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Abstract
Image-based and model-based methods are two repre-

sentative rendering methods for generating virtual images
of objects from their real images. Extensive research on
these two methods has been made in CV and CG commu-
nities. However, both methods still have several drawbacks
when it comes to applying them to the mixed reality where
we integrate such virtual images with real background im-
ages. To overcome these difficulties, we propose a new
method, which we refer to as the Eigen-Texture method. The
proposed method samples appearances of a real object un-
der various illumination and viewing conditions, and com-
presses them in the 2D coordinate system defined on the 3D
model surface. The 3D model is generated from a sequence
of range images. The Eigen-Texture method is practical be-
cause it does not require any detailed reflectance analysis
of the object surface, and has great advantages due to the
accurate 3D geometric models. This paper describes the
method, and reports on its implementation.

1 Introduction
Recently, there has been extensive development of mixed

reality systems for the purpose of integrating virtual images
of objects with real background images. Main research is-
sues include how to obtain virtual images of objects and
then seamlessly integrate those objects with real images.
There are two representative rendering methods to obtain
such virtual images from real objects: image-based and
model-based.

The image-based rendering samples a set of color im-
ages of a real object and stores the images on the disk of
a computer[3, 4]. A new image is then synthesized either
by selecting an appropriate image from the stored set or
by interpolating multiple images[1]. As image-based ren-
dering does not assume any reflectance characteristics of
objects nor does it require any detailed analysis of the re-
flectance characteristics of the objects, the method can be
applied to a wide variety of real objects. And because it is
also quite simple and handy, image-based rendering is ideal
for displaying an object as a stand-alone without any back-

ground for the virtual reality. On the other hand, image-
based methods have disadvantages for application to mixed
reality. Few image-based rendering methods employ acccu-
rate 3D models of real objects. Thus, it is difficult to make
cast shadows under real illuminations corresponding to the
real background-image.

Unlike image-based rendering, model-based render-
ing assumes reflectance models of an object and deter-
mines reflectance parameters through detailed reflectance
analysis[11, 12]. Later the method uses those reflectance
parameters to generate virtual images by considering il-
lumination conditions of the real scene. By using these
reflectance parameters, integration of synthesized images
with the real background can be accomplished quite
realistically[9]. However, model-based rendering has non-
trivial intrinsic constraints; it cannot be applied to objects
whose reflectance properties cannot be approximated by us-
ing simple reflection models.

To overcome the problems posed by the previous meth-
ods, we propose a new rendering method, which we refer
to asEigen-Texture method. Figure 1 displays an overview
of the proposed method. TheEigen-Texture methodcre-
ates a 3D model of an object from a sequence of range im-
ages. The method aligns and pastes color images of the
object onto the 3D surface of the object model. Then, it
compresses those appearances in the 2D coordinate sys-
tem defined on the 3D model surface. This compression
is accomplished using the eigenspace method. The synthe-
sis process is achieved using the inverse transformation of
the eigenspace method. Virtual images under a complicated
illumination condition can be generated by summation of
component virtual images sampled under single illumina-
tions thanks to the linearity of image brightness.

Related work has been done by Zhang[17], who uses a
stereo camera technique to obtain a partial 3D model of an
object, and compresses the pixel values of each point of the
object surface with respect to the image coordinates. Our
method differs from his method in that we can generate a
full 3D model of the object with all appearances from 360
degrees viewer directions; this ability gives us great advan-
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Figure 1:Outline of the Eigen-Texture method.

tages in mixed reality systems, e.g., making cast-shadows.
The remainder of the paper is organized as follows. In

Section 2, we describe theEigen-Texture method. In Section
3, we describe the implementation of the proposed method
and discuss the results of the experiments we conducted to
demonstrate the efficiency of the proposed method. In Sec-
tion 4, we describe the results of applying our method in
integrating virtual images into real scenes. In section 5, we
discuss the merits and limitations of our method.

2 Eigen-Texture Method
This section describes the theory of theEigen-Texture

method. The method samples a sequence of color and range
images. Once these two sequences are input to the system,
a 3D geometric model of the object is created from the se-
quence of range images. Each color image is aligned with
the 3D model of the object. In our system, this alignment is
relatively simple because we use the same color CCD cam-
era for taking both range and color images. For other sys-
tems, camera calibration may be required to determine the
relative relation between two cameras. Each color image is
divided into small areas that correspond to triangle patches
on the 3D model. Each triangle patch is normalized to have

Figure 2:A sequence of cell images.

the same shape and size as that of the others. Color images
on the small areas are warped on a normalized triangular
patch. This paper refers to this normalized triangular patch
as acell and to its color image as acell image. A sequence
of cell images from the same cell is collected as shown in
Figure 2. Here this sequence depicts appearance variations
on the same physical patch of the object under various view-
ing conditions. These cell images corresponding to each cell
are compressed using the eigenspace method. Note that the
compression is done in a sequence of cell images, whose
appearance change are due only to the change of bright-
ness. Thus, high compression ratio can be expected with
the eigenspace method. Furthermore, it is possible to inter-
polate appearances in the eigenspace.

Eigenspace compression on cell images can be achieved
by the following steps.

The color images are represented inRGB pixels with
24-bit depth, but the compression is accomplished in
Y CrCb using4 : 1 : 1 subsampling. First, each cell image
is converted into a1 × 3N vectorXm by arranging color
values for each color bandY CrCb in a raster scan manner
(Eq.1). Here,M is the total number of poses of the real ob-
ject,N is the number of pixels in each cell image andm is
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the pose number.

Xm =
[

xY
m,1 ... xCr

m,1 ... xCb

m,N

]
(1)

Then the sequence of cell images can be represented as a
M × 3N matrix as shown in Eq.2.

X =
[

XT
1 XT

2 ... XT
M

]T
(2)

The average of all color values in the cell image set is sub-
tracted from each element of matrixX. This ensures that
the eigenvector with the largest eigenvalue represents the
dimension in eigenspace in which the variance of images is
maximum in the correlation sense.

Xa = X −

 E ... E

. ... .
E ... E


 (3)

E =
1

3MN

M N∑
i=1,j=1,c∈{Y,Cr,Cb}

xc
i,j

With thisM × 3N matrix, we define a3N × 3N matrixQ,
and determine eigenvectorsei and the corresponding eigen-
valuesλi of Q by solving the eigenstructure decomposition
problem.

Q = XT
a Xa (4)

λiei = Qei (5)

At this point, the eigenspace ofQ is a high dimensional
space, i.e.,3N dimensions. Although3N dimensions are
necessary to represent each cell image in a exact manner,
a small subset of them is sufficient to describe the prin-
cipal characteristics and enough to reconstruct each cell
image with adequate accuracy. Accordingly, we extract
k (k � 3N ) eigenvectors which represent the original
eigenspace adequately; by this process, we can substantially
compress the image set. Thek eigenvectors can be chosen
by sorting the eigenvectors by the size of the corresponding
eigenvalues, and then computing the eigenratio (Eq.6).

∑k
i=1 λi∑3N
i=1 λi

≥ T where T ≤ 1 (6)

Using thek eigenvectors{ei | i = 1, 2, ..., k} (whereei is
a3N × 1 vector) obtained by using the process above; each
cell image can be projected on to the eigenspace composed
by matrixQ by projecting each matrixXa. And the projec-
tion of each cell image can be described as aM × k matrix
G.

G = Xa × V where V =
[

e1 e2 ... ek

]
(7)

To put it concisely, the input color image sequence is con-
verted to a set of cell image sequences, and each sequence

of cell images is stored as the matrixV, which is the subset
of eigenvectors ofQ, and the matrixG, which is the pro-
jection onto the eigenspace. As we described in Eq.1, each
sequence of cell images corresponds to oneM ×3N matrix
X, and is stored as3N × k matrix V andM × k matrix
G, so that the compression ratio becomes that described in
Eq.8.

compression ratio = k
M + 3N

3MN
(8)

Each synthesized cell image can be computed by Eq.9. A
virtual object image of one particular pose (pose number
m) can be synthesized by aligning each corresponding cell
appearance (Rm) to the 3D model.

Rm =
k∑

i=1

gm,ieT
i + [E E ... E] (9)

3 Implementation
We have implemented the system described in the previ-

ous section, and have applied theEigen-Texture methodto
real objects.
3.1 System Setup

We built a experimental system to capture the input color
images and range images. In our capturing system setup,
the object is attached to a rotary table. A single point light
source fixed in the world coordinate is used to illuminate
the object. A range image is taken through the 3 CCD
color camera under a nematic liquid crystal mask[10]. A
sequence of range images is taken by rotating the object;
30◦ by each step in this experiment. After the range images
are converted into triangular mesh models[14, 15], they are
merged and simplified to compose a triangular mesh model
which represents the 3D shape of the object. A sequence of
color images is also taken by the same 3 CCD color cam-
era, rotating the object likewise the range image sequence,
but the rotation interval is smaller than that of the range im-
age sequence. For instance, a step of3◦ was used for the
first experiment describe in the next section.
3.2 Dimensions of Eigenspace

Determining the number of dimensions of the eigenspace
in which the sequence of cell images are stored is a non-
trivial issue, as it has significant influence on the quality of
the synthesized images. According to the theory of photo-
metric stereo[16] and Shashua’s linear theory[13], three di-
mensions are enough for compressing and synthesizing the
appearance of an object with a Lambertian surface. How-
ever, as shown in Figure 3, the images synthesized by using
the data stored in only 3 dimensional eigenspace for every
cell have intolerabel blurred effect around the highlights,
and the textures are matted. As the reflection of most gen-
eral real objects cannot be approximated by simple Lamber-
tian reflection model due to nonlinear factors such as specu-
lar reflection and self shadow, three dimensional eigenspace
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Cat Bear Duck
Number of dimensions 6.56 6.96 17.6
Compression ratio 15.3:1 14.5:1 5.72:1
Error per pixel 1.46 1.79 1.79

Table 1:The results.

is not appropriate to store all the appearance change of each
cell.

Also the quality of the geometric model has serious influ-
ence on the neccesary number of dimensions of eigenspace
to synthesize the image precisely. The simpler the construc-
tion of geometric model, the higher the eigenspace dimen-
sions are needed, since the triangle patches get far from ap-
proximating the object’s real surface, and the correlation of
each cell image becomes low. So the number of dimen-
sions of eigenspace should differ for each cell, according
to whether they have highlights or self shadows in thier se-
quences, and to the size of their triangle patch.

With regard to these points, we determined the num-
ber of dimensions of the eigenspace independently for each
cell so that each cell could be synthesized precisely. We
used eigenratio to determine the number of dimensions for
each cell. For each sequence of cell images, we computed
the eigenratio with Eq.6, and used the firstk eigenvectors
whose corresponding eigenvalues satisfied a predetermined
threshold of the eigenratio. The number of dimensions for
each cell required to compress the sequence of input images
and to reconstruct the synthesized images can be optimized
by using these cell-adaptive dimensions. Yet, on the whole,
the size of the database can be reduced. This cell-adaptive
dimension method can be implemented because our method
deals with the sequence of input images as small segmented
cell images.

Figure 4 shows the images synthesized by using 0.999
as the threshold of the eigenratio for each cell. As can be
seen in Figure 4, the results described in the right side are
indistinguishable from the input images shown in the left
side. The number of dimensions of eigenspace used; the
compression ratio and the average error per pixel are sum-
marized in Table 1. Due to the small protudent wool around
the duck’s stomach, tiny self shadows appear throughout the
input sequence of color images. This caused the increase of
the neccesary number of dimensions for the duck compared
to those necessary for the other objects.

3.3 Interpolation in eigenspace
Once the input color images are decomposed into a set

of sequences of cell images, and projected onto thier own
eigenspaces, interpolation between each input image can be
accomplished in these eigenspaces.

As an experiment, we took thirty images of a real object

Figure 3:Virtual object images synthesized by using 3
dimensional eigenspaces.

as the input image sequence by rotating the object at12◦ by
step. By interpolating the projections of these input images
in the eigenspace, we obtained interpolated projections for
3◦ degrees rotation by each step. By synthesizing images
using these interpolated projections, images of the object
whose pose were not captured in the inpute color images
can be synthesized.

Figure 5 shows the synthesized images with interpola-
tion in eigenspace. The results prove that we can recon-
struct synthetic images by interpolation in eigenspace with
adequate accuracy. The average dimensions of eigenspace
for all cells used to fill 99.9% in eigenratio was 5.1, and the
compression ratio was about 20:1. But as we used only 30
images as the input image sequence and synthesized 120
images, the substantial compression ratio became almost
80:1. The average error per pixel at this time was about
7.8.

When using MPEGI to compress all the input color im-
ages into a single image sequence, the compression ratio be-
comes around127 : 1 Despite this high compression ratio
achieved by MPEGI, the average error per pixel becomes
around 7 to 8. As image sequence compression methods
such as MPEGI compress the images in their 2D coordi-
nates without any geometric information of the target ob-
ject, the errors tend to appear around the nonlinear changes
of the pixel values in the images; i.e., edges of the occlud-
ing boundaries, edges of the texture, highlights, etc. These
errors can not be seen in the images synthesized withEigen-
Texture method. Even when compressing the input color im-
ages putting the priority on the quality by using MPEGII, it
is hard to avoid these errors while keeping the compression

1063-6919/99 $10.00 (c) 1999 IEEE



Figure 4:Left: Input color images, Right: Synthesized images (by using cell-adaptive dimensional eigenspaces).

ratio lower thanEigen-Texture method. With regard to these
results, it can be said that theEigen-Texture methodis an
efficient method even in terms of compression.

4 Integrating into real scene
Since our method holds an accurate 3D object model

which is constructed from the range image sequence, the
synthesized virtual images can be seamlessly integrated into
real scene images, taking the real illumination environment
into account. As shown in Eq.10, the irradiance at one point
on the surface of an object from the whole illumination en-
vironment is a linear combination of the irradiance due to
each light source composing the illumination environment.

For that reason, a virtual object image taking into account
the real illumination environment can be synthesized by de-
composing the real illumination environment into several
point light sources and then sampling the color images un-
der each point light source separately .

I =

∫ ∫
{

n∑
j=1

Lj(θi, φi)}R(θi, φi, θe, φe)cosθidθidφi

=

n∑
j=1

∫ ∫
Lj(θi, φi)R(θi, φi, θe, φe)cosθidθidφi(10)
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Figure 5:Virtual images reconstructed by interpolating input images in eigenspace.

whereI : irradiance at one point on the object surface
Lj : radiance of one point light source
R: BRDF of the object surface

(θi, φi): illumination direction
(θe, φe): view direction

As a preliminary experiment, we took input color im-
ages under 3 point light sources lighting them separately,
and synthesized images of the virtual object with all lights
turned on. Under each point light source, we took 40 color
images and synthesized 120 virtual object images for each
light source with the threshold 0.999 in eigenratio with in-
terpolation in eigenspace; we then synthesized the virtual
object image sequence with all lights on by taking a linear
combination of each point light source virtual object im-
age. Figure 6 shows the result of the linear combination of
a specific pose. In addition, we integrated the virtual ob-
ject image sequence into a real scene image, which also
had been taken under a condition in which all lights were
on. The result of the integration, which is shown in Fig-
ure 7, proves that our method enables the creation of the
accurate appearance of the object surface and the precise
shadow of the virtual object according to the real illumina-
tion environment[9, 2].

5 Conclusions
We have proposed theEigen-Texture methodas a new

rendering method for synthesizing virtual images of an ob-
ject from a sequence of range and color images. The im-
plementation of the method proves its effectiveness, in par-
ticular, its high compression ratio. Also, we have demon-
strated seamless integration of virtual appearance with real
background images by using the method. The merits of the
proposed method can be summarized as follows.

First, high compression ratio can be achieved, because
we compress a sequence of cell images corresponding to
a physical patch on the object surface. Appearance varia-
tion in the sequence is approximately limited to brightness

Figure 6:Linear combination of light sources.

change due to illumination geometry. Second, interpola-
tion in eigenspace can achieve synthesization of a virtual
object image when object pose is not included in the input
image sequence. Owing to this interpolation in eigenspace,
we can reduce the necessary number of sampling color im-
ages, and reduce the amount of data to be stored. Third,
a wide range in application is possible, because we do not
need any detailed reflectance analysis. The method can be
applied to such objects as those with rough surfaces, i.e.,
the bear and duck shown in Figure 4, or with strong high-
lights, and whose color values saturate the dynamic range
of a CCD camera, such as the cat in Figure 4. Lastly, as
an accurate 3D model of the real object is constructed from
the input range images, we can generate accurate cast shad-
ows in integrating virtual images with real background im-
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Figure 7:Integrating virtual object into real scence.

ages. Thanks to the linearity in image brightness, we can
decompose the real illumination distribution into separate
point light sources, and sample the object under each point
light source separately.

On the other hand, our method has a few drawbacks. In
particular, the computational expense for compression using
eigenspace could be large. As solving the eigenstructure de-
compostion problem requires a large number of iterations,
the computation cost for storing the input image sequence
in eigenspace becomes relatively expensive, although, once
the input images are compressed and stored in eigenspace,
the synthesis of virtual images can be computed in real time.
With regard to this point, we beleive our method can take
advantage especially on applications for interactive mixed
reality systems, such as virtual museums and electric shop-
ping malls, where the targets can be compressed beforehand
off line.
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