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Abstract

In this paper we describe a new method for medical
image registration. The registration is formulated as a
minimization problem involving robust estimators. We
propose an e�cient hierarchical optimization frame-
work which is both multiresolution and multigrid. An
anatomical segmentation of the cortex is introduced in
the adaptive partitioning of the volume on which the
multigrid minimization is based. This allows to limit
the estimation to the areas of interest, to accelerate the
algorithm, and to re�ne the estimation in speci�ed ar-
eas. Furthermore we introduce a methodology to con-
strain the registration with landmarks such as anatom-
ical structures. The performances of this method are
objectively evaluated on simulated data and its bene�ts
are demonstrated on a large database of real acquisi-
tions.
keywords Registration, atlas matching, medical
imaging, local constraints, incremental optical 
ow,
multigrid minimization, robust estimators.

1 Introduction

1.1 Context

Since a few years, the ways of observing human
brain have tremendously evolved. Nowadays, surgeons
must face not only the huge volume of data, but al-
so the complementarity between the di�erent images.
As a matter of fact, the di�erent acquisitions are not
redundant but complementary, and should not be ne-
glected for the patient's health. Medical image regis-
tration has thus become a crucial issue.

The non-linear registration of brains from di�eren-
t subjects allows to build an anatomical atlas of the
cortex. Some atlases [15, 17] already exist, but they
appear to be inadequate, because they often lack legi-
bility and capacity to evolve, and their interpretation
is very di�cult. The major problem in building an
atlas is the important variability of the human brain.

It has been clearly shown [15] that we cannot assume
topological equivalence between two di�erent brains.
Considering the same sulcus of di�erent subjects, one
may �nd large di�erences of orientation, size, and even
topology (one sulcus may be interrupted or absent for
instance). \Voxel-based" approaches generally fail to
take into account this variability, therefore we think it
is necessary to constrain locally the registration pro-
cess with relevant anatomical information.

1.2 Related work

Medical image registration is a very productive
�eld, from a bibliographical point of view. A com-
plete review and classi�cation of di�erent registration
procedures is presented in [12]. Among them we have
selected a few methods.

Because a major problem is the huge amount of
data, some authors proposed methods to focus on pe-
culiar structures to be extracted and matched. These
structures may be points [3], curves [16], or surfaces
[20]. The extraction of these landmarks is of course
a critical issue, but the way these landmarks are
matched -and the way the registration is then com-
puted throughout the volume- is also critical. Meth-
ods have been developed to overcome this problem:
the TPS algorithm [3], spline transformations, or the
ICP algorithm [16].

Other registration methods are inspired by mechan-
ical models, either elastic [1], or 
uid [4]. Fluid models
allow to reach, in theory, any displacements, but these
methods are highly time-consuming. Christensen re-
cently proposed [4] an interesting evolution of these
methods, where the direct deformation �eld and the
inverse deformation �eld are jointly estimated in order
to guarantee the coherence of the deformation.

Finally, many non-rigid registration procedures are
\voxel-based" methods: Thirion [19] proposes the de-
mon method; Collins et al. [6] estimates a piecewise
constant transformation that maximizes the cross cor-



relation of the image gradient. Collins et al. recently
proposed [7] to introduce cortical constraints in the
registration process by computing a chamfer distance
between selected sulci. Musse et al. [14] propose a
method, which is much related to the method we in-
troduce, based on the minimization of the displaced
frame di�erence (DFD). This similarity measure is
highly nonlinear and is not robust to the acquisition
artifacts of MRI.

1.3 Method

The method proposed in this paper is an extension
and a complete validation of our previous work pre-
sented in [9, 13]. The registration problem is expressed
as a motion estimation problem. Our 3D method per-
forms a non-rigid monomodality registration of MRI
acquisition of di�erent subjects. The similarity mea-
sure that we use incorporates robust estimators whose
utility is twofold: on the one hand we want to limit the
in
uence of the acquisition noise, on the other hand
we want to be able to estimate transformations that
modify the topology of the structures.

Many tasks in computer vision may be expressed as
the minimization of a cost function. The optimization
involves a very large number of variables, therefore
e�cient iterative multigrid approaches have been de-
veloped and applied in vision [8, 18].

To take into account large deformations, we use a
multiresolution scheme. Besides, at each resolution
level, we use a multigrid minimization to accelerate
the algorithm and improve the quality of the estima-
tion. Throughout this hierarchical approach, we de-
signed an adaptive partition of the volume to re�ne
the estimation on the regions of interest and avoid use-
less e�orts elsewhere. An anatomical segmentation of
the cortex is introduced and used in two ways: at each
resolution level, we initialize the partition as an octree
subdivision with the use of the segmentation, and the
segmentation mask is used in the subdivision criterion
to re�ne the estimation on the cortex.

Inside the multigrid minimization, we use a local
parametric model for the deformation �eld and we in-
troduce a formalism to constrain locally the registra-
tion process with relevant landmarks such as anatom-
ical structures.

2 Description of the registration

method

2.1 General formulation

The optical 
ow hypothesis, introduced by Horn et
Schunck [10], assumes that the luminance of a physical
point does not vary much between the two volumes to
register. It gives: f(s+ws; t1)�f(s; t2) = 0 where s is

a voxel of the volume, t1 and t2 are the indexes of the
volumes (temporal indexes for a dynamic acquisition,
indexes in a database for multi-subject registration),
f is the luminance function and w the expected 3D
displacement �eld. Generally, a linear expansion of
this equation is preferred : rf(s; t) �ws + ft(s; t) = 0
whererf(s; t) stands for the spatial gradient of lumi-
nance and ft(s; t) is the voxelwise di�erence between
the two volumes. The registration problem may be
formulated as the minimization of the following cost
function:

U(w; f) =
X

s2S

[rf(s; t) �ws + ft(s; t)]
2

+�
X

<s;r>2C

jjws �wrjj
2
; (1)

where S is the voxel lattice, C is the set of neighbor-
ing pairs (the 6-neighborhood system may be used for
instance) and � controls the balance between the two
energy terms. The �rst term represents the interaction
between the �eld (unknown variables) and the data
(given variables), whereas the second term expresses
the smoothness constraint. The weaknesses of this for-
mulation are known: [a.] The optical 
ow constraint
(OFC) is not valid in case of large displacements be-
cause of the linearization. [b.] The OFC might not
be valid in all the regions of the volume, because of
the noise of acquisition, intensity non-uniformity in
MRI data, and occlusions. [c.] The \real" �eld is
not globally smooth and it probably contains discon-
tinuities that might not be preserved because of the
quadratic cost.

To cope with the (b) and (c) limitations, we re-
place the quadratic cost by robust functions. To face
the problem (a), we use a multiresolution scheme and
a multigrid strategy to improve the minimization at
each resolution level.

2.2 Robust estimators

Cost function (1) does not make any di�erence be-
tween relevant data and inconsistent data, nor be-
tween neighboring pairs where the �eld is smooth
and neighboring pairs where the �eld is discontinuous.
Therefore, we introduce robust functions and more
precisely robust M-estimators [2]. An M-estimator is
a function � that is increasing on R

+ , such that (i-

i) �(u)
4

= �(
p
u) is strictly concave on R

+ and (iii)
limx!1 �0(x) <1.

(i) implies that � is a cost function. (ii) implies
that the graph of � is the inferior envelope of a set of
parabolas. We have:

9 2 C1([0;M ];R) : 8u; �(u) = min
z2[0;M]

�
zu2 +  (z)

�
; (2)



where M
4

= limu!0+ �
0(u). Furthermore one gets:

z�
4

= arg min
z2[0;M ]

�
zu2 +  (z)

�
=
�0(u)

2u
= �0(u2); (3)

where �0(u)
2u = �0(u2) decreases from M to 0 according

to (ii) and (iii).
The robustness of such an estimator is provided by

the fact that the function �0 decreases. We introduce
two robust estimators, the �rst one on the data term
(�1) and the second one on the regularization term
(�2).

According to (2), the minimization of the cost func-
tion U in (1) is equivalent to the minimization of the

augmented function, noted
?

U :

?

U (w; �; �; f) =
X

s2S

�s (rf(s; t) �ws + ft(s; t))
2 +  1(�s)

+�
X

<s;r>2C

�sr (jjws �wrjj)
2 +  2(�sr); (4)

where �s and �sr are auxiliary variables (acting as
\weights") to be estimated within [0;M1] and [0;M2]
respectively. This cost function has the advantage to
be quadratic with respect to w.

2.3 Multiresolution and multigrid

In case of large displacements, we use a classical in-
cremental multiresolution procedure (see �g. 1). We
construct a pyramid of volumes ffkg by successive
Gaussian smoothing and subsampling in each direc-
tion. At the coarsest level, displacements are reduced,
and cost function (4) can be used. For the next res-
olution levels, only an increment dwk is estimated to
re�ne estimate ŵk, obtained from the previous level.

This is done using cost function (1) but with r ~fks
4

=

rfk(s+ŵk
s ; t2) and

~fkt (s; t)
4

= fk(s+ŵk
s ; t2)�fk(s; t1)

instead of rfk(s; t) and fkt (s; t). As previously, this
quantities come from the linearization of the con-
stancy assumption expressed for the whole displace-
ment ŵk

s + dw
k
s . Also regularization term becomesP

<s;r>2C �2

�
jjŵk

s + dw
k
s � ŵk

r � dw
k
r jj
�
.

Furthermore, at each level of resolution, we use a
multigrid minimization (see Fig. 2) based on succes-
sive partitions of the initial volume. At each grid level
`, corresponding to a partition of cubes, we estimate
a parametric increment �eld for each cube of the par-
tition. The energy is consequently smoother, and has
fewer local minima. The result is then used to initial-
ize the next level. This minimization strategy, where
the starting point is provided by the previous result -
which we hope to be a rough estimate of the desired
solution -, improves the quality and the convergence

^dw
k�1 + ŵ

k�1
| {z }

ŵ
k

ŵ
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Figure 1: Incremental estimation of the optical 
ow.

rate as compared to standard iterative solvers (such
as Gauss-Seidel).

To initialize the partition at the coarsest grid level
L, we consider a segmentation of the cortex obtained
by morphological operators. After a threshold and an
erosion of the initial volume, a region growing pro-
cess is performed from a starting point that is manu-
ally chosen. A dilatation operation allows us to end
up with a binary segmentation. At grid level L, the
partition is initialized by a single cube of the volume
size. We iteratively divide each cube while it intersects
the segmentation mask and while its size is superior
to 23L. We �nally get an octree partition which is
anatomically relevant.

When we change of grid level, each cube is adap-
tively divided. The subdivision criterion depends �rst
on the segmentation mask, but it also depends on the
local distribution of the variables �s which re
ects the
local adequation between the data and the estimated
deformation �eld.

2.4 Parametric model

We now introduce the deformation model that is
used. We chose to consider an a�ne 12-parameter
model on each cube of the partition.

At a given resolution level k and grid level `, �k;` =
f�n; n = 1 � � �Nk;`g is the partition of the volume in-
to Nk;` cubes �n. On each cube �n, we estimate an
a�ne displacement increment de�ned by the paramet-
ric vector �`

n: 8s = (x; y; z) 2 �n; dws = Ps�
`
n; with

Ps = I3 
 [1 xs ys zs] (operator 
 denotes the
Kronecker product).

A neighborhood system V ` on the partition �k;`
derives naturally from the one, denoted V , that equips
S. It is de�ned as follows:
8n;m 2 f1 � � �Nk;`g;m 2 V `(n) , 9s 2 �n; 9r 2

�m=r 2 V(s): C being the set of neighboring pairs
on Sk, we must now distinguish between two types
of such pairs: the pairs inside one cube and the pairs
between two cubes:



Figure 2: Example of multiresolution/multigrid minimization. For each resolution level (on the left), a multigrid
strategy (on the right) is performed. For legibility reasons, the �gure is a 2D illustration of a 3D algorithm with
volumetric data.

8n 2 f1 : : :Nk;`g; < s; r >2 C`n , s 2 �n; r 2 �n and r 2
V(s):

8n 2 f1 : : :Nk;`g;8m 2 V `(n); < s; r >2 C`nm , m 2

V l(n); s 2 �n; r 2 �m and r 2 V(s):

For sake of concision, we will now drop the resolu-
tion index k. With these notations, the cost function
(4) becomes:

?

U`(�`; �`; �`;w`; f`) =

NX̀
n=1

X
s2�n

�`s

h
r ~fTs Ps�

`
n + ~ft(s; t)

i2
+  1(�

`
s)

+
�

2

NX̀
n=1

[
X

m2V `(n)

X

<s;r>2C`
nm

�`srjj(w
`
s + Ps�

`
n)� (w`

r + Pr�
`
m)jj2

+ 2(�
`
sr)]

+�

NX̀
n=1

[
X

<s;r>2C`
n

�`srjj(w
`
s + Ps�

`
n)� (w`

r + Pr�
`
n)jj

2

+ 2(�
`
sr)]:

(5)

Considering the auxiliary variables �` and �` as
�xed, one can easily di�erentiate the cost function
(5) with respect to �`

n and get a linear system to be
solved. In turn, when the deformation �eld is \frozen",
the weights are obtained in a closed form from equa-
tion (3). The minimization may therefore be naturally
handled in an alternated way.

2.5 Cooperation with local constraints

It may be interesting to constrain locally the reg-
istration process with landmarks. The registration of
brains of di�erent subjects is di�cult due to the huge
inter-subject variability, specially in the cortex area
(see [7]). Therefore introducing local cortical con-
straints in the registration process would be an ap-
pealing way of apprehending inter-subject variability
([11]). Although we have not yet experienced such

an extension, it can be easily expressed in our gener-
ic energy-based formalism as we now explain. Let us
noteM the number of landmarks (cortical folds or im-
portant anatomical structures such as ventricles) that
can be extracted for each subject. 8i 2 [0;M ]; Ni is
the number of points representing the landmark i. For
landmark i, let us note Si1 = fCS

i;j ; j 2 [1; Ni]g the set
of points for the source volume and Si2 = fCT

i;j ; j 2
[1; Ni]g the set of corresponding points for the target
volume. We compute a displacement vector:

8i 2 [1;M ];8j 2 [1; Ni]; s = CS
i;j ;w

c
s =

����!
CS
i;jC

T
i;j

where wc is the constraint deformation �eld. We note
Sc = fCS

i;j ; i 2 [1;M ]; j 2 [1; Ni]g the support of the
sparse deformation �eld.

The introduction of this constraint in the formula-
tion of the problem is naturally performed by extend-

ing the objective function
?

U . Let us note �U the new
augmented objective function:

�U(dw; �; �;wc;w; f) =
?

U(dw; �; �;w; f)+�c
X
s2Sc

jjws+dws�w
c
sjj

2:

We could also introduce a robust estimator on the
local constraint term. It depends on the type of land-
mark that is introduced and on the con�dence about
its extraction.

Note that the formulation is still quadratic w.r.t.
the increment displacement model �`. The con-
straints appear in the cost function only for a �nite
number of voxels. Nevertheless, these local constraints
will propagate through the cube on which we calculate
the parametric increment, and they will also be propa-
gated through the volume by the regularization term.

3 Results
3.1 Experiments on simulated data

To evaluate the registration method, we used the
simulated data of the MNI (Brainweb :



http://www.bic.mni.mcgill.ca/brainweb) [5].
Data have been collected with 3 levels of noise and
inhomogeneity. We designed a synthetic deformation
�eld made up of a global a�ne �eld with large defor-
mations combined with local stochastic perturbations.
We did not try to build a \realistic" �eld, but rather a
�eld with the following properties: large deformations
and local perturbations. The \local" �eld is generated
from 2000 voxels which are randomly picked in the
volume. For each voxel, each of the 3 components
of the deformation is the realization of a Gaussian
random variable of standard deviation 120mm. We
then perform a local smoothing in order to propagate
this perturbation to a local neighborhood while
preserving discontinuities. We compare the multigrid
method with a global a�ne registration method, in
which a 12-parameter deformation is estimated for
the entire volume.

As we have the binary classi�cation of the phantom,
we can assess the quality of the registration based on
the overlap of two volumes: the �rst volume is the
initial classi�cation, i.e. a gold standard (grey mat-
ter/white matter), the second volume is the deformed
classi�cation, registered with the estimated deforma-
tion �eld. We then measure overlapping ratios like the
sensibility, the speci�city, and the total performance
[21]. Results are presented on table 1. We also com-
pute the mean square error (MSE) which is an indica-
tor of the quality of the registration. Due to the use
of binary classes, the resulting measures are very sat-
isfactory. Particularly, the robustness of the method
is demonstrated in critical conditions (9% noise and
40% inhomogeneity), which are far tougher than in
any realistic acquisition.

3.2 Experiments on a dataset of 18 sub-
jects

In order to validate the registration method on a
larger database, we acquired MRI-T1 volumetric data
of 18 patients. One subject was chosen as the reference
subject. We then performed the registration between
the reference volume (source) and each of the other
subjects (target) using always the same set of param-
eters for the algorithm. The computation takes about
1 : 30 hour on an Ultra Sparc 30 (300 MHz). The
volumes are 256� 256� 200. We use 3 levels of reso-
lution because the displacement amplitude may reach
30 voxels.

Finally we get 17 reconstructed volumes that can
be compared to the reference volume. We averaged
the reconstructed volume in order to have a glob-
al overview of the quality of the method. Figure 3
presents the averaging between 17 patients after a

global a�ne registration and the average volume af-
ter a robust multigrid registration. After global a�ne
registration and averaging, we notice that the internal
anatomical structures are blurred, because the regis-
tration is not precise enough.

However, after a robust multigrid registration, we
may distinguish precisely the contours of anatomical
structures, such as ventricles, deep nuclei, white mat-
ter tracks, and even cortical regions (sylvian �ssure
and parietal region for instance). This demonstrates
the robustness of the method (robustness with respect
to the acquisitions and also with respect to the algo-
rithm parameters) over a realistic database of subject-
s.

Figure 3: Results of experiments on a database of 18 subject-

s. Top : Averaging after a global a�ne registration. Middle

: Averaging after a robust multigrid registration registration.

Bottom: the reference subject. We keep the same set of param-

eters for all the subjects. This demonstrates the robustness of

the method and the accuracy of the registration (after averaging

we still can distinguish precisely anatomical structures such as

ventricles, deep nuclei, white matter tracks and even cortical

regions).

4 Conclusion
We have presented in this paper a new registration

method based on a robust incremental 3D estimation
of the optical 
ow. We use an e�cient minimization



noise 0% noise 3% noise 9%
inhomogeneity 0% inhomogeneity 20% inhomogeneity 40%

Target Grey White Target Grey White Target Grey White
volume matter matter volume matter matter volume matter matter

Computation time 100 100 100

MSE 964:63 2679:49 1751:41 1104:22 3305:50 2171:13 2005:14 6933:05 5031:49
Global sensibility 93:78% 91:19% 93:26% 89:01% 83:21% 77:33%
A�ne speci�city 93:16% 93:72% 91:69% 92:48% 83:19% 85:42%

total performance 93:27% 93:41% 91:97% 92:06% 83:19% 85:42%
Computation time 670 850 1120

MSE 138:57 1383:46 886:53 233:23 1534:48 970:42 667:88 3186:49 1463:87
Robust sensibility 97:83% 97:35% 97:09% 96:36% 95:50% 93:27%
Multigrid speci�city 94:28% 94:35% 94:76% 94:90% 90:73% 93:67%

total performance 94:91% 94:71% 95:35% 95:03% 91:50% 93:80%

Table 1: Objective measures of the quality of the registration on simulated data. Speci�city, sensibility and total
performance measures are given for 3 levels of noise and 2 registration methods. We manage to recover up to
93% of the deformation even in presence of important noise (9%) and image intensity inhomogeneity (40%).

framework, both multiresolution and multigrid with
robust estimators. This optimization scheme is not
limited to the estimation of the optical 
ow, but may
as well be adapted to other similarity measures, lead-
ing to di�erent registration applications. The adaptive
partition of the volume accelerates the algorithm and
improves the estimation in the regions of interest. Fur-
thermore we have presented a formalism to introduce
sparse local constraints in the estimation. We have
objectively evaluated the bene�ts of this method on
simulated data and demonstrated the signi�cant im-
pact of the method on a large database of real data.
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