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Abstract

This paper introduces an extension of Hartley’s self-
calibration technique [8] based on properties of the essen-
tial matrix, allowing for the stable computation of varying
focal lengths and principal point. It is well known that the
three singular values of an essential must satisfy two con-
ditions: one of them must be zero and the other two must
be identical. An essential matrix is obtained from the fun-
damental matrix by a transformation involving the intrin-
sic parameters of the pair of cameras associated with the
two views. Thus, constraints on the essential matrix can
be translated into constraints on the intrinsic parameters of
the pair of cameras. This allows for a search in the space
of intrinsic parameters of the cameras in order to minimize
a cost function related to the constraints. This approach is
shown to be simpler than other methods, with comparable
accuracy in the results. Another advantage of the technique
is that it does not require as input a consistent set of weakly
calibrated camera matrices (as defined by Hartley) for the
whole image sequence, i.e., a set of cameras consistent with
the correspondences and known up to a projective transfor-
mation.

1. Introduction

The problem of self-calibration has attracted the atten-
tion of researchers in the computer vision community as a
powerful method that allows for the recovery of 3D models
from image sequences. Compared to the classical calibra-
tion problem [21, 22, 3], the algorithms for self-calibration
make no or few assumptions about the particular structure
of the scene being viewed. Instead, they attempt to find the
intrinsic parameters of the cameras exploiting constraints
imposed over these parameters from epipolar or trilinear re-
lations or, from a set of camera matrices, run a numerical
minimization on the space of 3D projective matrices that
transforms the original set of cameras into a new one where

the constraints on the intrinsic parameters are satisfied.
In [14] the epipolar constraints are imposed over the

image of the absolute conic, which encodes the intrinsic
parameters. When the camera motion is restricted to be
planar – which, incidentally, is a critical motion for self-
calibration [17, 23] – image triplets have to be used, as
presented in [1], where the intrinsic parameters are found
from constraints arising from properties of the trifocal ten-
sor [10, 11, 19]. A closed form solution for the horizontal
and vertical scale factors was found in [2], which is then re-
fined by a search in the space of projective transformations.
This is similar to what is presented in [15], where properties
of the absolute quadric [20] are exploited. A common char-
acteristic to the self-calibration techniques based in seach-
ing for an appropriate 3D projective transformation is the
use of a set of weakly calibrated projective cameras [9].
This is defined as a set of cameras which is consistent with
the image to image correspondences and is defined up to a
3D projective transformation. For image pairs and triplets,
these can be found from the fundamental matrix or the tri-
focal tensor. The authors are not aware of any technique to
directly obtain a set of consistent cameras from a quadfocal
tensor [4]. When more then four images are available bun-
dle adjustment [18] becomes necessary. This is a computa-
tionally expensive technique, as it minimizes the geometric
error of the reprojected points as a function of the entries
of the camera matrices and the coordinates of the points in
space.

2. Self-Calibration from the Essential Matrix

A novel approach was introduced by Hartley in [8].
In [12] it is proved that two of the three singular values of
the essential matrix must be equal. As the essential matrix
has rank two, the remaining singular value must be zero.
These are necessary and sufficient conditions for the de-
composition of the essential matrix in the rotation and the
direction of the translation relating the associated pair of
cameras. In [12] it is also shown that the equal singular
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value condition imposes not one, but two algebraic con-
straints over the entries of the essential matrix. This fact
was exploited by Hartley for self-calibration, since the es-
sential matrixE depends on the intrinsic parameters of the
cameras, encoded in the calibration matricesK1 andK2, as
well as on the fundamental matrixF, according to

E = KT

2
FK1: (1)

Since the fundamental matrix has rank two and the calibra-
tion matrices have full rank, the condition that the essential
matrix has rank two is automatically satisfied. Nevertheless,
the equal singular value condition is not satisfied when the
matricesK1 andK2 are arbitrary, and thus two parameters
can be computed. It should be clear now that the equal sin-
gular value condition establishes a link between the motion
and the intrinsic parameters of the associated pair of cam-
eras, in the same sense that the Kruppa’s equations do [14].
Assuming that the principal points are at the centre of the
images, the skew is zero and the aspect ratio of the cameras
is known, it is possible to compute the scale factors (focal
length times magnification) of both cameras and then, from
the essential matrix, recover the motion parameters.

A drawback of this algorithm is that one can only obtain
two of the camera parameters, and its robustness and sta-
bility are inferior to the ones found in techniques based on
numerical optimization of the entries of the 3D projective
transformation matrices. On the other hand, it is simpler to
implement and to analyse, as there is no reference to conics
or quadrics with imaginary axes – see [15, 20]!

The novel idea introduced in this paper is to extend Hart-
ley’s results for larger image sequences, what, as will be
shown, allows for the computation of more and varying in-
trinsic parameters. This goal is achieved by solving an op-
timization problem by numerical techniques, searching di-
rectly for the intrinsic parameters of the cameras, instead of
the indirect search performed by the algorithms based on the
projective transformation. This leads to a simple, practical
and more reliable approach, that makes use of all informa-
tion available. The technique does not require as input a set
of weakly calibrated camera matrices, and since it merges
information from all available image pairs, the consistency
of the cameras is embedded in the algorithm.

3. Description of the Algorithm

Let nk be the number of known intrinsic parameters of
each camera, andnf the number of unknown but fixed in-
trinsic parameters (typically, the aspect ratio) of the cam-
eras. As pointed in [16], the number of images that allow
for self-calibration in this situation isn, where

n� nk + (n� 1)� nf � 8: (2)

This equation comes from the fact that each known intrin-
sic parameter introducesn � nk constraints over the pro-
jective transformation that has to be applied to the weakly
calibrated set of cameras to calibrate them, while the fixed
parameters impose only(n�1)�nf constraints. Any self-
calibration scheme calibrates the cameras up to a 3D simi-
larity transformation, that has 7 degrees of freedom (d.o.f.)
(6 for the 3D Euclidean transformation plus 1 for the arbi-
trary scale). Since the projective space has 15 d.o.f., there
are still 8 d.o.f. to be imposed, resulting in (2).

Assuming now that a sequence withn images is ac-
quired. By matching points pairwise it is possible to find
n(n � 1)=2 fundamental matrices. Although the funda-
mental matrices are not independent [5], numerical stability
and robustness are greatly improved when redundant data is
used. LetFij be the fundamental matrix relating imagesi
andj of the sequence, and letKi andKj be the calibration
matrices of camerasi andj, parametrized as

K =

2
4

�x s u0
0 "�x v0
0 0 1

3
5 ; (3)

where�x is the product of focal length and magnification
factor," is the aspect ratio,[u0 v0]

T are the coordinates of
the principal point ands is the skew.

Let 1�ij and 2�ij be the non zero singular values of
K
T

j FijKj , in descending order. It is possible to estab-
lish a cost functionC to be minimized in the entries of
Ki; i = 1; :::; n as

C(Ki; i = 1; :::; n) =

nX
ij

wijPn

kl wkl

1�ij �
2�ij

2�ij
; (4)

wherewij is a degree of confidence in the estimation of
the fundamental matrixFij , for example the inverse of the
mean geometric distance between the image points and their
corresponding epipolar lines. Other possibility is to make
the weightswij equal to the number of points used in the
computation of the fundamental matrixFij . The deriva-
tives of (4) can be computed accurately by finite differences,
since the function that relates the entries of a matrix with its
singular values is notably smooth. In fact, the Wielandt-
Hoffman theorem for singular values [6] states that, ifA
andE are matrices inRm�n with m � n, then

nX
k=1

(�k(A+E)� �k(A))
2
� kEk2F ; (5)

where�i(M) denotes theith largest singular value ofM
andkMkF is the Frobenius norm ofM. It means that if
one perturbs a matrixA by adding to it an error matrixE,
the correspondent perturbation in any singular value ofA

will be smaller than the magnitude ofE under the Frobenius
norm.
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The redundancy present in the minimization problem not
only reinforces the numerical stability and robustness, but
avoids bias towards any given image, which could have
more influence in the cost function if more fundamental ma-
trices built from it were used. With the presented formula-
tion the cost function is completely symmetric in terms of
the image points, due to the weighting factors, and the cam-
eras. It is worth noting that this symmetry is hardly achieved
by any other algorithm, except when bundle adjustment is
used.

4. Practical Aspects of Self Calibration

It has become well established that self-calibration of the
principal point is not only difficult, but also of low impor-
tance: the 3D reconstruction error after triangulation is not
dramatically affected by errors in the assumption that the
principal point remains fixed at the centre of the images. It
is also not necessary to introduce more complications to the
model by assuming that the skew is not zero. Calibration
algorithms using calibration grids often attempt to ensure
thats = 0 in (3), sometimes at the cost of solving a nonlin-
ear optimization problem [3]. The aspect ratio, on the other
hand, is not always 1 as is commonly assumed. Neverthe-
less, whatever is the true value of the aspect ratio, this is
a remarkably stable parameter, and will not change due to
zooming or focusing. If the cameras used in the acquisition
of the images are known or are available, it is possible to
calibrate for this parameter once, and reliably use the value
found in any other occasion. For images of unknown ori-
gin, this procedure is not possible, and the assumption of
the aspect ratio being equal to 1 cannot be blindly used. In
the experiments that follow the skew will always assumed
to be zero. The aspect ratio was found to be very close to
1 in previous calibration experiments, and thus this value
was also used in all experiments with real data. In the ex-
periment with the calibration grid the principal point was
assumed to be in the centre of the image. In the experiment
with the sequence of images of the building there are suf-
ficient images, according to (2), to allow for the principal
point to vary from image to image, as was actually done.

5. Experimental Results

5.1. Experiments with Synthetic Data

Firstly, the robustness of the proposed method was tested
with synthetic data. Noise was added to the coordinates
of the images of a set points, affecting the computation of
the fundamental matrices related to the images, which were
computed with a simple linear algorithm [11]. The estima-
tive of the aspect ratio turned out to be very robust, with

Figure 1. Calibration grids used in the self
calibration algorithm for comparison with
ground truth. The corners and edges of the
black squares were automatically detected
and matched between the two images. Note
the small baseline and the absence of no-
ticeable perspective effects, making the self-
calibration problem very challenging.

errors around 5% even for noise levels of 10 pixels to both
coordinates of the points used to compute the fundamental
matrix. The focal length is more sensitive to noise, pro-
ducing errors around 20% for this same noise level. It is
important to notice, however, that this does not mean that
the reconstruction obtained from these parameters will be
similarly affected. In fact, it is shown in [2] that these
differences in the internal parameters can be explained in
terms of the position of the plane at infinity. Essentially, if
an affine approximation is valid, the focal length becomes
meaningless. Ratios of focal lengths will still be important,
but it was observed in the experiments that the ratio of focal
lengths behaves exactly as the aspect ratio, being consider-
ably insensitive to noise.

5.2. Experiments with Real Data

A first experiment to show the quality of the reconstruc-
tion obtained with the parameters estimated by the tech-
nique presented here was carried out with the images shown
in fig. 1. Since only two images were used, the algorithm
falls in the case presented by Hartley, but instead of his
closed form solution the cost function (4) was minimized
using the Davidon-Fletcher-Powell (DFP) method [13]. The
assumptions were that the skews were zero, the aspect ratios
were one, and the principal points were at the centre of the
images. Corners where found by using the Harris corner de-
tector [7] and matched by cross-correlation, and the funda-
mental matrix relating the views was estimated by a linear
technique [11]. Table 1 shows a comparison between the
intrinsic parameters found for the first camera by using the
the metric information provided by the calibration grid and
the linear algorithm described in [3], and the intrinsic pa-
rameters found by the self-calibration algorithm introduced
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here. See image caption for notation.

Calibration Self- Relative
using the grid calibration error

�x 1945.04 2137.72 9.91%
" 0.98 1.00 1.72%
� 89.98� 90.00� 0.02%
u0 349.59 320.00 -8.46%
v0 187.80 240.00 27.80%

Table 1. Comparison of the results of calibra-
tion using metric information provided by the
calibration grid and the algorithm presented
here, both applied to the images shown in
fig. 1. The notation is the same as in (3), ex-
cept that the angle � between the axis was
computed from the skew factor, as described
in [3].

After self-calibrating the cameras, reconstruction up to
a similarity transformation was possible by a triangulation
technique. The reconstructed squares are shown in fig. 2.
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Figure 2. Top, front and side views of the re-
constructed grid.

As a measure of the accuracy of the reconstruction, the
angle between the planes of the reconstructed grid was com-
puted, resulting in87� degrees, very close to the90� of the
real grid. As can be seen from fig. 1, the baseline is very
small, and the perspective effects are very weak. As pointed
in [2], these conditions make the self-calibration problem
very difficult. Even though, satisfactory results found.

The algorithm was also tested in the sequence of images
shown in fig. 3. The reconstruction of a few points in the

Figure 3. Building sequence. Corners were
detected automatically and matched by hand.
The reconstruction of some points is shown
in fig. 4.
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Image �x u0 v0

1 630.5 346.1 270.6
2 639.7 325.7 241.9
3 632.9 333.7 257.3
4 547.4 370.5 210.5
5 561.2 275.6 252.3
6 604.0 331.3 235.6

Table 2. Intrinsic parameters found from the
images shown in fig. 3. The variation of the fo-
cal length is compatible with the zooming and
focusing suggested by the motion, in partic-
ular the zooming out of the fourth view. The
principal point varies quite unpredictably, but
this behaviour does not affect the reconstruc-
tion.

main left and right planes can be seen from a top view in
fig. 4. In this experiment both the scale factor and the prin-
cipal point were allowed to vary from image to image. The
sequence of values assumed by these parameters is shown
in tab. 2. The variation of the scale factor is in accordance
with what is expected from the zooming and focusing re-
quired to keep a sharp image from the different positions
from where the snapshots were taken. The principal point
varies considerably around the centre of the image, in agree-
ment with the results presented in [2]. In fig. 5 it is shown
the result of reprojecting the reconstructed points back to
the first image of the sequence. The mean geometric error
found in the computation of the fundamental matrix directly
from the correspondences was 0.77 pixels. The direct com-
putation of the fundamental matrix from the calibrated cam-
era matrices reduced this error to 0.68. This improvement
is a direct result of the merging of information among the
images, and could not be obtained by any technique based
simply in a search for a 3D projective transformation to be
applied to a set of weakly calibrated cameras. In this case,
since the fundamental matrix is invariant to any common
3D projective transformation applied to the associated cam-
era pair, the geometric error computed above would have
remained constant.

6 Conclusions

This article presented a new self-calibration technique
extending the method developed by Hartley in [8] for the
self-calibration of the focal lengths of a pair of cameras to
the case of multiple varying intrinsic parameters and larger
image sequences. The formulation of the algorithm is sim-
ple, corresponding to a direct search in the space of intrin-
sic parameters aiming to minimize a cost function based in
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Figure 4. Top view of some points recon-
structed from the building sequence. The ap-
pearance of the reconstruction is very good.
Even the top of the light above the door on
the right was correctly reconstructed. The
column which contains the points indicated
on the right becomes thicker from the top to
the bottom, what was also recovered by the
algorithm.

a) b)

Figure 5. Reprojection of the reconstructed
points. a) The original mean geometric er-
ror (distance from cornerss to epipolar lines)
computed from the fundamental matrices
used in the reconstruction is 0.7682. b) The
geometric error for the projection of the re-
constructed points is 0.6837, showing the im-
provement resultant from the integration of
the data among the images.
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properties of essential matrices. This method contrasts with
the approach of searching for the projective transformation
that maps the weakly calibrated camera matrices into a new
set of camera matrices where given constraints over the in-
trinsic parameters are satisfied. Experiments with both syn-
thetic and real data showed that the technique developed is
numerically stable, robust and accurate. It dispenses the use
of bundle adjustment to search for a consistent set of weakly
calibrated camera matrices, has no bias towards any particu-
lar image of the sequence, and makes use of the information
provided by the correspondences in an homogeneous way.
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