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Abstract
We address the problem of integrating multi-frame stereo
and shading cues within the framework of optimization
in the in�nite-dimensional space of piecewise smooth sur-
faces. Cue integration then reduces to the determination
of regions where prior assumptions on the re
ectance of
the surfaces can be enforced. By combining cues, our for-
mulation allows de�ning a well-posed problem even when
reconstruction from stereo or shading in isolation would
be ill-posed. F or a simpli�ed model we prove the neces-
sary conditions for optimality, and propose an iterativ e
optimization algorithm, which we implement using ultra-
narro wband level set methods.

1 Introduction

One of the central goals of Computer Vision is the recon-
struction of the shape of the environment from images of
its projection onto a tw o-dimensional sensor. T o us, the
en vironment is a collection of \objects", eac h bounded
by a piecewise smooth surface radiating energy either di-
rectly or by re
ection. A sensor provides a (noisy) reading
of the amount of energy incident a discrete set of small
regions on a tw o-dimensional surface (e.g. pixels on the
CCD plane or receptors on the retina).

The sensory data depend upon the shape of the en-
vironment, but also upon its re
ectance properties and
the energy distribution. While, in general, neither one
is kno wn, the sensory data are not enough to allow a
unique reconstruction of shape, re
ectance and energy
distribution. Consequently, researc h in Computer Vision
has concentrated on recovering some propertiesgiven oth-
ers (e.g. when shape is recovered from \shading" assum-
ing given re
ectance properties), or independent of others
(e.g. when shape is recovered from \stereo" or \motion"
regardless of re
ectance properties and energy distribu-
tion).

While most of the research on cue integration is based
upon merging the result of \Shape From X" modules each
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w orking inisolation, w epropose an in tegrated formula-
tion of the problem of reconstructing shape, where the in-
tegration of di�erent cues amounts to determining where
prior assumptions can and should be used. This results
in a formulation of the correspondence problem which
pertains to regions, rather than points. Due to the repre-
sen tation of the en vironment as a collection of surfaces,
the resulting optimization problem is formulated in an
in�nite-dimensional space. We use the methods of calcu-
lus of variations, together with eÆcient numerical tech-
niques to solve partial di�erential equations, to converge
to a solution. How ev er, the sameproblem could be for-
mulated in a probabilistic (e.g. Bayesian) framework.

Our approach is geometric, and does not depend upon
the parameterization chosen to represent surfaces in the
scene. It can handle changes in the topology of the esti-
mated surface due to the presence of multiple objects in
the scene. Although thorough experimentation is under
w ay, we sho w some promising results on simulated scenes
seen from several calibrated cameras.

Relation to previous work

The literature on shape from shading is far too extensive
for us to review here. A collection of earlier work can be
found in the book of Horn and Brooks [9]. Other work on
shading that is of generic relevance to this paper includes
[11 , 15, 10, 36 , 6, 26 , 2, 28 , 27 , 33 , 25, 12 , 17 , 35, 21 ].
Using variational methods in shape from shading dates
back to the eighties [8, 22], and even lev el set methods
ha ve been employed before [14, 13 , 16]. The literature on
stereo and motion is also extensive; we refer the reader to
the book of Faugeras [4] for references. The most closely
related w ork is that of F augeras and Keriven [5], who
cast the traditional multi-frame stereo in a variational
framework and use level set methods to solve it. They
address the correspondence problem by best approximat-
ing the brightness constancy assumption at ev ery point
in the image1, thus obtaining in e�ect a dense correspon-

1This is done by looking for corresponding patches that max-
imize a normalized cross-correlation criterion, the underlying as-
sumption being that of brigh tness constancy of corresponding
points.
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dence wherever the brightness gradient is non-zero. Is-
sues concerning the fusion of shading cues with paral-
lax cues have been discussed in several works, including
[1, 31, 18 , 34 , 20, 7, 3, 30].

2 A generative model

Let S be a surface in space of class at least C1; we indi-
cate the tangent plane to the surface at a point P by T
and the inw ard unit normal vector b yN . At each P 2 S
w e can construct a reference frame with origin atP , e3-
axis parallel to the normal vector N and he1; e2i-plane
parallel to T (see �gure 1). The change of coordinates
between the reference point at P and an inertial refer-
ence frame (the \world" frame) is indicated by gS(P;N);
gS maps points in the reference frame at P in to points
in the inertial frame. F or instance, it maps the origin
in to the point P , gS0 = P , and the e3-vector into N ,
gS�e3 = N . We recall that, if w erepresent the change
of coordinates g with a rotation matrix R 2 SO(3) and
a translation vector t, then the action of g on a point P
of coordinates X 2 IR3 is giv en b ygP

:
= RX + t, while

the action of g on a vector of coordinates V is given by
g�V

:
= RV . In what follows we will not make a distinction

between a change of coordinates g and its representation,
and w ewill also consider in terchangeably points P and
their representation X 2 IR3.

Consider then a distribution of energy dE over a com-
pact region of a surface in space L (the light source). The
portion of energy coming from a direction �P that is re-

ected onto a direction xP is described by �(xP ; �P ), the
bidir ectional re
e ctanc e distribution function(BRDF). The
energy that P re
ects on toxP is therefore obtained by
integrating the BRDF against the energy distribution

E(xP ; P )
:
=

Z
L

�(xP ; �P )dE(�P ) (1)

which depends upon the direction xP and the point P 2
S, as w ellas on the energy distribution E of the light
source L.

The geometry of the sensor is described by a central
projection � (see �gure 1). For a point P with coordinates
X 2 IR3 expressed in the camera coordinate frame, having
the e3-axis parallel to the optical axis and the he1; e2i-
plane parallel to the lens, the projection can be modeled
as

� : IR3 ! 
; X 7! x = �(X) (2)

where 
 � IRP2 with �(X)
:
= X=Z in the case of planar

projection (e.g. on to the CCD), or 
� S2 with �(X)
:
=

X=kXk in the case of a spherical projection (e.g. on to
the retina). We will not make a distinction betw een the
tw o models, and indicate the projection simply by �.

In order to express the direction xP in the camera
frame, w econsider the change of coordinates from the

L
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Figure 1: Generative model

reference frame at the point P . F or simplicity, we let the
inertial frame coincide with the camera frame, so that
X

:
= gS(P;N)0 = P and x � gS�(N)xP where2 we note

that gS� is a rotation, so that x depends on N , while X
depends on P . Once we substitute x for xP into E in (1)
w e obtain theradiance

R1(P;N)
:
= E(g�1S� (N)x; P ) where x = �(P ): (3)

Our (ideal) sensor can measure the amount of energy re-
ceiv ed along the directionx

I1(x) = R1(P;N) where x = �(P ): (4)

Consider a change in the viewpoint, described by a change
of coordinates g relativ eto the inertial reference frame.
Assuming that the inertial frame coincides with the image
I1, we can obtain a new image I2 by moving with g (see
�gure 1). Using the fact that x � gS�xP and x2 � g�x,
we have that xP2 � gS�g�g

�1
S�xP . Similarly, the coordi-

nates of the point P in the �rst and second camera frames
are related by P2 = gP , and x = �(P ), x2 = �(P2) =
�(gP ). Therefore, the (scene) radiance in the direction
of the new viewpoint is giv en by R2(P;N; g;�; L;E)

:
=

E(g�1S� (N)g�x; gP ) and the (image) irradiance is I2(x2) =
R2(P;N; g;�; L;E) where x2

:
= �(gP ): So far, w eha ve

used the �rst image as a reference, so that x1 = x, g1
is the iden titytransformation and P1 = P . This needs

2The symbol � indicates projective equivalence, that is equalit y
up to a scalar. Strictly speaking, x and xP do not represent the
same vector, but only the same direction (they have opposite sign
and di�erent lengths). How ever, they do represent the same point in
the projectiv e plane, and therefore we will regard them as one and
the same. In order to obtain the same embedded representation (i.e.
a vector in IR3 with the same coordinates), we would ha ve to write
x = �(�gS�(N)xP ). The same holds if we model the projective
plane using the sphere with antipodal points identi�ed.
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not be the case. If w echoose an arbitrary inertial ref-
erence and indicate with gk the change of coordinates
to the reference of camera k, Pk the coordinate of the
point P in this frame and xk the corresponding direc-
tion, then for eac h of k = 1 : : :M images w ecan write
Ik(xk) = Rk(P;N; gk;�; L;E).

The irradiance Ik of image k can be measured only up
to noise. Since we assume that energy transport phenom-
ena are additive, such a noise will be additive, but will
have to satisfy the constraint that both radiance and ir-
radiance must be positive. This constraint is not satis�ed
if, for instance, we choose to model noise as a Gaussian
process. We will defer the discussion on the choice of the
noise model until next section. In the meantime, we write
the generative model as

�
Ik(xk) = Rk(P;N; gk ;�; L;E) + nk(xk)
subject to xk = �(gkP ) and Rk � 0

(5)

for k = 1 : : :M:

3 Formalization of the problem in

a v ariationalframework

In order to reconstruct shape, w ewant to \invert" the
generative model (5) and infer P and N from measure-
ments of Ik ; k = 1 : : :M . However, such an inversion is
not possible since we only have noisy measurements of Ik
available. Therefore, w econvert the inversion task in to
an optimization task where we wish to �nd the \cause"
(the shape of S) that explains the \e�ects" (the data Ik)
\best". What is \best" in this context depends on how
w e model the noisenk.

In a probabilistic framework we would assume a sta-
tistical model for nk and then optimize a criterion (for in-
stance the total likelihood) with respect to the unknown
shape of S, possibly weigh ted b y a prior density on S. In
a variational framework we assume that the data Ik live
in a function space, and then optimize a criterion (for in-
stance the L2 norm, the total variation, the information-
div ergence, or normalized cross-correlation) with respect
to the unknown shape S. Although conceptually these are
very di�erent approaches, in practice they all reduce to
an optimization problem on an in�nite-dimensional func-
tion space. For the purpose of this study ,w echoose a
variational approach and select a norm k � k : C1(
) !
IR; n 7! knk for instance knk =

R


jn(x)jd�(x), where �

is an appropriate metric de�ned on the surface S. Once
a metric is chosen we look for the shape of the surface S,
represented b y the functionP and its derivative N , that
minimizes

PM
k=1 knkk subject to (5) for all xk 2 
 and

all k = 1 : : :M .
The principled solution to the problem of inferring

shape from images obtained with the model (5) would be

to set up the optimization problem and solve simultane-
ously for all unknown quantities, that is S; �; L;E.

Ŝ; �̂; L̂; Ê = arg min
P;�;L;E

MX
k=1

knkk subject to (5): (6)

Unfortunately, a simple counting of the orders of in�nity
involv ed suggeststhat, from a countable number of im-
ages M , w ecan reco ver atmost a countable number of
parameters3 in �; L and E.

Therefore, our approach will be that of imposing a
�nite parameterization a of �; L and E, each correspond-
ing to a case study, and then simultaneously recovering
the shape S and the unknown parameters a. We there-
fore solv e for Ŝ; â that minimize

PM

k=1 knkk subject to
(5) for all xk 2 
 and all k = 1 : : :M . Once we substi-
tute the expression of nk and xk, omitting the positivity
constraints, we obtain

min
P;a

MX
k=1

kIk(�(gkP ))�

Z
L

�(g�1S� (N)�(gkP ); �P ; a)dE(�P ; a)k

(7)
The problem can be further generalized (and rendered
signi�cantly more diÆcult) by including as unknown the
pose of the camera in each view, gk; k = 1 : : :M .

3.1 A bare-bone model of re
ection

In this section we describe a simple parametric model for
the re
ection function �(xP ; �P ). This is an extension
of what is commonly used in Computer Graphics (see for
instance [32]). T o this end, let the incident angle the light
makes with the surface normal be represented by its co-
sine: 
P

:
= h�P ; Ni and the re
ection angle towards the k-

the camera r by �Pk
:
= hxPk ; Ni: Furthermore, callHk the

\halfway" v ector betw een the incident and viewing direc-

tions H
:
=

xPk
+�P

2
and let Æ represent the (cosine of the)

angle H makes with the surface normal Æk
:
= hHk; Ni:

Finally, let �x and �y be the cosine of the angles betw een
the coordinate axes e1; e2 in the reference frame at the
point P and the corresponding axes in the inertial refer-
ence frame �x

:
= he1; gS�e1i; �y

:
= he2; gS�e2i: We write

the BRDF as the sum of a di�use (Lambertian) compo-
nen twhose in tensit y�r(P ) depends upon the point P
on the surface and a specular component whose intensit y
depends upon the roughness of the surface along the tw o
coordinate directions on the tangent plane, represented
by tw ocoeÆcients �x; �y. The overall strength of the
specular component is weigh ted by a coeÆcient �s which

3That is if our primary interest is the shape S. If we are inter-
ested in the illumination L, then w e can recover at most L and a
countable number of parameters in S; �;E, and similarly for other
unkno wns.
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w e will assume to be constant. We then have

� = �r(P )
P + �s
e
�
1�Æ2

k

Æ2
k

�
�2x
�2x

+
�2y

�2y

�

4��x�y
p

P �Pk

: (8)

In the experiments described in section 6 we restrict our
atten tion to the simplest case of a source of light located
at a point in space with coordinates L0 relativ eto the
inertial reference frame. The coordinates in the reference
frame at point P are indicated by LP . Therefore, we have
that L 2 IR3 and dE(�P ) = E0Æ(�P�LP ): If we call a the

re
ectance parameters a
:
=
�
�r �s �x �y

�T
then

we have thatR(P;N; gk;�; L;E) depends on a; L0; E0 as
follows

R(P;N; gk; a; L0; E0)
:
= �(xPk ; LP ; a)E0 (9)

which, for isotropic Lambertian materials, is equal to
�r(P )hLP ; NiE0, and the residual to be minimized is
given by4

MX
k=1

Z



jIk(�(gkP (x)))��r(P (x))h
P � L0
kP � L0k

; NiE0jd�P (x)

(10)
where the area form is d�P (x)

:
= jPe1(x) � Pe2(x)jdx:

4 Stereoscopic shading

Even in the simplest case of a single direct ligh t source
and a Lambertian surface, counting the orders of in�nity
involved in equation (10) will convince the reader that it
is not possible to reconstruct a unique shape S and re-

ectance function �r from images alone, without making
prior assumptions.

Since the second term of the norm in (10) does not

depend on k one could substitute it with Ij(�(gkP (x)))
for any j = 1 : : :M and obtain5

Z



MX
j;k=1

jIk(�(gkP (x))) � Ij(�(gjP (x)))jd�P (x)
:
=

:
=

Z



�SFM (x; P )dx: (11)

Howev er, we know that when the gradient of Ik is small
(zero, in the limit), and noise is present, the localization
of P becomes ill-posed (Ik does not depend on P in the
limit).

4Notice that LP = g�1
S

L0 and N = e3 in the reference frame
at P . In the inertial frame we have that N = gS�e3 and LP =
gS�g

�1

S
L0 = L0 � P . The expression in (10) follows b y reducing

LP to be unit-norm.
5As an alternative to jIk�Ij j one can consider other discrepancy

measures, �(Ik; Ij), such as the information-divergence or normal-
ized cross-correlation. This does not change the substance of our
argument.

If, on the other hand, w ehave some prior informa-
tion on the re
ectance function �r, for instance that it is
locally constant, the expression (10) could be minimized
with respect to S and �r, therefore leading to a multi-
frame version of shape from shading

Z



MX
k=1

jIk(�(gkP (x)))� �rh
P � L0

kP � L0k
; NiE0jd�P (x)

:
=

:
=

Z



�SFS(x; P; �r)dx: (12)

How ev er, if�r w ere assumed to be constant while, in fact,
it is not, this procedure would lead to gross errors. There-
fore, the crucial problem remains of determining the sub-
set E of 
 where to enforce a prior assumption on �r.

4.1 The correspondence problem revisited

Substituting Ij(�(gkP (x))) for �r(P (x))h
P�L0
kP�L0k

; NiE0
in (10) is always legitimate, although it may lead to an
ill-posed problem (11) in regions of 
 of uniform inten-
sity. On the other hand, enforcing �r(P ) = �r leads to
a well-posed problem (12) provided that x is in a region
where �r(P (x)) is constant. Therefore, w e are leftwith
the problem of �nding the region E � 
 where to enforce
the prior on shading. Once this is done, merging shading
and stereo will be achiev edby �nding the shape S the
minimizes the following cost functional

Z
E

�SFS(x; P; �r)dx+

Z
Ec
�SFM (x; P )dx (13)

where Ec indicates the complement in 
 and �SFM and
�SFS are de�ned in equations (11) and (12).

Indeed, it is not necessary that E captures all portions
of the scene with constant re
ectance functions, as long
as it is its subset. F or the minimization of (13) to be
viable, E must be such that

fx 2 
 j rIk(�(gkP (x))) = 0g � E � fx 2 
 j r�r(P (x)) = 0g:
(14)

We call Ec
:
= 
nE the correspondence set. It leads to

a formulation of the correspondence problem in terms of
regions, rather than feature points. F urthermore, the def-
inition of a correspondence set is 
exible, as long as it
satis�es the constraints (14), and can depend upon the
noise level in the image as well as upon prior information
on the scene. F or instance, if we choose an image as the
local reference frame, so that x = xk = �(gkP ), call A
the set of points where the gradient of Ik is not identically
zero

A�
:
= fx 2 
 j krIk(x)k � �g (15)

for some k and �, then w esee that E
:
= Ac� leads to a

feasible de�nition of correspondence set. In practice, we
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have noticed that the functional for stereo can be applied
in almost every region of the image, as long as there is
a gradient of irradiance. The functional for shading is
mostly used to \�ll in" regions or small irradiance gradi-
ent, as we show in section 6.

4.2 Optimality conditions

Although in the previous section we have indicated a pos-
sible c hoice forE , the focus of this paper is not on �nding
the optimal correspondence set. Rather, we will concen-
trate on solving the minimization of the cost functional
(13), assuming that E has been chosen.

Of the tw ocomponents of the cost, the second has
been discussed extensively by Faugeras and Keriven [5].
We will therefore concentrate on the �rst one, and derive
the optimality conditions (relative to P (�) and �r) for

Z
E

MX
k=1

jIk(�(gkP (x))) � �rh
P � L0
kP � L0k

; NiE0jd�P (x)

(16)
Notice that �r and E0 always appear as a product, which
we denote by �. We will devise an iterative scheme to esti-
mate both � and the surface, rather than solving � explic-
itly and plugging it into the last equation. One straight-
forward method is to �rst �x �, run a lev elset method
solving for reconstructing the surface, and then �x the
surface, and use any one-dimensional searc h scheme to
solve for �. The necessary conditions pertaining to � are
straigh tforward. In order to derive the necessary condi-
tions with respect to P , we write the above equation, for
simplicity in the case of a tw o-dimensional scene, as

E(t) =

Z
E

�(P;N)kPxkdx (17)

where P (x; t) 2 IR2;x 2 IR and d�P (x) = kPxkdx. We
now show that the necessary conditions for P impose that

��� �X �N � �(�N �N) + �T T�NNT � T T�NXT = 0
(18)

where the subscript indicates partial derivatives and � is
the curvature. This formula is obtained in the following
subsection. There, P (x; t) 2 S denotes a point on the
ev olving surface, while X 2 IR2 denotes a point in the
ambien t (embedding) space.

A General Gradient Flo w Equation

Assuming that we want to minimize the cost functional
(17) o ver a family of curves, P (x; t) where x 2 [0; 1] pa-
rameterizes each curve and t parameterizes the family, it
is natural to consider the derivative of E. In the following
deriv ation the unit tangent T and inw ard normalN of P
will be related byN = JT where J denotes the ninety
degree rotation matrix. In addition, we will always omit

purely tangential terms whenever they appear inside an
inner product with the curve variation Pt.

E
0(t) =

Z
1

0

(�0kPxk+�kPxk
0)dx

=

Z
1

0

�
�0kPxk+�

hPx; Pxti

kPxk

�
dx

=

Z
1

0

((�X � Pt +�N �Nt)kPxk � h(�T )x; Pti) dx

=

Z
1

0

((�N �Nt)kPxk � h��N � �X ; PtikPxk) dx

We now use the following expression to substitute for Nt.

Nt =

�
JPx

kPxk

�
t

=
JPxt

kPxk
�

JPx

kPxk2
hPx; Pxti

kPxk

E0(t) =

Z
1

0

(h�N ; JPxti � h(�N �N)T; Pxti �

� h��N � �X ; PtikPxk)dx

=

Z
1

0

(�h�NXPx +�NNNx; JPti+ h(�N �N)Tx; Pti �

� h��N � �X ; PtikPxk)dx

= �

Z
1

0

(hJT�NXT � �JT�NNT � �(�N �N)N;PtikPxk+

+ h��N � �X ; PtikPxk)dx

= �

Z L

0

hJT�NXT � �JT�NNT � �(�N �N)N +

+ ��N ��X ; Ptids

In the last line, the upper limit of integration L denotes
the total arclength of the curv eP (at time t), and ds
denotes the incremental arclength. From here it is clear
to see that the gradient descent evolution is obtained by
setting

Pt = JT�NXT ��J
T�NNT � �(�N �N)N + ��N ��X

Ignoring tangential components in this evolution leads to
the following geometrically equivalent evolution equation.

Pt = (�T T�NXT+�T
T�NNT��(�N �N)+����X �N)N

(19)

A More Specialized Gradient Flo w Equation

In (16) we are considering a special case of (17) in which
�(X; N) is obtained by applying an L1 norm to the error,
�(X; N), bet w een the measured image dataf(X) and the
modeled image data, G(X) �N . The gradient 
ow equa-
tions will therefore depend upon:

�(X; N) = f(X)�G(X) �N
�X(X; N) = fX(X) �GTX(X)N
�N (X) = �G(X)
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If w euse an L1 norm, w eobtain the following energy
functional

E(t) =

Z 1

0

jf(P )�G(P ) �N jkPxkdx; (20)

in which case:

� = j�j = �(f �G �N)

�X = ��X = �(fX �GT
XN)

�N = ��N = �G
�NX = �GX

�NN = 0:
Plugging these quantities into the general 
ow (19) yields

Pt = (�T T
GXT � �G �N �

� �(f �G �N)� (fX �G
T
XN) �N)N

= (�NT
J
T
GXJN � �f � (fX �G

T
XN) �N)N

= (�NT (JTGXJ +G
T
X)N � �f � fX �N)N:

By noting that JTGXJ + GTX = trace(GX)I where I is
the 2x2 identity matrix, we may simplify the 
ow above
to obtain

Pt = �(�f + trace(GX )� fX �N)N:

A geometrically equivalent 
ow

Pt = �(�f + trace(GX ))N � fX (21)

reveals at a glance that although our cost functional (20)
depends upon the unit normal N of the interface, the re-
sulting gradient 
ow, surprisingly, does not (up to sign).
Instead it consists of a weigh ted curvature term, �f , an
in
ationary term, trace(GX ), and a gradient term, fX ,
all of which depend only upon X. Therefore, the terms
needed to implement the curv eev olution (21) may be
pre-computed, which both simpli�es the implementation
of the algorithm and leads to signi�cant savings in com-
putation.

We disco ver anothersurprising property of this 
ow
by substitutingG(X) given in (16) by � X�L

kL�Xk where � =

�rE0 and L is the position of light source. Letting X =
(x1; x2), G(X) = (g1(x1; x2), g

2(x1; x2)), L = (l1; l2) and
dL(X) = kL�Xk, w e may compute

trace(GX ) = g1x1 + g2x2

= �

�
1

dL
�

(l1 � x1)
2

d3L

�
+ �

�
1

dL
�

(l2 � x2)
2

d3L

�

= �
(l2 � x2)

2 + (l1 � x1)
2

d3L
=

�

dL

Substituting this into (21) yields

Pt = �(�f +
�

dL
)N � fX : (22)

We therefore see that while our energy functional (16)
depends only uponthe direction of the ligh t source, the

gradient 
o w equation depends (up to sign) only upon
the distance of the light source.

The same 
owmay be derived in the three dimensional
setting where Pt denotes the ev olution of a surface as
opposed to a curve, where L, N , and fX now denote 3D
vectors, and where � denotes the mean curvature of the
ev oling surface.

Remark: Note that that �rst term ��f in (22) may be
regarded as a geometric di�usion term with a di�usion
coeÆcient of �f . Since, f is non-negative (recall that
f is just the in tensit yof one of the camera images at
a back-projected point) this implies that the di�usion is
w ell-posed when the coeÆcient is +f but ill-posed when
the coeÆcient is �f . In the latter case, this second order
term in 
ow (22) gives rise to a backwards, nonlinear heat

o w which is highly unstable. F or this reason we refrain
from implementing (22) directly ,but use the following
w ell-posed 
ow instead.

Pt = (�f �
�

dL
)N � fX : (23)

In the t w o-dimensional case, 
ows (22) and (23) will ex-
hibit the same steady state contour if the steady state
con tour is convex. This also applies in the three-dimensional
case, but extends to certain non-convex surfaces as well.
Namely, any steady state surface with non-negative mean
curv ature everywhere will be captured by both (22) and
(23). This allows us to capture certain types of concavi-
ties (e.g. parabolic concavities) but not all types (e.g. el-
liptic concavities).

5 Level Set Implementation

In this section we outline the level set implementation of

o w (22). The level set implementation of any geometric

o w begins by embedding the initial in terface P (x; 0),
whether it be a curv eor a surface, as a lev el set of a
scalar function  0(X) which is then taken to be the initial
condition for a function over time  (X; t)

 0 : IR
n ! IR;  : IRn � IR+ ! IR;  (X; 0) =  0(X)

where n = 2 for curves and n = 3 for surfaces. The choice
of a particular level set is arbitrary but is typically taken
to be zero. The key point is that we continue to embed
the in terface within the same �xed level set of  for all
time. Thus, if we choose the zero level set we have

 0(P (x; 0)) = 0; and  (P (x; t); t) = 0:

Di�erentiating with respect to t therefore yields

 t +r � Pt = 0 or  t = �Pt � r (24)

an evolution equation for  (wherer denotes  X) which
ev olves the interface P (x; t) described implicitly by  (X; t) =
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0 for all t. Substituting (22) into (24) yields

 t = �[�(�f +
�

dL
)N �rf ] � r 

= �(�f +
�

dL
)(�N) � r �rf � r :

Finally, by substituting r 
k k for the outw ard normal�N

and r�
�
r 
k k

�
for the curvature �, we obtain the following

level set implementation of 
ow (22).

 t = �

�
r �

�
r 

k k

�
f +

�

dL

�
kr k �rf � r (25)

The level set 
ow exhibits this same form in any dimen-
sion.

6 Experiments

In this section we restrict our attention to simulated three-
dimensional scenes populated with Lambertian objects.
Experimentation with more complex re
ectance models
of real scenes is part of our research agenda. In �gure 2

Figure 2: Two camera views of a uniform Lambertian
cube illuminated by a point ligh t source. Some of the
faces appear black since they are not reached by the light.

we show a few views of a uniform Lambertian cube illu-
minated by a poin t light source, while in �gure 3 we show
the rendered reconstructed shape obtained by minimizing
the second term in (13). How ever, if the scene contains

Figure 3: Rendered shape at di�erent stages of the recon-
struction by the multi-frame shading algorithm.

textured objects, such as the cube shown in �gure 5, then
the prior enforced by minimizing the second term in (13)
is not valid, and therefore the reconstruction is incorrect,
as we show in �gure 4.
On the other hand, in �gure 5 we sho w a number of views
of a cube with smoothly textured faces. Despite the ab-
sence of distinct features, our multi-frame stereo algo-
rithm - which is similar to that of Faugeras and Keriven

Figure 4: Rendered shape as reconstructed by the multi-
frame shading algorithm when the prior on shading is not
satis�ed (scene in �gure 5). Of course, the reconstruction
is incorrect.

Figure 5: Camera views of a cube with smoothly textured
surfaces.

[5] - is capable of capturing the shape of the cube (�gure
6). How ev er,if one of the faces of the cube is painted

Figure 6: Rendered reconstruction of the scene in �gure
5 at various stages of processing.

white, as in �gure 7, no matter what the matching crite-
rion, whether total variation, normalized cross-correlation,
or the tw o-norm, astereo algorithm cannot converge to
the correct shape without additional prior information
(�gure 8). If, ho w ev er, one enforces that - in the regions
of the images in �gure 7 where the gradient of irradiance
is belo w a threshold - the re
ectance of the scene is con-
stant, so that the shading term in (13) is non-zero, then
the algorithm can recover the correct shape, as shown in
�gure 9.

7 Conclusions

We have presented a framework to merge di�erent shape
cues by solving an optimization problem in the (in�nite-
dimensional) space of surfaces. The data are in tensit y
images collected by a number of cameras, and the corre-
spondence problem is re-formulated in terms of regions
where prior assumptions on the re
ectance properties of
the surfaces can be enforced. For a simpli�ed model, we
pro ve the necessary conditions for optimality, and gener-
ate an iterative optimization algorithm using the tools of
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Figure 7: Views of a cube with a white face.

Figure 8: Stereo-based reconstruction of the scene in �g-
ure 7: con vergenceis achiev edev erywhere but on the
white face of the cube.

calculus of variation. We implement the algorithm using
ultra-narrowband level set methods, and perform some
preliminary experiments on syn thetic scenes. Although
in the experiments w e use a single light source illuminat-
ing a Lambertian surface, the algorithm is general and can
{ in principle { handle multiple sources (including mutual
illumination betw een objects), more complex re
ectance
functions (including specular re
ections) and topological
changes in the estimated surface.

Our short-term agenda includes experimenting with
real images and more general re
ection models. We are
also interested in including accommodation cues into our
models, and addressing the characterization and compu-
tation of the correspondence set.

Although w euse a deterministic formulation of the
problem, a statistical interpretation is also possible, albeit
not explored in this paper.
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