2

=

Z
kVs;tk�1

(X+Vs;t)
T

(X+Vs;t) ds dt

(7)
Differentiating Eqs. (6) and (7) with respect toX and setting
the result to 0 yields the solution X = D. Substituting
Eq. (5) yields:

EΩ
X;V1

=

 
dX
i=1

�i

Z
kVsk�1

(VT
s Ẽi)

2
ds

!
+K1 (8)

EΩ
X;V1;V2

=

 
dX

i=1

�i

Z
kVs;tk�1

(Vs;t
T
Ẽi)

2
ds dt

!
+K2

(9)
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(a) (b)

(c) (d)

Figure 3: Inverse projection of point and line features. (a-
b): the inverse projection is the set of all 3D points that
project to the feature. (c-d): the covariance information is
also propagated to 3D.

for constants K1 and K2 depending on C. It follows that
Eqs. (8) and (9) are minimized when the vectors spanning
the line and plane are aligned with eigenvectors of �, i.e.,
V1 = Ẽd, and V2 = Ẽd�1. Note that if �d = �d�1 there
is not a unique solution for the optimal line, and similarly
for the plane when �d�1 = �d�2.

4 Implicit Transformation

Observe that the intersection operation is coordinate-free;
it is possible to describe the operation algebraically with-
out introducing a specific coordinate system. However, the
implicit representation itself is coordinate-specific. Con-
sequently, we need to define how to perform coordinate
transformations within the implicit framework.

Let 
 represent a linear feature, and T an invertible
affine coordinate transformation. We would like to deter-
mine the transformation 
0 of 
 such that T maps points
on
 onto points on
0. Formally,

X
T

X = (TX)

T


0(TX)

Hence, the solution is: 
0 = T�1T

T

�1.
Note that projection is not an invertible transformation

and therefore cannot be computed in this manner. How-
ever, inverse projections may be performed. The inverse
projection of a 2D image feature is the 3D linear subspace
that projects to that feature, as shown in Fig. 3. In partic-
ular, the inverse projection of a point is a line. Similarly,

the inverse projection of a line is a plane. Here, we con-
sider only affine projection models, including orthographic,
weak-perspective, and paraperspective. In such models,
projection may be represented with a 3 � 4 matrix�:

2
4 x

y

1

3
5 =�X =

2
4 i1 i2 i3 t1

j1 j2 j3 t2

0 0 0 1

3
5
2
664

X

Y

Z

1

3
775

Given an implicit 2D image feature
2D and a projection
matrix�, the inverse projection
3D is given by:



3D =�T



2D
� (10)

Importantly, the inverse projection operator transforms not
just the feature itself, but the entire probability density
function. In doing so, it provides a powerful mechanism
for propagating uncertainty information from images to 3D
scene space.

5 Implicit Reconstruction

Consider the problem of scene reconstruction from a set of
point or line features. Specifically, suppose we are given
m features in n images for which the correspondence is
known. Furthermore, suppose the feature measurement
uncertainty is Gaussian with known mean and covariance,
and the projection matrices �i are also known up to an
affine transformation.

The implicit representation gives rise to an extremely
simple reconstruction formula, that applies equally to both
points and lines. Specifically, if the 2D image projections
of a point or line are given by 
2D

1 ; : : : ;
2D
n , the corre-

sponding 3D probability density function is given by:



3D =

nX
i=1

�
T
i 


2D
i �i (11)

Note that this formula may also be stated recursively, to
enable incremental reconstruction algorithms in which the
reconstruction is computed one frame at a time:



3D
0 = 0



3D
i = 


3D
i�1 +�

T
i 


2D
i �i

Given 
3D, an explicit representation of the recon-
structed feature and its covariance may be obtained as de-
scribed in Section 3.1. In particular, D̃ gives the point, Ẽd

the direction of the line, and spanfẼd; Ẽd�1g the plane
of minimal Mahalanobis distance to the input features. �
itself describes the covariance.

Eq. (11) demonstrates the attraction of the implicit
approach—it provides a means for achieving powerful ge-
ometric algorithms via simple algebraic formulas.
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(a) (b)

Figure 4: Reconstruction by intersecting inverse projec-
tions. In the case where the inverse projections do not
intersect, the closest point, line, and plane of intersection
will be computed, weighted by the to inverse measurement
covariance.

5.1 Uncalibrated Reconstruction

Observe that Eq. (11) minimizes the image-space error by
evaluating the projected distance from the reconstruction
to each of the image-features. Consequently, this approach
enables affine reconstruction [9], in situations when the
projection matrices �i are known only up to an affine
transformation.

In this uncalibrated setting, however, care must be
taken when converting line and plane reconstructions to
an explicit representation, since Eqs. (6) and (7) are not
affine-invariant. In other words, if X and V minimize
EΩ
X;V , it need not be the case that TX and TV mini-

mize ET�1T ΩT�1

X;V . It therefore follows that we cannot use
Eqs. (6) and (7) to compute an explicit reconstruction with-
out knowing the Euclidean coordinate system.

However, the implicit representation is valid and can
be computed in an uncalibrated, affine coordinate system.
This observation suggests the following stratified approach
for 3D scene reconstruction [10]: first, an implicit affine
reconstruction is computed, one frame at a time, using
Eq. (11). Then, when calibration information becomes
available, e.g., when a known object comes into the field of
view, the scene is transformed to Euclidean coordinates and
an explicit reconstruction is obtained. The reconstruction
obtained from applying this procedure is identical to what
would be obtained if the Euclidean coordinate system were
available from the outset, but enables delaying the choice
of coordinate frame until more information becomes avail-
able.

6 Results

In order to evaluate this reconstruction approach, we took
eight photographs of an outdoor building scene from vary-
ing viewpoints. Feature correspondence was obtained us-

(a) (b)

(c) (d)

Figure 5: Implicit Reconstruction. One of 8 original images
is shown in (a). Line segments were detected and recon-
structed using the implicit approach. (b-d) show different
views of the reconstruction.

ing the technique described in [11], in which a small number
of point correspondences was used to determine epipolar
lines and affine camera matricies�. While four point cor-
respondences are sufficient in principle [9], 8 points were
used in our experiments in conjunction with a least-squares
method to obtain more reliable epipolar lines. This infor-
mation, in turn, yielded a complete line feature correspon-
dence via a voting technique [11]. These line features were
represented and reconstructed in an uncalibrated affine co-
ordinate frame using the implicit approach.

Fig. 5(b-d) show different views of the affine reconstruc-
tion. For display in Fig. 5, Euclidean camera parameters
were obtained and the features were converted to an explicit
representation, as described in Section 5.1. However, the
features themselves are shown in the affine reference frame
(note that the walls are not perpendicular in the figure).
Line segments were obtained by clipping the lines to match
their projected lengths in one of the input images. These
promising results demonstrate the effectiveness of the im-
plicit approach for reconstructing real-world environments.

7 Conclusions

This paper presented a unified approach for representing
and manipulating points, lines, and planes as Gaussian
density functions. Rather than representing each feature
explicitly, with a different set of parameters for each type
of feature, we instead introduced an approach in which all
features are represented implicitly, as the solution space to
a set of quadratic equations. This approach was shown to
have several advantages. First, the unified representation
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enables defining operations like intersection and coordinate
transformation that apply to any type and combination of
features. This avoids the need to derive separate formulae
for all possible combinations of features (i.e., intersections
of line-line, line-plane, plane-line-plane, etc.). Second,
the ability to easily incorporate measurement uncertainty
and solve weighted least-squares problems in the implicit
framework makes it particularly well suited for maximum
likelihood estimation. Finally, we described how the im-
plicit approach may be applied to reconstruct 3D feature
positions and orientations from uncalibrated input images.
The solution is especially attractive in that it provides an ex-
tremely simple, one-line formula with the following prop-
erties: (1) it is recursive, integrating measurements incre-
mentally in an optimal manner, (2) it applies equally to
both point and line features, (3) measurement covariance
is incorporated, and (4) it may be used in an uncalibrated
setting, when the camera matrices are known only up to a
3D affine transformation.

There are a number of important unresolved issues with
respect to both the theoretical aspects of the proposed
framework and its applications. First, we have not ad-
dressed how to perform “join” operations [7, 8]. to yield
the point, line, or plane that joins, i.e., interpolates, a set of
features. In contrast to the feature intersection operation,
which yields a feature with the same or lower dimension
than that of the features being operated on, the result of
a join is a feature of higher dimension. One could imag-
ine defining a statistical join within our framework that
could support regression operations to enable fitting the
optimal line or plane to a set of implicit features. This
paper has not addressed this problem. Second, as noted
earlier, while we have developed a way to perform inverse
projection, we have not addressed the problem of forward
projection. Third, the current formulation using Gaussian
density functions only applies to linear models and linear
transformations. The extension to non-linear problems (es-
pecially perspective projection) is a subject for future work.
Finally, we have not considered extensions to hierarchical
features such as a plane bounded by line segments, lines
with end points, etc. These are all topics that are of current
interest to us and will form a part of our future work in this
area.
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