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Abstract !

In this paper we present a novel multiscale approach
to recovery of nonrigid motion from sequences of reg-
tstered intensity and range images. The main idea of
our approach is that a finite element (FEM} model
can naturally handle both registration and deforma-
tion modeling using a single model-driving strategy.
The method includes o multiscale iterative algorithm
based on analysis of the undirected Housdorff distance

to recover correspondences. The method is evaluated
with respect to speed, accuracy, and noise sensitivity.
Advantages of the proposed approach are demonstrated
using man-made elastic materials and human skin mo-
tion. Ezperimenis with reqular grid features are used
for performance comparison with a conventional ap-
proach (separate snakes and FEM models). It is shoun
that the new method does not reguire a grid and can
adapt the model to available object features.

1 Introduction

Nonrigid motion analysis is comprised of a large
body of research directions and approaches. Non-
rigid motion analysis includes establishing point corre-
spondences necegsary for tracking, estimating motion
and, finally, understanding the reasons why motion
occurred in the observed way and not in any other
possible way. Two of the major classes of techniques
for nonrigid motion analysis include snakes and finite
element models.

Snakes, or active contours are energy-minimizing
splines which can find and reliably track salient image
contours. Snakes have specific properties used for very
precise tracking, yet not related to material properties
or the internal structure of the object. McEachen II
and Duncan {7] tracked feature points over an entire
cardiac cycle. Chandran and Potty [3] developed a
strategy to avoid local minimas as a dynamic program-
ming solution for snake energy minimization. Amini
et al. [1] applied coupled B-spline snake grids to mag-
netic resonance images and validated results with a

1 This research was supported in part by the Whitaker Foun-
dation Biomedical Engineering Research Grant and in part
by the National Science Foundation Grants IRI-9619240, EIA-
9729504 and CDA-9724422. This work was performed under the
auspices of the U.5. Department of Energy by Lawrence Liver-
more National Laboratory under contract number W-7405-Eng-
48. UCRL-JC-XXXXXX
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3-D cardiac motion model. Recent developments in
deformable model techniques are summarized in [11].

Unlike snakes, finite element models usually include
material properties of the object and precise under-
standing of its structure, but have no inherent way
to track object’s features. A variety of finite element
models were proposed in the context of vision research.
A finite element model that learns the correct phys—

ical model of human l.ps by tra auuus from real data

was proposed by Basu and Pentland [2]. Martin et
al. [6] employed finite element computation of analytic
modes describing shape variation of structures within
the human brain. Tsap et al. [13} used nonlinear fi-
nite element models to recover motion and material
properties of nonrigid objects. Feature points used in
finite element analysis were tracked with snakes.

Therefore, to accomplish defined motion analysis

gga_ls it is necessary io achieve tra(:kmg similar or

even better in quality than can be done with snakes,
and also examine additional aspects not readily ob-
vious from images. These features can add to the
knowledge of the object (material properties, applied
forces and detailed structure of the object} when us-
ing a more natural (with respect to object’s proper-
ties) physically-based model, such as a finite element
model that can explain the deformation process.

phshed these goals usmg two separate models snakes
to find tag positions in images and finite element mod-
els [15, 13] (or similar physically-based models [5]) to
compute deformation parameters (such as displace-
ments) and strain distribuiions. Although FEM mod-
els produced precise solutions in terms of both dis-
placements and strains, they utilized only information
at points where tag lines intersected.

Recently, a number of hybrid approaches were de-
veloped. A framework for combining complemen-
tary techniques (registration and deformable models)
was proposed by Montagnat and Delingette [8]. An-
other hybrid solution (2-D) based on modal analy-
mn, uulpluycu u_y Tao and H Luang Llé}, blended finite-
element-computed modes with template matching.
Deformable models with parameter functions capable
of adequately addressing local shape variations were
proposed by Park et al. {10] and O’Donnell et gl. [9].

A shape modeling approach that used multiresilution




transformations from local to global models was intro-
duced by Vemuri and Radisavljevic {14].

The approach proposed in this paper encompasses
advantages of both techniques in a single model-
driving strategy. Both detection/tracking and accu-
rate object model estimation are merged to provide a
more comprehensive basis for nonrigid motion analy-
sis. We propose that FEM model can naturally han-
dle registration and modeling. Control points used
for tracking are also a part of a finite element model.
Therefore, not only snake intersection points (as it of-
ten occurred), but also additional tracked points are

included in the model. Furthermore, the method in-
cludes a mmultiscale scheme based on evaluation of the

Lauatals @ il vanuilie s OLAiTLllT wGois Al Gaalagyuifrl U1

undirected Hausdorff distance to speed up the process
of matching features between two frames since large
deformations are considered. This criteria is similar
to work by Huttenlocher et ol. {4]. However, in their
approach, a set of image pixels in next frame formed a
new model. We perform actual model transformation
that simulates nonrigid motion of the object.

1.1 Overview

1Y} PRI .
Major contributions of this work can be described

along the following directions: (1) combination of reg-
istration and deformation modeling, and (2) multi-
scale approach to correspondence recovery. The ap-
proach assumes that a sequence of registered intensity
and range images of a deforming elastic object with
visible surface features (such as a grid in Fig. 4 and
6 or irregular and natural features in Section 3.4),
and a physically-based model (Fig. 2(b)) are avail-
able (Section 2.1). The main idea of our approach
is that a finite element model can naturally handle
both registration and modeling using a single model-
driving strategy. Previously, snakes were often used
to track intensity features; recovered correspondences
were then incorporated into finite element models that
computed deformation parameters. This work com-
bines both approaches.

The second impottant aspect of the strategy is an
efficient data utilization. As much available data as
necessary is used. The model consists of a number
of control points. The goal is defined as a correct
matching of control points with grid points in the next
frame. Matching occurs at different resolution levels
- using 9, 49 and 217 control points (Fig. 1). The
multllevel (multiscale} strategy is described in detail
in Section 2.3. The matching task is similar for all
scales: given the coordinates of control peints, find
the Hausdorff distance (defined in Section 2.2) be-
tween the model and the image (next frame), and use
it to structure possible correspondences between con-
trol points and feature points in images (as discussed
in Section 2.2). The selected set of correspondences
drives deformation of the model.

Section 3 describes application of the proposed

Figure 1: Configuration of control points using three
different scales.

method to motion analysis of man-made elastic mate-
rials, human skin, and burn scar detection application.
Objects with a grid are used for comparison with a tra-
ditional technique utilizing active contours and FEM
separately. It is also shown (Section 3.4) that the pro-
posed method does not need a grid and can take ad-
vantage of the available irregular object features or
even natural features (in skin experiments). The last

section summarizes the results of this research.

2 Description of the Method
2.1 Data, Modeling and Assumptions

Data acquisition, general modeling principles and
Nata co-

sy O

quences are acquired using a K2T structured light
range scanner. During acquisition, registered inten-
sity and range images of stretching elastic objects are
taken (Fig. 4 and 6). Only part of the object (elastic
material or human arm) with the interest is consid-
ered. In first sets of experiments this region includes
the grid which is produced with a simple stamp and
aids in producing trackable features. Other sets of
images contain irregular or even natural features. Let
us assume that grid is separated on the intensity im-
age {for instance, using thresholding) and the model
is aligned with it. Since the data was collected ini-
tially for a different project which employed snakes,

nanacoary acanimnti i
necessary assumpiions are discussed first,

+hn ob
the stamp produced overlapping lines (which allows

us to compare results of both approaches). For the

. purpose of this method they are not considered (a con-

ventional method with snakes used original images for
the performance comparison). Of course, a fully auto-
matic method would require a different stamp. Hence,
only the area bound by outside grid lines is consid-
ered (Fig. 2(a)). Therefore, the finite element model
used to describe it is local. It consists of 3-D elastic
shells with assigned corresponding material properties
(properties of elastic materials are obtained by their
mechanical testing; average skin properties are found
in the recent literature). Since the geometry of the
stamp is known in advance, it allows for the advance

~AAl +
model construction necessary for the success of the

method (Fig. 2(b)). Since in this research the empha-
sis is placed on multiscale use of control points rather
than on the finite element model itself, a current set
of contro! points (Fig. 1) from now on is referred to as
our model. The method assumes alignment with the




first frame in the sequence and consistency in point
inter-relationships so that points do not overlap {oc-
clude) each other.
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Figure 2: {a) Region of interest. (b) Finite element

model. (¢) Threshold (T3} calculation.

2.2 Role of the Hausdorff Distance

Control points (which are also FEM nodes or
keypoints) provide a natural way to locate corre-
sponding points in the next frame (model regis-
tration) and apply distances between them as dis-
placements (model deformation). Control points
are guided by the Hausdorff distance [4] between
the model M (fitted to the current frame) and the
next frame in the sequence Fy.,: H(M,F,.) =
max(h(f (M, Fas1)), h(f (Fasr, M)), where
h(f(M, Fo41) is the forward distance (the distance
from the model to the image) and A(f{Fpt1,M)) is
the reverse distance.

To compute the forward distance, differences are
identified between each control point m; in the finite
element model M and the nearest point a; in the next
frame Fy 11, and then the largest distance is selected:

h(.f(Ma Fﬂ-+1)) = MaXm;eM minaiEFn+1 ”mt ~- ai”a
where f denotes some transformation that occurred
as a result of the motion or deformation, and ||.|| is

the Euclidean distance. The resulting control point
m; is, therefore, the furthest control point from any
range object point in F,4,. The reverse distance
h{f(Fny1,M)) is defined similarly.

The goal is to use the Hausdorfl distance as a
measure of mismatch between the model and the ob-
ject, and then to reduce such differences by apply-
ing displacements to the model. This approach be-
longs to the class of reverse problems when the results
(displacements) are given instead of the cause (body
loads). As opposed to tracking with snakes {which
is a separate physically-based model}, the undirected
Hausdorff distance can be easily combined with a fi-
nite element model. No separation into a motion-
detection-oriented model and an object-properties-
oriented model is necessary. A single model is used; it
is driven by the muitiscale analysis of possible corre-
spondences using the Hausdorff distance. Correspon-
dence recovery at each step is followed by displacement
calculations and their application to the model. This
represents a single iteration of the method.

2,3 Multiscale Approach to Correspon-
dence Analysis and Model Deforma-
tion

Expected range of motion is addressed by the muiti-
scale approach to correspondence analysis and model
deformation. Larger motion necessitates the use of
coarser alignment models before finer aspects of ob-
ject deformation are addressed. Multiscale strategy
discussed in this section is applicable to a large object
and motion domain; however, the number of scales is
based on the magnitude of size or motion and, obvi-
ously, may change for different objects.

Three scales (defined in terms of control points) are

adopted for the experiments described:

1 - ICA (initial coarse alignment, 9 control points),

2 — GGD (general global deformation, 49), and

3 — CLD (complex local deformation, 217).

Although model deformations start at the ICA scale
(using only 9 control pointg), the initial distance esti-
mation is done at the GGD scale. This allows for more
precise computation of the undirected Hausdorff dis-
tance {or the partial distance [4] for noisy sequences)
used ag a first threshold (7} ) employed by the method.
The meaning of this threshold is an estimate of the
largest aliowed motion in a given experiment (later
applied to control points).

The initial analysis used to determine possible cor-
respondences is performed at the ICA scale. Euclidean
distances are calculated between the closest model and
image points (if the forward Hausdorff distance was
larger), or between the closest image and model points
{if the reverse Hausdorff distance was larger). These
distances are sorted in decreasing order (Fig. 3). T} is
then applied to weed out erroneous matches which are
possible at any scale. However, at coarse scales, dis-
placements greater than T) are simply infeasible (by
definition of the Hausdorft distance).

Another threshold {T3) is then introduced to deal
with erronecus matches resulting in small displace-
ments (results of noise and incorrect matches). At
each point we find the slope of the tangent to the curve
Displ = f(i), where i is the index of the correspon-
dences sorted in decreasing order with respect to re-
sulting 3-D displacements (y/dz? + dy? + dz2). When
an absolute value of this slope (or function deriva-
tive at a point) at least triples (see Fig. 2(c)), the
corresponding 3-D displacement value is chosen auto-
matically as threshold T: (usually it increases 4-4.5
times). This threshold can also be computed by us-
ing a second derivative or analysis of consecutive dif-
ferences between (sorted) displacements. T, allows
for separation of displacements representing another
group of erroneous correspondences, namely, those
with small displacements. This group contains a num-
ber of wrong matches, especially during the first few
iterations (Fig. 2(c)).




Create a finite element model of the chject
Designate subsets of contro) poims for each scale

! 2

[ Align the model with the obect in the irst [rame 1=

| Initialize a new or additional set of control poinis l-—

1 4

Establish possible maiches between control points
and feature points in the next frame

T + 4i|
| Calculate and sost resulting distances |

1 6

r Employ thresholds to select a set of matches I

[ Apply displacemens for this set 1o the model |

! A
I FEM computation of new positions of conirol poims_1

Are all control points
maiched at this scale (and no possible
displacements exist}?

Therefore, a sparse model is employed to select only
1:1 correspondences and discard the rest. Of course,
a number of potentially useful correspondences are re-
jected during this step. This does not matter since at
this stage alignment that accounts mostly for trans-
lation is more important. Finer model scales process
more data that explains nonrigid deformation of the
object. If threshold T} cannot be found, then the for-
ward Hausdorff distance {(at the coarse scale only) is
used to align the model uniformly with the next frame
data. Tt is a good approximation of translation be-
tween the frames for the considered subset of nonrigid
motion.

A change in scale occurs when a current scale no
longer improves the alignment. This means that all
control points have been assigned correspondences and
there is no mismatch between them and the area of
interest in the next frame (Fig. 3}). Therefore, increase
in model scale at this point produces possibility for
improving tracking quality.

GGD (49 control points) and CLD (217 control

UlIlbb deJ.C I.Ul,\:ﬁbl.u are simiiar Lo tie Co
p J p g milar to the coarse scale

iterations, except that 73 is not needed. Since finer
aspects of object motion are analyzed, concern for fil-
tering out abnormally large displacements is not jus-
tified.

The GGD scale addresses effects of elastic motion

{stretching) of the object. It results in a better align-
ment and accounts for most nonrigid deformations.
The CLD scale does not improve tracking significantly
if the force is distributed along some real or imaginary
line/surface rather than represented by a concentrated
loading. In the latter case GCD processing alone can-
not account for more complex deformations of grid
lines. The steps applicable to all scales are shown in
Fig. 3.

The model is displacement-driven; when correspon-
dences are established, displacements are calculated
and applied to control points of the model. The pro-

cess is repeated during each iteration. Again, in these
experiments, the motion of the object is elastic defor-
mation. At any scale, the process can be summarized
as follows:

¢ The Hausdorff distance is computed.

¢ For each control point, possible displacements are
found and applied.

» The model is incremented accordingly.

¢ The process iterates until the difference between the

model and the object is minimal (for each frame).

3 Experimental Resuits

This section presents an application of the proposed
method to motion analysis of man-made elastic mate-
rials and human skin. Usefulness of the method is
evaluated not only for tracking and motion analysis,
but also for a specific application to strain analysis in
the burn scar detection procedure.

The model used in experiments described below is
local; it covers only a part of the object with the region
of interest (the grid in Sections 3.1-3.3 and irregular
features in Section 3.4). Second, the model is linear,
elastic, and consists of thin elastic shell elements de-
fined in a 3-D space (a total of 324 elements and 361
nodes). The same mesh and solution are used in all ex-
periments described in this section. For more details
on model-building, finite element calculation, imple-
mentation using ANSYS package and skin parameter
selection {material properties and thickness), please
cac 11121
see [13).

3.1 Application of the Method to Skin
Motion Analysis: A Closer Look at
Scales and Iterations

This subsection presents application of the method
to skin motion analysis. The experiment presented in
this section addresses our current burn scar assessment
research described in [13]. The proposed method sub-
stitutes the two previously used separate models such
as snakes and FEM. In this section we use images with
the grid so that the new method can be compared with
an old approach. However, later in Section 3.4 it is
shown that the proposed method does not need a grid
and can take advantage of the natural features (such
as birthmarks).




One range and two intensity images of a region of
skin being stretched containing a burn scar are shown
in Fig. 4. The presence of a burn scar contributes to
non-uniformity of elastic motion.

Figure 4: Range and intensity images of skin motion.

Control points of the generic grid model are man-
ually aligned with the first frame using both intensity
and range data. Then the method proceeds automat-
ically using the available data, model and the strat-

egy described in Section 2. 3 All three deﬁned scales

& 1 TT . WY . g | I, o T i M. m Ean
recied HausSaori dlstalce kJ.l) Iid wne ju. mp m Ui -
tances computed between corresponding points (T5)
similarly to Fig. 2(r-\ The change in scales occurs

lution required a total of seven 1terat10ns. Control
points of the model are determined automatically and
moved as follows (although the grid is slightly rotated
clockwise, for the simplicity of explanation we will re-
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fer to control points as leftmost and rightmost as if
grid lines were vertical):

e iteration 1 — three leftmost control points moving

toward the left side of the grid (ICA scale),

e iteration 2 - three rightmost control points moving
toward the right side of the grid (ICA scale),

» iteration 3 — correspondences and motion for the re-
maining model points (ICA scaie),
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A — remaining correspondences responsible
for general deformation aspects (GGD scale),

e iteration 6 — better approximation of the leftmost
line {CLD scale), and

e iteration 7 — other local deformation aspects (CLD
scale).

A )
e iteration 5 —

M.lls 1. CQuisnnsrrnvar Af havatinne (fhatornan furny framoo
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in Fig. 4) at different gcales,
Scale TCA scale GGD acale CLD scale
Ticration 1 3 ] 4 5 8 7
Avg.dist, mm 7.19 338 0.81 | 0.62 | 0.19 | 0.11 | ©.i0
Avg. error, 5 70.17 | 88.04 | 7.02 | 5.10 [ 1.87 | 1.07 | 0.05

Results are sho in T ble 1. Both iterations and
scales are inciu e average real momon be-
__ .

Q...
Q...
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.;,.

greater for the areas lose to the Dlace where the
forc e is applied. The average distance between con-
trol points in the model and corresponding points of
the grid is calculated for validation purposes. It is
used to compute the average error {(a ratio of recov-

ered and real motion of feature points). Performance

(a) (b)
Figure 5: Results of the skin motion experiment. (a)
Magnitude based vectors representing motion of con-

trol points. (b) Results in terms of grid motion be-
tween two frames.

of the new method was compared to the traditional ap-
proach that uses a separate snake model to recover a
sparse set of correspondences (grid intersections) and
a dense set using FEM model. The new approach pro-

duced not only a lower final average error (0.95% vs.
1.54 %), but also a better execution time on a SUN

seconds vs. 1 minute 7 seconds). The error is reduced

because CLD scale better accounts for a non-uniform

grid line curvature near the stretching force. The to-

tal motion of control points is shown in Fig. 5(a) using
LR ™ | P e

T

aerentia e Lomn d oa L £ arnala Yoo PRI S |
magmnuu Dased vectors \wus sC e, l1ast Iteratio 1}).
Red denotes the position of the grid in the previous
frame; vectors are displayed in blue. We can visual-

V.

ize grid motion between frames by connecting control

points at the finest (CLD) scale (Fig. 5(b)).

3.2 Results of Motion and Structure Re-
covery of Elastic Objects: Perfor-
mance Analysis for Longer Sequences

sequences of mt.ensmy and range nnages depicting

7]

atrn B Al o
stretching of an elastic terial are
arn

images represents mput to the algonthm (only one
range image is shown in Fig. 6) along with a generic
grid model fitted to the initial frame (Fig. 1).

Figure 6: Range and intensity images of the elastic
material during stretching.
The deformation is produced by incrementally in-




creasing the force causing it. The force is introduced in
the second frame. It changes from 1 newwn (N ) 1n the
second frame to 3.5
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terial propertles are computed expeﬂmenta.lly (usmg
a conventional mechanical engineering technique) and
included in the model. Magnitude based vectors rep-
resenting motion of control points are shown in Fig. 7.

Table 2: Performance of the method for a longer se-
quence. Results are shown per frame, for final iter-

- FE Y i 1 . |
ations only Method (1} is a conventional approacn
! it mli aed LBl Alasas e s Anla o
(separate snake and finite element models), (2} de-
notes the proposed multiscale single-model method

Frame number 2 3 4 5 8 ki

Force, N 1.00 1.50 2.00 2.50 3.00 3.50
Real avg.dist., mm 7.553 #.440 5.188% 7.546 7.465 4.3063
Avg.crror, %o - (1) 0.78 0.72 0.73 0.75 Q.84 0.87
Avg.erior, 5 - (2} [k 0.78 0.74 T.7C 0.70 D84

Summary of results for all frames are displayed in
Table 2. Results are shown per frame, for final it-
erations only. The proposed approacn pertorms bet-
ter man the conventi

plex local deformations where CLD scale or even finer
Sr-nleg are beneficial. Performance compa.rison for

a number of different experiments involving elastic
stretching is shown in Table 3 (experiments #1 and
#2 are ones presented in details in the previous and
current subsections, respectively).

Table 3: Performance comparison for a number of dif-
ferent experiments involving elastic stretching.

2 3 4 5
4 0.87 2.17 1.53 0.64
1.30 1.18 1.72

Experiment

roi:l"‘

1
Q.

per frame differs; however,

d 8. Linear FEM solution
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The reason why the number of iterations varies, es-
pecially during the ICA step, can be explained with
the following observations. The motion seems more or
less uniform across all frames; however, analysis of dis-
placements reveals that in the first two frames the grid

_________ 11y donnalatnn falmeon +hhin oordd oo g Ao
plCuUlllllldllbl_y Ll allslali \Dlllbld LI 511u 90 ) 1td.\.l. iy Ull{
a part of the stretching material), while the remain-

der of frames contain mostly elastic motion (stretch-
ing). Quantitatively it can be described as a ratio of
displacements between opposite grid points along the
force direction. Ratios close to 1 denote translation,
ratios from 3 to 5 in our experiments indicate stretch-

ing.
[ s PUT SN T NIRRT o T
That is why if the next frame is the frame where the
bandage mostly translates (for instance, first frame

I * Bl B
then the ICA part of the method proceeds faster. This
reduction in the number of iterations facilitates the
finding of almost all coarse scale correspondences dur-
ing the first iteration as opposed to 3-4 iterations oth-
erwise.
3.3 Use of the Method for Strain Analysis
This subsection demonstra.tes applicational value of

here is the computation of human
skin response to applied load that reveals differences
in underlying properties. For instance, it allows for

the detection of burn scars and estimation of their rel-
ative properties [13]. Of course, accuracy of the struc-
ture and correspondence recovery is very important in
such an application because it greatly influences re-
sultmg strain distributions that pinpoint differences

in properties. Strain is rec*vered after the last itera-
ion since these differences are detected better using
he entire range of motion. Resulting displacements

are computed as the differences in positions of con-
trol points between the first and the last iterations:
AZfin = Tn — 215 AYgpin = Yn — Y1; AZpin = 2n — 21.
Strain is then recovered throughou the surface of the

':.r' 2]
@

tom). maximum displacement, minimum n and maxi-
mum strain, and strain gradation from the lowest to
the highest. These results correspond to the skin mo-
tion expenment (F 1g 4) Fig. 8(a) is obtained with

map is precise enough to 1dent1fy abnormal areas such
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‘the element sizes from very fine t

as scars {(ground truth in the form of scar outlines

was provided by ph ys1c1ans 1. A conventional approach

new method identified co
scar area. Methods
scar image sequences. The strain can aIso be used as

an additional criteria to restrict impossible modes of
motion.
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Figure 8: Resulting strain distribution for the skin
motion experiment computed using {a) conventional
approach and (b) proposed method.

This section extends the nuse of the nronosed
method to deforming objects with irregular surface
features. These features cannot be easily considered
with a conventional approach. First, another piece of
an elastic material {considered initially in Section 3 2)
stretched (brg 9) Stretching is non-uniform a
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ﬁes feature Domts ( sho n a
points (shown as crosses) are not used dumng the com-
putation, the difference in their positions before and
after the motion is compared to model’s estimates af-
ter the process compietes. There is no singie solution

g SO, [y [ o ET O e mL . . PRy - s d o Tl mer Tasvar =
b nadael nuein 1€ moael 18 d:LLUPlJ' Lic ds 10 15 as
i+ rantaine fantnira nainte ngoe adannata ragnlntion tn
1L CONtains Ieature POlus, USCs aGtquaie Iesauauion o
represent sensed data, and av idS ,brunt ehanges in

lead to ill-conditioning problems). Resolutmn scales
and threshold selection techniques are the same as in
previous experiments Results {shown in Fig. 10) in-

ol Al cevataida  meadd Caw emmtend oy manlay MLl o H
alL moae1 pPol iLs aid ieature PuULLILY Ullly- 4 1IC Vall=
dation error ig lees than 3% for all validation points
aation error 15 1e8s than &4 Ior all valigagion poinis
(Table 4).

AY £

FPoint 1 2 3 4 5 [:] T A
Y Prew— T ) -3 - aT o e 12 .01 1K RE An
Dist., mm | 5.80 | 5.7% 721 Kk EhH8 | 1091 | 1585 g
Errar, T 2.81 2.83 2.80 2.66 2.71 2.57 2.49 2.67
A cimmilne avianimaantg ano candiicted ngine natiiral
£ BUTEAL CADTLHLICHW GlT VIAIUULLUTU Uiy datilad
featnures instead of marked noints F‘iu‘ 11{a- r‘\ show
eatures insteac of nLs

; (a-c) sh
intensity and range images of skin stretchmg Note
that there are no artificial markings on the skin. In

(c) (d)
Figure 9: (a-b) Intensity images of the elastic mate-
rial before and after deformation. Feature points are
ma.nceu a.s smau mam{ CerleB, Va.llCla.ElOl’l p()lnt,s - as
Crosses. \\,} Pmng’c‘ imag
1t

nite element model (

the data. Feature points ar dentrﬁed

(a) (b)

Figure 10: Magnitude based vectors representing mo-
tion of (a) all model points and (b) feature points only.

this case birthmarks a.re chosen as features to include

erage errar is 4. 72%) This shows that the method
can be extended to other applications and domains,
and simplify data acquisition and processing for many
existing applications {such as a burn scar assessment

< LU IR 0, Y. (TN PUMSNE L KRN () (U SR R B
appiication Drieily aescriped i oedvion 2.0},

4 Discussion and Conclusions

In this paper we presented a novel multiscale ap-
proach to recovery of nonrigid motion from sequences
of registered intensity and range images. The main

idea of our approacn g that a nnn:e elemen ( EM)

\_

analys1s of the undu'ected Hausdorff
distance to recover correspondences. Our model can



handle what previously was accomplished using two
types of deformable models (snakes and finite element
models). Control points used for tracking are also a
part of the ﬁnite element model conta,ining knowledge

..... AL il
ysis of the

intareartin i
ntersection pomy

are included in he model. Such a model can expla.l
observed motion effects (such as displacements) as well
as non-observable aspects {such as strains). Strain
distributions reveal differences in material properties
which can account for motion abnormalities.

The method includes a mulitiscale strategy based on

evaluation of the undirected Hausdorff distance which

represents a reliable error function. Wrong matches
occur, but they are corrected during subsequent iter-

ations. In a general case, a number of scales is object-
and motion-dependent, similarly to other physically-
based models. Choosing the number of control points
at the finest scale is a trade-off between the efficiency
of structure representation and effects of noise. (It

ey s alle, &
10 exXperiinenially Lk
1’\3

(

=
(=9
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'3

accuracy, and noise sen51t1v1tv Adva,ntap;es of the pro-
posed approach were demonstrated using man-made
elastic materials and human skin motion. Experi-
ments with regular grid features were used for per-
formance compa.rlson with a conventional approa.cn

{separate snakes and FEM models). I

U
however, that the new methed does not re
and can adant the model to available ob1ect features

Usefulness of the method was presented not only in the
context of tracking and motion analysis, but also for
specific applications such as burn scar detection. This
work presents a signiﬁca.nt step toward development of

models that can inherently handle multiple processing

functions, currently registration and deformation, and
appearance in the near future.
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