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Multiscale Combination of Physically-Based Registration and

Deformation Modeling

Abstract 1

In this paper we prssent a nouel nwltiscale approach
to recoue~ of nonrigid motion from sequences of reg-
istered intensity and range images. The main ideO of
our approach is that a Jinite element (FEM) model
ran natumlly handle both rrgistmtion and deforma-
tion modeling using a single model-driving strategy.
The method includes a rmdtiscale iterative algorithm
based on analysis of the undirected Hausdorff distance
to recouer cowespondences. The method is evaluated
with rsspect to speed, accuracy, and noise sensitivity.
Advantages of the proposed approach are demonstrated
using man-made elastic materials and human skin mo-
tion. Experiments with regular grid features m-e used
for performance comparison with a conventional ap-
proach (separate snakes and FEM modek). It is shown

that the new method does not require a grid and con
adapt the model to available object features.

1 Introduction
Nonrigid motion analysis is comprised of a large

body of research directions and approaches. h“on-
rigid motion analysis includes establishhg point corre-
spondences necessary for trackhg, estimating motion
and, fimdly, understanding the reasons why motion
occurred in the observed way and not in any other
possible way. Two of the major classes of techniques
for nonrigid motion analysis include snakes and finite
element models,

Snakes, or active contours are ener~-minimizing
splines which can find and reliably track saEent image
contours. Snakes have specific properties used for very
precise tracking, yet not related to material properties
or the internal structure of the object. McEachen II
and Duncm [7] tracked feature points over an entire
card]ac cycle. Chandran and Potty [3] developed a
strategy to avoid local minimas as a dynamic program-
ming solution for snake energy minimization. Amini
et al. [1] applied coupled B-spline snake grids to mag-
netic resonamce images and tildated results with a
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3-D cardiac motion model. Recent developments in
deformable model techniques are summarized in [11].

Unlike snskes, finite element models usually include
material properties of the object and precise under-
standhg of its structure, but have no inherent way
to track object’s features. A variety of finite element
models were proposed in the context of vision research.
A finite element model that learns the correct phys.
ical model of human lips by training from real data
was proposed by Basu aad Pentb,nd [2]. Martin et
al. [6] employed finite element computation of analytic
modes describing shape variation of structures within
the human brain. Tsap et al, [13] used nonlinear fi-
nite element models to recover motion and material
properties of nonrigid objects. Feature points used in
finite element analysis were tracked with makes,

Therefore, to accomplish defined motion analysis
goals, it is necessary to achieve tratilng similar or
even better in quality than can be done with snakes,
and also examine additional aspects not readily ob-
vious from images. These features can add to the
knowledge of the object (material properties, applied
forces and detailed structure of the object) when us-
ing a more natural (with respect to object’s proper-
ties) physically-based model, such as a finite element
model that can explain the deformation process.

Most closely related works such as [15, 13,5] accom-
plished these goals using two separate models: snakes
to find tag positions in images and finite element mod-
els [15, 13] (or similar physically-based models [5]) to
compute deformation parameters (such as dkplace-
ments) and strain distributions. Although FEM mod-
els produced precise solutions in terms of both dis-
placements and strains, they utilized only information
at points where tag lines intersected.

Recently, a number of hybrid approaches were de-
veloped. A framework for combining complemen-
tary techniques (registration and deformable models)
was proposed by Montagnat and Delingette [8]. An-
other hybrid solution (2-D) based on modal ad y-
sis, employed by Tan and Huamg [12], blended finite-
element-computed modes with template matching.
Deformable models with parameter functions capable
of adequately addressing local shape variations were
proposed by Park et al. [10] and O’Donnell et al. [9].
A shape modeling approach that used multiresilution



transformations from local to global models was intro-
duced by Vemuri and Radisavljevic [14].

The approscb proposed in this paper encompasses
advantages of both techniques in a single model-
driving strategy. Both detection/trackhg and accu-
rate object model estimation we merged to provide a
more comprehensive basis for nonrigid motion analy-
sis. We propose that FEM model can naturally han-
dle registration and modeling. Control points used
for tracking are also a pmt of a finite element model.
Therefore, not only snake intersection points (as it of-
ten occurred), but also additional tracked points are
included in the model. Furthermore, the method in-
cludes a multiscale scheme baaed on evaluation of the
undirected Hausdorff dktance to speed up the process
of matchiig features between two frames since large
deformations are considered. This criteria is similar
to work by Huttenlocher et al [4]. However, in their
approach, a set of image pixels in next frame formed a
new model. We perform actual model transformation
that simulates nonrigid motion of the object.

1.1 Overview

Major contributions of this work can be described
along the following directions: (1) combination of reg-
istration and deformation modeling, and (2) multi-
scale approach to correspondence recovery. Tbe ap-
proach resumes that a sequence of registered intensity
and range images of a deforming elastic object with
visible surface features (such as a grid in Fig. 4 and
6 or irreguhw and natural features in Section 3.4),
and a physically-based model (Fig. 2(b)) are avail-
able (Section 2.1). The main idea of our approach
is that a finite element model can naturally handle
both registration and modeling using a single model-
driving strategy. Previously, snakes were often used
to trsck intensity features recovered correspondences
were then incorporated into finite element models that
computed deformation parameters. Thk work com-
bhes both approaches.

The second important aspect of the strategy is an
efficient data utilization. As much available data as
necess=y is used. The model consists of a number
of control points. The goal is defined as a correct
matchhg of control points with grid points in the next
frame. Matching occurs at different resolution levels
- using 9, 49 and 217 control points (Fig. 1). The
multilevel (multiscale) strategy is described in detail
in Section 2.3. The matching taak is similar for all
scales: given the coordhates of control points, find
the Hausdorff dktance (defined in Section 2.2) be
tween the model and the image (next frame), and use
it to structure possible correspondences between con-
trol points and feature points in images (as dkcussed
in Section 2.2). The selected set of correspondences
drives deformation of the model.

Section 3 describes application of the proposed
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Figure 1: Configuration of control points using three
different scales.

method to motion analysis of mar-made elastic mate-
rials, human skh, and burn scm detection application.
Objects with a grid are used for comparison with a tra-
ditional technique utilizing active contours and FEM
separately. It is also shown (Section 3.4) that the prc-
posed method does not need a grid and can take ad-
vantage of the available irregular object features or
even natural features (in skin experiments). The lsst
section summarizes the results of this research.

2 Descriptionof the Method
2.1 Data, Modeling and Assumptions

Data acquisition, general modeling principles and
necessary assumptions are dkcussed first. Data se-
quences are acquired using a K2T structured light
range scanner. During zquisition, registered inten-
sity and range images of stretching elmtic objects me
taken (Fig. 4 and 6). Only part of the object (elastic
material or human arm) with the interest is consid-
ered. In first sets of experiments thk region includes
the grid which is produced with a simple stamp and
aids in producing trackable features. Other sets of
images contain irregulm or even natural features. Let
us assume that grid is separated on the intensity im-
age (for instance, using thresholdlng) and the model
is ahgned with it. Since the data was collected ini-
tially for a different project which employed snakes,
the stamp produced overlapping lines (which allows
us to compare results of both approaches). For the
purpose of thk method they are not considered (a con-
ventional method with snakes used original images for
the performance comparison). Of course, a fully autc-
matic method would require a different stamp. Hence,
only the area bound by outside grid lines is consid-
ered (Fig. 2(a) ). Therefore, the finite element model
used to describe it is local It consists of 3-D elastic
shells with assigned corresponding material properties
(properties of elastic materials are obtained by their
mechanical testing average skin propetiles are found
in the recent literature). Since the geometry of the
stamp is known in advance, it allows for the advance
model construction necessary for the success of the
method (Fig. 2(b)). Since in this research the empha-
sis is placed on multiscale use of control points rather
tham on the finite element model itself, a current set
of control points (Fig. 1) from now on is referred to as
our model. The method assumes alignment with tbe
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first frame in the sequence and consistency in point
inter-relationships so that points do not overlap (oc-
clude) each other.

(a) (b)

Figure 2: (a) Region of interest. (b) Finite element
model, (c) Threshold (Tz) calculation.

2.2 Role of the Hausdorff Distance

Control points (which are also FEM nodes or
keypoints) provide a natural way to locate corre-
sponding points in the next frame (model regis-
tration) and apply distances between them as dk-
placements (model deformation). Control points
are guided by the Hausdorif distance [4] between
the model M (fitted to the current frame) and the
next frame in the sequence F.+I: H(M, Fn+l ) =
max(h(f(M, Fn+l)), h(j(FO+l, M))), where
It(f(M, F.+l ) is the forward dktance (the distance
from the model to the image) and h(f (Fn+l, M)) is
the reverse distauce,

To compute the forwazd distance, differences are
identified between each control point m~ in the finite
element model M and the nearest point a~ in the next
frame F.+l, and then the largest dktance is selected
/t(f(M, Fn+I)) = maxm, c,w mina, ~~.+l Ilm – dl,
where f denotes some transformation that occurred
as a resuh of the motion or deformation, and (1.(I is
the Euclidean distance. The resulting control point
~i is, therefore, the furthest control point from any
range object point in F.+l. The reverse dk,tance
h(f(Fn+I, M)) is defined similady.

The goal is to use the Hausdorff dktance as a
measure of mismatch between the model and the ob-
ject, and then to reduce such differences by apply-
ing displacements to the model. This approach be-
longs to the class of reverse problems when the results
(displacements) are given instead of the cause (body
loads). As opposed to tracking with snakes (which
is a separate physically-based model), the undkected
Hausdorff dktance can be easily combined with a fi-
nite element model. No separation into a motion-
detection-oriented model and an object-properties-
oriented model is necessary. A single model is used; it
is driven by the multiscale analysis of possible corre-
spondences using the Hausdori7 dktance. Correspon-
dence recovery at each step is followed by displacement
calculations and their application to the model. Thk
represents a single iteration of the method.

2.3 Multiscale Approach to Correspon-
dence Analysis and Model Deforma-
tion

Expected range of motion is addressed by the multi-
scale approach to correspondence analysis and model
deformation. Lager motion necessitates the use of
coarser tilgnment modeIs before finer aspects of oE-
ject deformation are addressed. Multiscale strategy
discussed in this section is applicable to a large object

and motion domai~ however, the number of scales is
based on the magnitude of size or motion and, obti-
ously, may change for different objects.
Three scales (defined in terms of control points) are
adopted for the experiments described:
1- ICA (initial coarse ahgnment, 9 control points),
2- GGD (general global deformation, 49), and
3- CLD (complex local deformation, 217).

Although model deformations start at the ICA scale
(using only 9 control points), the initial distance esti-
mation is done at the GGD scale. This allows for more
precise computation of the undkected Hausdorff dis-
tance (or the partial dktance [4] for noisy sequences)
used as a first threshold (7’1) employed by the method,
The meaning of thk threshoId is an estimate of the
largest allowed motion in a given experiment (later
applied to control points).

The initiaJ analysis used to determine possible cor-
respondences is performed at the ICA scale. Euclideao
distances are calculated between the closest model md
image points (if the forward Hausdorff distance was
larger), or between the closest image and model points
(if the reverse Hausdortl distance was larger). These
dktances are sorted in decreasing order (Fig. 3). 2’1 is
then applied to weed out erroneous matches which are
possible at any scale. However, at coarse scales, dis-
placements greater than T1 are simply infeasible (by
definition of the Hausdorff distance).

Another threshold (Tz) is then introduced to deal
with erroneous matches resulting in small dkplace-
ments (results of noise and incorrect matches). At
each point we find the slope of the tangent to the curve
Displ = f(i), where i is the index of the correspon-
dences sorted in decreasing order with respect to re-
sulting 3-D dkplacements ( ~dz~ + dy~ + dz~). When
an absolute value of this slope (or function deriva-
tive at a point) at least triples (see Fig. 2(c)), the
correspondhg 3-D dkplacement value is chosen auto-
matically as threshold Tz (usually it increases 4-4.5
times). Thk threshold can also be computed by us-
ing a second derivative or analysis of consecutive dif-
ferences between (sorted) dkplacements. Tz allows
for separation of displacements representing another
group of erroneous correspondences, namely, those
with small dkplacements. This group cent ains a num-
ber of wrong matches, especially during the first few
iterations (Fig. 2(c) ).
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Figure 3: Algorithm of the multiscale approach.

I Therefore, a sparse model is employed to select only
1:1 correspondences and dkcard the rest. Of course,
a number of potentially useful correspondences are re-
jected during this step. This does not matter since at
this stage alignment that iwcounts mostly for trans-
lation is more important. Finer model scales process
more data that explains nonrigid deformation of the
object. If threshold Tz cannot be found, then the for-

! ward Hausdorff distance (at the coarse scale only) is
used to ahgn the model uniformly with the next frame
data. It is a good approximation of translation be-

i
tween the frames for the considered subset of nonrigidI
motion.

A change in scale occurs when a current scale no
longer improves the alignment. This means that all
control points have been assigned correspondences and
there is no mismatch between them amd the area of
interest in the next frame (Fig. 3). Therefore, increase
in model scale at this point produces possibility for
improving tracking quahty.

GGD (49 control points) and CLD (217 control
points) scale processing are simihm to the coarse scale
iterations, except that TI is not needed. Since finer
aspects of object motion are amlyzed, concern for fil-
tering out abnormally large displacements is not jus-
tified.

The GGD scale addresses effects of elastic motion

(stretching) of the object. It results in a better a&-
ment and accounts for most nonrigid deformations.
The CLD scale does not improve tracking significantly
if the force is distributed along some real or imaginary
line/surfare rather than represented by a concentrated
losing. In the latter case GCD processing alone can-
not account for more complex deformations of grid
lines, The steps applicable to all scales are shown in
Fig. 3.

The model is displacement-driven; when correspon-
dences are established, displacements are calculated
and applied to control points of the model. The pro-
cess is repeated during each iteration. Again, in these
experiments, the motion of the object is elastic defor-
mation. At any scale, the process can be summarized
as follows:
c The Hausdorff dktance is computed.
. For each control point, possible displacements are
found and applied.
. The model is incremented accordingly.
. The process iterates until the difference between the
model and the object is minimal (for each frame).

3 Experimental Results
This section presents an application of the proposed

method to motion analysis of man-made elastic mate-
rials and humam skin. Usefulness of the method is
evaluated not only for tracking and motion analysis,
but also for a specific application to strain analysis in
the burn scar detection procedure.

The model used in experiments described below is
loc~ it covers only a part of the object with the region
of interest (the grid in Sections 3.1-3.3 and irregular
features in Section 3.4). Second, the model is linear,
elastic, and consists of thin elastic shell elements de-
fined in a 3-D space (a totaJ of 324 elements and 361
nodes). The same mesh and solution are used in all ex-
periments described in this section. For more details
on model-building, finite element calculation, imple-
mentation using ANSYS package and skin parameter
selection (material properties and thickness), please
see [13].

3.1 Application of the Method to Skin
Motion Analysis: A Closer Look at
Scales and Iterations

Thk subsection presents application of the method
to skin motion analysis. The experiment presented in
thk section addresses our current burn scar assessment
research described in [13]. The proposed method sub-
stitutes the two previously used separate models such
as snakes and FEM. In this section we use images with
the grid so that the new method can be compmed with
an old approach. However, later in Section 3.4 it is
shown that the proposed method does not need a grid
and can take advantage of the natural features (such
as bkthmarks).
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One range and two intensity images of a region of
skin being stretched containing a burn scw are shown
in Fig. 4. The presence of a bum scar contributes to
non-uniformity of elmtic motion.

Figure 4: Range and intensity images of skin mot on.

Control points of the generic grid model are man-
ually aligned with the first frame using both intensity
and range data. Then the method proceeds automat-
ically using the available data, model and the strat-

egy described in Section 2.3. All three defined scales
are used. Thresholds me determined using tbe undi-
rected Hausdorff distance (2’1) and the jump in dk-

tances computed betwwn corresponding points (2’2)
similarly to Fig. 2(c). The change in scales occurs
when all such distances are equal to zero. The so-
lution required a total of seven iterations. Control

points of the model are determined automatically md
moved as follows (although the grid is slightly rotated
clockwise, for the simplicity of explanation we will re-
fer to control points as leftmost and rightmost as if
grid lines were vertical):
. iteration 1 - three leftmost control points moving

toward the left side of the grid (ICA scale),
● iteration 2 – three rightmost control points moving
toward the right side of the grid (ICA scale),
● iteration 3 – correspondences and motion for the re-

maining model points (ICA scale),
● iteration 4 – motion of new topmost control points

(GGD scale),
● iteration 5 – remaining correspondences responsible

for general deformation aspects (GGD scale),
● iteration 6 – better approximation of the leftmost

line (CLD scale), and
● iteration 7 – other local deformation aspects (CLD

scale).

Table 1: Summarv of iterations (between two frames

in Fig. 4) at different scales.
s..]. ,.. s..,. I o on S..,. I CLD . . . . .

,t...ti.. I ,121.14 51617
A... dt.,., “,”, I ,.19 I 8.3, I 0.81 I 0.52 I 0.19 I 0.11 I [,.10
A.. .rr.,, % I 70.17 I 3s.04 I 7.92 [ 5.10 I 1 87 I I 07 I ,’.9.

Results are shown in Table 1. Both iterations and
scales are included. The average real motion be-

tween feature points in two frames is 10.253 millime-
ters (mm). Of course, the motion is not uniform, it
is greater for the areas closer to the place where the
force is applied. The average dktance between con-
trol points in the model and corresponding points of
the grid is calculated for validation purposes. It is
used to compute the average error (a ratio of recov-
ered and real motion of feature points). Performance

(a) (b)

Figure 5: Results of the skin motion experiment. (a)

Magnitude based vectors representing motion of con-
trol points. (b) Results in terms of grid motion be-
tween two frames.

of the new method was compared to the traditional ap-
proach that uses a separate snake model to recover a

sparse set of correspondences (grid intersections) and
a dense set using FEM model. The new approach pro-
duced not only a lower fin?d average error (0.95% vs.
1.54 %), but also a better execution time on a SUN

UltraSPARC 300MHz/ 512K cache/128MB RAM (24
seconds vs. 1 minute 7 seconds). The error is reduced
because CLD scale better accounts for a non-uniform
grid line curvature near the stretching force. The tc-

tal motion of control points is shown in Fig. 5(a) using
magnitude based vectors (CLD scale, last iteration).
Red denotes the position of the grid in the previous
frame; vectors are displayed in blue. We can visual-
ize grid motilon between frames by connecting control
points at the finest (CLD) scale (Fig. 5(b)).

3.2 Results of Motion and Structure Re-
covery of Elastic Objects: Perfor-

mance Analysis for Longer Sequences

Sequences of intensity and range images depicting
the stretching of an elastic material are utilized for ex-
perimental performmce assessment of the method. A

sequence containing seven intensity images and range
images represents input to the algorithm (only one
range image is shown in Fig. 6) along with a generic
grid model fitted to the initkd frame (Fig. 1).

Figure 6: Range and intensity images of the el-$tic
material during stretching.

The deformation is produced by incrementally in-
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creaaing the force causing it. The force is introduced in
the second frame. It changes from 1 newton (N) in the

second frame to 3.5 N in the last frame in 0.5 N incre-
ments. This sequence allows us to investigate elastic
motion in the intervals of material behavior where it

can be approximated by a linear, elastic model. Ma-
terial properties are computed experimentally (using
a conventional mechanical engineering technique) and
included in the model. Magnitude based vectors rep-

resenting motion of control points are shown in Fig. 7.

F@re 7 Magnitude based vectors representing mo-
tion of control points.

Table 2: Performance of the method for alonger se-

quence. Results are shown per frame, for final iter-
ations only. Method (1) is a conventional approach
(separate snake and finite element models), (2) de-
notes the proposed multiscale single-model method.

Fr.”le ..,”... I I ,1416 I I 7
F.,.., N ,%0I 1.60 I 2.00 I 2.50 I 8:0 I 9.60

mea) ..s,.,.,., “m I 7.553 I 8.440 I 5..1,939 I 7.64. I 7.4s045 i 4.S0S
Avg, erro,, % (1) I 0.78 I O 72 0.75 0.87

.+. s..,.-,,%.(,) I 0.77 I 078 I 074 I 070 I 019 I 084

Summary of results forall frames me displayed in
Table 2. Results we shown per frame, for final it-

erations only. The proposed approach performs bet-
ter than the conventional for frames with more corn-

plex local deformations where CLD scale or even finer
scales are beneficial. Performance comparison for

a number of different experiments involving elastic
stretchkg is shown in Table 3 (experiments #1 and

#2 are ones presented in details in the previous and
current subsections, respectively).

Table3: Perfocrnance comparison foranumberofdif-
ferent experiments involving elastic stretching.

.Xp.r,r”e., I ,12 I I 4,5

..s, ,r.oc, %. mmthod (1) I 1.64 I 0.87 I ~3,, I 1.5, I oe4

.“s. ..?-., %- rn=khod (2) I 0.96 I 084 I 130 I 119 ) 172 1

The number of iterations per frame differs; however,

itisonaverage between 5wd8. Linear FEM solution

for each iteration takes between 3 and 4 seconds on a

UltraSPARC (300MHz/ 512K cache/128MB RAM).
Therefore, solution requires less time (on average 23

seconds) than the old approach (more than 1 minute
per frame).

The reason why the number of iterations varies, es-
pecially during the ICA step, can be explained with
the following observations. The motion seems more or
less uniform across all frames; however, analysis of db-
placements reveals that in the first two frames the grid
predominantly translates (since the grid contains only
a part of the strettilng material), while the remain-
der of frames contain mostly elastic motion (stretch-
ing). Quantitative y it can be described as a ratio of

displacements between opposite grid points along the
force dkection. Ratios close to 1 denote translation,
ratios from 3 to 5 in our experiments indicate stretch-
ing.

That is why if the next frame is the frame where the

bandage mostly translates (for instance, first frame),
then the ICA part of the method proceeds faster. Thk
reduction in the number of iterations facilitates the
finding of almost all coarse scale correspondences dur-
ing the first iteration as opposed to 3-4 iterations oth-
erwise.

3.3 Use of the Method for Strain Analysis
Thk subsection demonstrates applicational value of

the outlined method for strain analysis. The appli-
cation addressed here is the computation of human
skin response to applied load that reveals differences
in underlying properties. For instance, it allows for
the detection of burn scars and estimation of their rel-

ative properties [13]. Of course, accuracy of the struc-
ture and correspondence recovery is very important in
such an application because it greatly influences re
suiting strain distributions that pinpoint differences

in properties. Strain is recovered after the last itera-

tion since these differences are detected better using
the entire range of motion. Resulting dkplacements
are computed as the differences in positions of con-

trol points between the first and the last iterations
Azf;n = Z. – z1; Aufi. = y. – yl; Azf~n = Zn – 21.

Strain is then recovered throughout the surface of the
model [13]. Scars restrict the motion, and, therefore,
the method is identifying low strain areas (denoted
with dark blue in Fig. 8). The legend column on
the right of strain dktributions shows (top to bot-
tom): maximum displacement, minimum and maxi-
mum strain, and strain gradation from the lowest to
the highest. These results correspond to the skin mo-
tion experiment (Fig. 4). Fig. 8(a) is obtained with
a conventional approach (using separate snake and
finite element models, also applied to the available
3-D data [13]). Strain recovered using the proposed
method is shown in Fig. 8(b). The resulting strain
map is precise enough to identify abnormcd areas such
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.
as scars (ground truth in the form of scar outlines
was provided by physicians). A conventional approach
identified correctly 93.83% of the burn scar area, the
new method identified correctly 95.68’% of the burn

scar area. Methods were compared using five burn
scw image sequences. The strain can also be used as
an a.ddkional criteria to restrict impossible modes of
mot ion.

(a) (b) ‘

Figure 8: Resulting strain dktribution for the skh
motion experiment computed using (a) conventional

apprO~h and (b) proposed method.

3.4 Motion Recovery from Irregular and
Natural Features

This section extends the use of the proposed
method to deforming objects with irregula surface
features. These features cannot be easily considered
with a conventional approach. First, another piece of
an el=tic material (considered initially in Section 3.2)
is stretched (Fig. 9). Stretching is non-uniform affect-
ing the upper side of the bandage much more than the
lower. In thk case model fitting procedure adapts the

generic model so that it fits the range data and identi-
fies feature points (shown as small circles). Validation
points (shown as crosses) are not used during the com-
putation, the difference in their positions before and

after the motion is compared to model’s estimates af-
ter the process completes. There is no single solution
to model fitting. The model is acceptable as long as
it contains feature points, uses adequate resolution to
represent sensed data, and avoids abrupt changes id

the element sizes from very fine to coarse (which can
lead to ill-conditioning problems). Resolution scales
and threshold selection techniques me the same as in
previous experiments. Results (shown in Fig. 10) in-

clude magnitude based vectors representing motion of
all model points and feature points only. The vali-

dation error is less than 3% for all Mldation points
(Table 4).

Table 4 Motion error for validation points.

(c) (d)

F@re 9: (a-b) Intensity images of the elaatic mate-
rial before and after deformation. Feature pointe are
marked as small black circles, validation points - as
crosses. (c) Range image (before motion). (d) Fi-
nite element model (in terms of elements) fitted to

the data. Feature points are identified.

Figure 10: Magnitude based vectors representing mo-
tion of (a) all model points and (b) feature points only.

this case birthmarks are chosen as features to include
into the model (similarly to feature points in the pre-

vious experiment) and to use for motion analysis (r&
suiting displacement fields for them are displayed in
Fig. 9(d)). Slxpoints meusedfordldation (the av-

erage error is 4.72%). Thk shows that the method
can be extended to other applications and domains,
and simplify data acquisition andprocessing for many
existing applications (such as a burn scar assessment

application briefly described in Section 3.3).

4 Discussion and Conclusions
In thk? paper we presented a novel multiscale ap-

proach to recovery of nonrigid motion from sequences

,.,.6 , , , 2 I I 4,5 I I I A.. of registered intensity and range images. The main
m.,., ,“”! , ,..0 , ,.72 I 7921 [ 7.67 I 8.09 I 12691 I 15785 I S.40
E.,.,, 70 , 7..8, I ,,*, I 2..0 I 2..6 I 2 ,1 I 2 57 1 2..9 I 2 57 idea of our approach is that a finite element (FEM)

model can naturally handle both resistratiOn and de

A similar experiments me conducted using natural formation modeling using a single model-driving strat-

features instead of marked points. Fig. ll(a-c) show egy. The method includes a multiscale iterative ~gc-

intensity and range images of skin stretching. Note rithm based on analysis of the undirected Hausdorff

that there are no artificial markhgs on the skin. In distance to recover correspondences. Our model can
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F@ell: (a-b) Intensity and(c) range images of skin

stretching. (d) Motion tracking of feature points.

handle what previously was accomplished using two
types of deformable models (snakes and finite element
models). Control points used for tracking are also a

part of the finite element model containing knowledge
of an object’s properties that can lead to better anal-

ysis of the deformation process. Therefore, not only
intersection points, hut also additional tracked points
are included in the model. Such a model can explain
observed motion effects (such as displacements) w well

ss non-observable aspects (such as strains). Strain
distributions reveal differences in material properties
which can account for motion abnormalities.

The method includes a multiscale strategy based on

evaluation of the undirected Hausdorit distance which
represents a reliable error function. Wrong matches
occur, but they are corrected during subsequent iter-

ations. In a general case, a number of scales is object-
and motion-dependent, similarly to other physically-

based models. Choosing the number of control points
at the finest scale is a trwl~off between the efficiency
of structure representation and effects of noise. (It
has been found experimentally that for our setup the

scanning error is between 0.5 mm and 1 mm.)

The method was evaluated with respect to speed,
accurwy, and noise sensitivity. Advantages of the prc-
posed approach were demonstrated using man-made
elastic materials and human skin motion. Experi-
ments with regular grid features were used for per-
formance comparison with a conventional approach
(separate snakes and FEM models). It was shown,
however, that the new method does not require a grid
and cam adapt the model to available object features.
Usefulness of the method was presented not only in the
context of trwklng and motion analysis, but also for
specific applications such as burn scar detection. Thk
work presents a significant step towwd development of

models that can inherentb’ h~dle multiple Processing

functions, currently registration amd deformation, and

appearance in the near future.
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