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Abstract
A dynamic layer representation is proposed in this paper
for tracking moving objects. Previous work on layered
representations has largely concentrated on two-/multi-
frame batch formulations, and tracking research has not
addressed the issue of joint estimation of object motion,
ownership and appearance. This paper extends the
estimation of layers in a dynamic scene to incremental
estimation formulation and demonstrates how this
naturally solves the tracking problem. The three
components of the dynamic layer representation, namely,
layer motion, ownership, and appearance, are estimated
simultaneously over time in a MAP framework.  In order to
enforce a global shape constraint and to maintain the
layer segmentation over time, a parametric segmentation
prior is proposed. The generalized EM algorithm is
employed to compute the optimal solution.

We show the results on real-time tracking of multiple
moving or static objects in a cluttered scene imaged from a
moving aerial video camera. The moving objects may do
complex motions, and have complex interactions such as
passing. By using both the appearance and the
segmentation information, many difficult tracking tasks are
reliably handled.

1 Introduction
This paper proposes a representation of moving objects in
terms of layers and applies the formulation to tracking.  In
order to track and maintain identity of objects over time,
the object state must consist of representations of motion,
appearance and ownership masks.  This is called an object
layer in the current work in accordance with the layered
representation of scenes that has been studied in the past
few years [Wang93].  With an object state represented as a
layer, maximum a posteriori estimation (MAP) in a
temporally incremental mode can be applied to update the
state optimally for tracking. Tracking with such a complete
state representation is important for applications that
require segmented object appearance (for example,
indexing and object insertion/removal). For applications
concerning only positions and geometric transformations,
it produces more robust results because most existing
trackers only use partial representations. For example,

change-based trackers ignore the appearance information
and thus have difficulty dealing with close-by or stalled
objects. Template trackers typically update motion only
and hence can drift off or get attached to other objects of
similar appearance [Hager96]. Some template trackers use
parametric motion (affine/similarity etc.) to update both
the motion and the shape of the template [Black95],
however since there is no explicit updating of template
ownership, drift may still occur.

The main contribution of this paper is to formulate multi-
object tracking as a 2D layer estimation and tracking
problem with a view towards achieving completeness of
representation.  In the context of layered representations,
the current work enables dynamic estimation and updating
of layers in contrast with the previous two-frame/multi-
frame batch formulations.

Compact representation of layer ownership is a key issue
for the viability of this representation. The traditional bit-
mask representation of the ownership does not enforce
global shape constraint and cannot be efficiently updated
within a MAP framework.  In this paper, we propose a
parametric representation of the layer ownership prior and
demonstrate its viability in object tracking.

Before describing the details of our method, a brief review
of layer representation is presented in the following sub-
section.

1.1 Layer representation
In the last ten years, layered representations and their
associated algorithms have emerged as powerful tools for
motion analysis.  With compact and comprehensive
underlying representation, these algorithms have
convincingly demonstrated the ability to precisely segment
and estimate motion of multiple independent 2D
components in dynamics scene.  Compared to the model-
based approach, the layer representation is data-driven and
imposes weaker prior constraints on segmentation, motion,
and appearance of objects.

The key idea behind layer estimation is to simultaneously
estimate the object motion and segmentation based on
motion consistency.  The bulk of the previous works focus
on formulating various constraints on layer motion and
layer segmentation.  The constraints on motion reflect the
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image formation conditions and the dynamic behaviors of
scenes.  The constraints on segmentation, on the other
hand, encode the knowledge of the scene geometry.  In
TABLE 1 and the following several paragraphs, we will
briefly examine these constraints and propose several new
constraints.

We classify the various constraints into three categories.
Besides the previously mentioned motion constraints and
segmentation constraints, we add one more category called
appearance constraints.  They impose constraints on the
appearance of each layer.  Each category is further divided
into three types, namely, local spatial constraints, global
spatial constraints, and multi-frame temporal constraints.
Various constraints and some related works are listed in
TABLE 1.  It should be noted that this table is by no
means exhaustive.

It is observed that most existing motion constraints are
global.  The motion of the pixels in each layer is modeled
either as a single 2D affine [Darrel91] [Wang93] [Hsu94]
[Weiss96] [Sawhney96] [Vasconcelos97] or projective
motion [Torr99].  Local motion constraints have also been
proposed in [Weiss97].  The idea is to model each motion
group as a linear combination of some local basis flow
fields.

Segmentation constraints usually appear in the form of
priors in layer representations.  Only local smoothness
models such as the first order Markov random fields
(MRF) have been extensively investigated.  The
assumption behind this model is that pixels spatially close
to each other tend to be in the same layer.  This is
obviously insufficient to encode global shape constraints
such as layers in a scene having priors for a round or
square shape.  In this paper, we will show how a Gaussian
shape prior can be used to handle these cases.

The traditional layer methods are limited to two-frame or
multi-frame batch formulation. When more than two
images are given, additional constraints are available

across the images.  These constraints can be either
enforced in a batch mode or in a tracking mode.  In this
paper, we will only discuss the tracking mode, in which
the MAP solution of the current layer representation is
obtained.  In the context of tracking, multi-frame
constraints are imposed as temporal constraints.  A
temporal motion constraint states that the motion in each
frame should satisfy a dynamic model, e.g. a constant
velocity model.  A temporal constraint on the segmentation
prior on the other hand, represents the dynamics of the
shape change across images.

When multiple images are considered, constraints for the
layer appearance need to be considered.  A constant
appearance model is applied in this paper.

With the above new constraints, the problem of estimating
layer representation over time is equivalent to optimizing
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The quantities in the current image are marked by a
subscript t .  Those in the previous image have subscript

1−t .  The solution is obtained by applying EM algorithm
with the actual segmentation as the hidden variable.  The
details of each constraint used in our algorithms are
presented in Section 2.  Section 3 describes the MAP
estimation problem.  Some implementation issues and
experimental results will be shown in Section 4, followed
by discussions and conclusions in Section 5.

2 Constraints for the dynamic layer tracker
In this section, it is assumed that the number of layers in
the scene and the initial layer representation are provided
by an external agent (see Section 4 for details).  We denote
the number of layers as g , n  as the number of pixels in
the input image tI , and ix  as the image coordinates of the
ith pixel.

TABLE 1

Local constraints Global constraints Multi-frame consistency

Motion
constraints

Smooth dense flow:
Weiss 97

2D affine:
Darrell91, Wang93,
Hsu94, Sawhney96,
Weiss 96, Vasconcelos97
3D planar: Torr99

2D rotation and translation &
constant velocity:
This paper - Section 2.2

Segmentation
constraints

MRF segmentation
prior:
Weiss96,
Vasconcelos97

Background+Gaussian
segmentation prior:
This paper - Section 2.1

Constant segmentation prior:
This paper -  Section 2.1

Appearance
constraints

Constant appearance:
This paper - Section 2.3



2.1 Dynamic segmentation prior
The motivation for employing a global parametric shape
prior is twofold.  Firstly, this prior prevents a segment
from evolving into arbitrary shapes in the course of
tracking.  As a result, it assists in tracking when
ambiguous or cluttered measurements occur.  Secondly,
only the compact parametric form needs to be updated in
the state over time.  This makes the estimation process
computationally tractable.  The layer segmentation prior is
application-dependent.  It encodes the knowledge
regarding the geometry of the objects.  We emphasize that
since the segmentation constraints are only priors, they
need not encode the exact shape of the tracked objects.

For the problem of tracking vehicles in airborne video, the
dominant image region is the ground.  Its motion can be
modeled as projective planar (layer 0).  Vehicles moving
on the ground are the foreground layers (layer 1 to 1−g ).
Their supports are usually rectangular, whose prior can be
conveniently modeled as local Gaussian distributions for
computational reasons (see Figure 1).

Background layer

Layer j

β γ

Figure 1.  A background+Gaussian segmentation prior
function )(, ijt xL .

At each instant of time, the prior of the background layer
has a constant value β  for every pixel.  It means that
every pixel has a constant prior of belonging to the
background layer.  The prior for each foreground layer j

is ]2/)()(exp[ ,
1
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the distribution and jt ,Σ  is the covariance matrix that
defines the span of the distribution. One of the
consequences of this model is that pixels with larger
distances from any foreground layer center will have
higher prior of belonging to the background.  This prior is
combined with the image likelihood to produce the final
segmentation.  γ  is a small positive value.  It allows pixels
to belong to a foreground layer even if they are relatively
far away from the layer center as long as their likelihood
values are high.  Therefore, γ  represents the uncertainty of
the layer shape.  Including this uncertainty in the prior is
important because the shapes of vehicles are not exactly
elliptical and change constantly over time.

In summary, the prior for a pixel ix  belonging to layer j

is defined as:
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The normalized prior is computed as:
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 The covariance matrix jt ,Σ  is defined as
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where jtl ,  and jts ,  are proportional to the lengths of the
major and the minor axes of the iso-probability contours
and thus describe the shape of each foreground layer.  The
translation jt ,µ  and the rotation angle jt ,ω  are motion
parameters and will be discussed in the next subsection.

],[ ,,, jtjtjt sl=Φ  denotes the shape prior parameter of layer

j  in the current image.  The dynamic model for the shape
prior is a constant shape model:

 ]),[,:()|( 22
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where ),:( ΣηΝ x   is a Gaussian distribution.

2.2 Motion constraints
In an aerial video tracking application, the background
motion is modeled as a projective planar motion.  With the
background motion compensated, the motion of the
foreground layer j  is approximated using a translation

jt,µ  and rotation jt ,ω .  The motion parameter vector is
T

jt
T

jtjt ],[ ,,, ωµΘ &&= , where jt ,µ&  is the translation velocity and

jt ,ω& is the rotation velocity.  The commonly used constant

2D velocity model states that
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and jtjtjt ,,1, µµµ &+= − , jtjtjt ,,1, ωωω &+= − .

2.3 Dynamic layer appearance model
The appearance image of layer j  is denoted by jtA , . A
local coordinate system is defined by the center and the
axes of the Gaussian segmentation prior.  The coordinate
transform from the original image to this local coordinate
system is ))(()( jijij xRxT µω −−= .  This transform is

determined by the motion parameters of layer j .  For any
pixel ix  in the original image, the observation model for
layer j  is

))),((:)(()))((|)(( 2
,, Iijjtitijjtit xTAxIxTAxIP σΝ=      (4)

A constant appearance model assumes that, for any pixel
)( ij xT  in the appearance image,
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3 EM algorithm and the layer tracker

3.1 EM algorithm
Let ),,( tttt AΘΦΛ =  denote the layer representation at each
instant of time, where tΦ  is the segmentation prior, tΘ  is
the motion, and tA  is the appearance.  The goal is to find

tΛ  that maximizes the posterior probability
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The EM algorithm can solve this MAP problem by
explicitly computing layer ownership (segmentation).
According to the generalized EM algorithm, a local
optimal solution can be achieved by iteratively optimizing
or improving the following function Q  with respect to tΛ

(see Appendix A for a proof).
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where tz  is a hidden variable that indicates which layer
each pixel belongs to and tΛ′  is the result of the previous
iteration.  According to Appendix B, this is equivalent to
iteratively optimizing or improving the function

})))),((:))(((log(

]),,[,:(log

]),[,:(log{

)))}((|)((log)({log

1

0
,1,

222
,1,

22
,1,

1

1

1

1

0
,,,

∑

∑

∑ ∑

−

=
−

−

−

−

=

=

−

=

+

+

++

n

i

I
Aijjtijjt

jtjt

lslsjtjt

g

j

n

i

g

j
ijjtitijtji

xTAxTA

diag

diag

xTAxIPxSh

σΝ

σσσΘΘΝ

σσΦΦΝ

ωµµ

    (8)

where jih ,  is the layer ownership - the posterior probability

of pixel ix  belonging to layer j  conditioned on tΛ′ .  It
should be noted that the shape constraint is only employed
as a prior.  This is different from the shape constraints used
in many model-based tracking algorithms, where the shape
constraint defines the actual segmentation.

3.2 Optimization
Because it is difficult to optimize tΦ , tΘ  and tA

simultaneously in (8), we adopt the strategy of improving
one of them with the other two fixed.  This is the
generalized EM algorithm and it can be proved that this
also converges to a local optimal solution. Figure 2
summarizes the optimization process.  As shown in the
figure, motion parameters of the layers are computed first.
Then the segmentation prior and the appearance are re-

estimated.  Every time tΦ , tΘ  or tA  are re-estimated, the
layer ownership jih ,  needs to be updated.  Multiple
iterations may be executed before proceeding to the next
image.  Individual steps are elaborated in the following
subsections.

3.2.1 Update the layer ownership

The layer ownership jih ,  is computed as

ZxSxTAxIP

IIjxzPh

ijtijjtit

ttttitji

/)()))((|)((

),,,|)((

,,1

11,

′=

′==

−

−−ΛΛ
                 (9)

The first two terms can be computed according to (4) and
(1).  Factor Z  normalizes jih ,  so that 11

0 , =∑ −
=

g
j jih .

update ownership
     hi,j - Eq. (9)    

estimate motion
 Θ t - Eq. (11)  

estimate segmentation
prior Φ t - Eq. (13-14)

update ownership
 hi,j - Eq. (9)    

update ownership
     hi,j- Eq. (9)    

estimate appearance
 At - Eq. (16)

t+1

t

t-1

Figure 2.  The dynamic layer tracking algorithm.

3.2.2 Motion estimation
If we assume that the segmentation prior and the
appearance are known, motion estimation step finds tΘ

that improves
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The motion of individual foreground layers are estimated
sequentially according to

2
1

0

2
,,

1

0
,,

2
,1,

2
,1,

/)))(()(()(log2

/||/||argmin
,

I

n

i
ijjtitji

n

i
ijtji

jtjtjtjt

xTAxIhxSh

jt

σ

σωωσµµ ωµ
Θ

∑∑
−

=

−

=

−−

−+

−−+− &&&&

     (11)

The first term is the motion prior.  The second term is the
correlation between the layer ownership and the log
function of the segmentation prior.  The third term is the
weighted sum of squared differences between the image
and the appearance of layer j  under motion jt ,Θ .  The
solution is obtained by searching in the translation and the
rotation space.  For the background layer, the motion can
be approximated using a direct method [Bergen92].



3.2.3 Shape estimation

The shape prior parameter tΦ  is estimated as
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Gradient descent is used to optimize this function.
According to Appendix C,
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and similarly
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3.2.4 Appearance estimation
The next step is to update appearance model of each layer
with tΘ  and tΦ  fixed according to
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From Appendix D, ))((, ijjt xTA  is directly computed as
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This is the weighted average of the previous template and
the current image.

4 Implementation and experimental results

4.1 Aerial video surveillance system (AVS)
A typical video frame from an AVS video is shown in
Figure 3(a).  These videos are take from a camera mounted
on an airplane.  Our goal is to reliably track all the vehicles
in the scene.  The size of the video image is 240320×
pixels.  The size of the vehicles ranges from 1010×  to

4040×  pixels.

4.2 Initialization and status determination
Besides the core tracking algorithm described Figure 2,
other issues that need to be handled are: (1) initialization
of layers, (2) deletion and addition of layers, (3)
determination of object status such as stopped and

occluded. These are important for practical applications.
These tasks are accomplished through an external module.
The inputs to this module include the change blob images
(Figure 3(b)) and the estimation results of current layer
representation.  The kernel of this module is a state
machine.  As shown in Figure 4, there are five states in the
state machine.  Each directed edge represents a transition.
The condition for transition is marked along the edge.  For
example, a new object is initialized if a new change blob is
detected far away from existing objects.  An object is
deleted if it is out of the field of view.  An object is marked
as stopped if all the following three conditions are satisfied
(1) its motion blob disappears, (2) no significant decrease
of correlation score,  (3) the estimated motion is zero.

When a new layer (vehicle) is added, an initialization step
estimates the three components of a layer from the change
blob and the image.  More specifically, the position of the
object is located at the center of the blob. A zero velocity
is assigned.  The segmentation prior is estimated from the
second order moments of the blob.  The appearance is
obtained from the original image.

(a) (b)

Figure 3.  (a) A typical frame in an aerial surveillance
video and (b) its change blob image.  Only three vehicles
are moving.

disappearnew moving

stop

occluded

NB

NM & SI

NM &!SI&ZM

!NM&NS

OB|LT

!NS|OB|LT

OB

!NM&NS

NM | OB

!NM

NM&!SI&!ZM

NM |{!NM&!NS}

NM&NS

NB  =  new blob, no object covering a blob
NM =  no motion blob covering the object
SI    =  significant increase of SSD

Conditions

NS  =  normal SSD score
OB =  out of scope
LT =  NM for a long time
ZM=  zero motion estimation

Figure 4.  State machine of the dynamic layer tracker.



4.3 A real-time tracking system
The computational bottleneck in the real-time
implementation of the proposed algorithm is the motion
estimation step, which accounts for more than 95% of the
computation.  In our implementation, the dominant
background motion parameters are estimated at video rate
using a hardware implementation of a direct method
[Bergen92].  This information together with the video
frames are then fed to a tracking system that runs on an
SGI Octane workstation, where the foreground motion is
estimated using a multi-resolution template matching
method.  A low resolution change blob image is also
computed on the workstation.  Though multiple iterations
of the EM algorithm may be performed in each frame, we
found that a single iteration is sufficient.  The current
system can handle two moving objects at 10 Hz or four
moving objects at 5 Hz.

(a) (b) (c)

Figure 5.  Vehicle turning.  The first row shows the cutouts
of the original video frames and the Gaussian
segmentation prior.  The next two rows show the
segmentation and the appearance (warped to the image
coordinates). (a) frame 145 (b) frame 180 (c) frame 210.

4.4 Robust tracking of multiple vehicles
A tracking system is designed to handle complex motions
and complex interactions such as passing and stopping.  In
Figure 5, the tracking results on a clip with a turning
vehicle are demonstrated.  In this example, the appearance,
shape, and motion of the vehicle change dramatically.  The
layer tracker, however, has estimated them correctly and
maintains the track.

Tracking vehicle interactions is difficult for change-based
trackers because motion is the only cue to distinguish
merged blobs after they split.  This is not reliable when the
merge lasts a long period of time.  A template tracker does
not keep track of ownership.  It would lose track too
because the other vehicle will confuse the tracker.  The
layer tracker however, maintains the appearance
information and reliable tracking can still be achieved.

In Figure 6, the tracking results on vehicles passing from
opposite directions are demonstrated.  This is a relatively

easy example because the passing is brief.  In Figure 7, the
tracking results on vehicles passing in the same direction
are shown.  This is more challenging because the vehicles
remain close to each other longer and they have similar
motions.

In Figure 8, three vehicles are tracked.  One of them is
stopped.  A change-based tracker can not handle this
scenario because appearance information is needed for
tracking stopped objects.

(a) (b) (c)

Figure 6.  Passing (opposite directions). (a) frame 36 (b)
frame 41 (c) frame 49.

(a) (b) (c)

Figure 7.  Passing (same direction). (a) frame 178 (b)
frame 220 (c) frame 253.

(a) (b) (c)

Figure 8.  Stop and passing of vehicles. (a) frame 273 (b)
frame301 (c) frame 321.



5 Discussions and conclusions
A dynamic layer representation has been proposed in this
paper to solve the tracking problem.  This new
representation includes all three key elements for a tracker.
It is updated using the EM algorithm in a MAP estimation
framework.  Compared to the traditional layer formulation,
new extensions include an appearance model, a global
segmentation prior, and three temporal consistency
constraints (TABLE I).

One advantage of the proposed algorithm over many other
trackers is that the background and the objects compete
with each other in the layer estimation using motion cues.
This improves the robustness of the tracker against the
cluttered background and makes the tracking process more
resilient to distraction from other close-by objects.

The difference between the Gaussian segmentation prior
from a Gaussian model in a model-based approach is that
in the latter, the actual pixel-wise segmentation is not
computed and if the shape of the object is not similar to an
ellipse, it will erroneously use the background pixel for
motion estimation.  In the proposed method, the global
shape constraint acts as a segmentation prior and is a
weaker constraint.  The actual segmentation is still
computed.  Both the data-driven property of the layer
approach and the efficiency of the model-based approach
are preserved.  An interesting question is how to
incorporate more complicated segmentation priors for
objects such as human bodies into this framework.

Acknowledgments
This work was partly supported by DARPA grant
DAAB07-98-C-J023.  Authors would like to thank D.
Hirvonen, S. Samarasekera, and M. Hansen for their
support in the development of this algorithm.

References
[Darrel91] T. Darrell and A. Pentland, Robust estimation of

multi-layered motion representation, in Proc. IEEE
Workshop on Visual Motion, pp. 173-178, Princeton, 1991.

[Wang93] J. Y. A. Wang and Edward H. Adelson, Layered
representation for motion analysis, in Proc. of IEEE
conference on Computer Vision and Pattern Recognition, pp.
361-366, 1993.

[Irani93] M. Irani and S. Peleg, Motion analysis for image
enhancement: resolution, occlusion, and transparency.
Journal of Visual Communication and Image Representation,
Vol. 4, No. 4, pp. 324-335, December 1993.

[Hsu94] S. Hsu, P. Anandan, S. Peleg, Accurate computation of
optical flow by using layered motion representations, in Proc.
Int. Conference on Pattern Recognition, Jerusalem, 1994.

[Sawhney96] H. S. Sawhney and S. Ayer, Compact
representations of motion video using dominant and multiple
motion estimation, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 18(8), pp 814-830, 1996.

[Weiss96] Y. Weiss and E. H. Adelson, A unified mixture
framework for motion segmentation: incorporating spatial
coherence and estimating the number of models, in Proc. of
IEEE conference on Computer Vision and Pattern
Recognition, pp. 321-326, 1996.

[Weiss97] Y. Weiss, Smoothness in Layers: motion segmentation
using nonparametric mixture estimation, in Proc. of IEEE
conference on Computer Vision and Pattern Recognition,
520-526, 1997.

[Vasconcelos97] N. Vasconcelos and A. Lippman, Emprical
Bayesian EM-based motion segmentation, in Proc. of IEEE
conference on Computer Vision and Pattern Recognition, pp.
527-532, 1997.

[Torr99] P. H. S. Torr, R. Szeliski, and P. Anandan, An
integrated Bayesian approach to layer extraction from image
sequences, in Proc. of IEEE conference on Computer Vision
and Pattern Recognition, pp. 983-990, 1999.

[Bergen92] J. R. Bergen, P. Anandan, K. J. Hanna, and R.
Hingorani, Hiearchical model-based motion estimation, in
Proc. of 2nd European Conference on Computer Vision, pp.
237-252, 1992.

[Black95] M. J. Black and Y. Yacoob, Tracking and recognizing
rigid and non-rigid facial motions using local parametric
models of image motion, in Proc. Fifth International Conf.
on Computer Vision, ICCV'95, pp 374-381, 1995.

[Hager96] G. Hager and P. Belhumeur, Real-time tracking of
image regions with changes in geometry and illumination, in
Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 403-410, 1996.

Appendix A
Suppose x  is the hidden variable, y  is the observed
variable, and θ  is the variable to be estimated.  Our task is
to find θ  that maximizes the posterior probability )|( yP θ .
In general, it is difficult to solve this optimization problem.
Generalized EM algorithm finds a local solution by
iteratively improving θ .

Suppose some initial estimation θ ′  is available.  Taking
the expectation of ),(log yP θ  with respect to ),|( yxP θ ′ .
The result is still ),(log yP θ  because it does not contain
variable x .  This is written as

                    ],|),([log),(log yyPEyP θθθ ′= .

By applying the identity −= )|,(log)|(log θθ yxPyP
),|(log yxP θ , the right side is expanded as
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    (I)

The goal is to find θθ ′′=  to improve this quantity.  We
note without proof that the second term in (I) is minimized
when θθ ′= .  Now consider any value θ ′′  such that
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               (II)

and note that if we replace θ ′  by θ ′′  we increase the
second term as well.  As the result

                ),(),( yPyP θθ ′>′′  or )|()|( yPyP θθ ′>′′ .

Therefore, any θ ′′ satisfying (II) is an improvement over
θ ′ .

Appendix B
If we reasonably assume that the segmentation prior of
each pixel is independent to each other conditioned on the
shape parameters, i.e.
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and the likelihood of each pixel belonging to a certain
layer is independent to each other too, i.e.
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Then, the function Q  in (7) can be expanded by explicitly
computing the expectation
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If we use jih ,  to denote  ),,,|)(( 11 −−′= ttttit IIjxzP ΛΛ .  It is
the distribution over which the expectation is taken.
As the segmentation prior ),,|)(( 11 −−= tttit IjxzP ΛΛ  equals
to the )(, ijt xS defined in (1),
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According to (2), (3), and (5), substitute the prior with
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We obtain
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Appendix C
Taking the derivative of the objective function (12), we
have
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Appendix D
Taking the derivative of the objective function (15) with
respect to the brightness value of each template pixel and
if the gradient equals to 0, we have
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