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Abstract

We presenta new image segmentationalgorithm based
on graphcuts. Our maintool is sepaation of each pixel p
from a specialpoint outsidethe image by a cut of a mini-
mumcost. Sud a cut createsa group of pixelsC, around
ead pixel. We showthat thesegroupsC,, are either dis-
joint or nestedin eat other and so they give a natural
segmentationof the image. In addition this property al-
lows an efficientimplementatiorof the algorithm because
for mostpixelsp the computationof Cp, is not performed
onthewholegraph. We inspectall C,,’s anddiscard those
which are notinteresting for exampleif they are too small.
This procedue automaticallygroupssmall componentso-
gether or megestheminto nearbylarge clustes. Effec-
tively our sggmentationis performedby extracting signifi-
cantnon-intesectingclosedcontouss. We presentinterest-
ing sggmentatiorresultson real andartificial images.

1 Intr oduction

A popularframework for image sggmentation(or data
clustering)is graph partitioning. A weightedundirected
graphG = (V, E) is constructedywhereV is thesetof im-
agepixelsandedgesF connecineighboringpixelsaccord-
ing to someprescribedheighborhoodsystem. The weight
w onanedgee = {p, g} measureshe similarity between
pixelsp andg. Usuallyw in anincreasingunctionof sim-
ilarity. The goal of graphpartitioningis to breakV into a
few disjoint setsVi, . .., Vi s.t. the similarity acrossixels
inV; # V; issmall.

A lot of prior work performspartitioningbasecn purely
local properties([5]). While methodsbasedonly on local
propertiesarein generalery efficient, they oftenfail to cap-
turetheimportantglobal propertieof a scengseg[8] for a
discussion).In recentyears,graphcutshave emegedasa
powerful optimizationtechniquewhich allows extractionof
globalinformation([10], [8], [3], [7], [4], [1]). We propose
anew sggmentatiormethodbasedon graphcuts. We begin

by reviewing graphcuts and segmentationmethodsbased
on graphcuts.

1.1 Graph Cuts

Supposed and B aresubsetof V' s.t. V = AU B and
AN B = (. Thenthe (A4, B)-cut is the subsetof edges
whichconnectd andB. If C isthe (A4, B)-cutthenits cost
is justthesumof its edgeweights:
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A minimum cut is a cut of the minimum cost. It canbe
foundefficiently, for examplesee[2]. In generaltheremay
be severalminimumcuts.

In arootedvariantof the minimum cut problemwe are
giventwo distinct nodess and¢ which we call terminals.
Here we want to find the minimum (A, B)-cut underthe
restrictionthats € A andt € B. We usenotation(s, t)-cut
to denotea cut underthis restriction. If C is an (s, )-cut
thenit splits verticesinto two setswhich we denoteby C,
andC} with s € C,; andt € Cy.

1.2 Segmentationby cuts

Z. Wu andR. Leahy[10] proposedan algorithmwhich
optimally partitionsthegraphinto k£ subgraphsuchthatthe
maximuminter-subgraphcut is minimized. This solution
minimizesthe similarity acrossdifferentsubgraphs. The
algorithmworks recursiely by splitting a segmentin two
partsby aminimumcut, until thewholegraphis partitioned
into k£ parts. To avoid cutting out a single pixel which is
well connectedo its neighborghe edgeweightsshouldde-
creasdast. Thatis seseringjustafew edgesetweemixels
with similar intensitiesshouldbe moreexpensve thanser-
eringmary edgeshetweerpixelswith differentintensities.
However evenwith suchweightassignmentghis approach
preferscutting out smallisolatedclustersof the graphand
alsothe choiceof theright & is difficult.
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To avoid the problemof smallclusters,J. ShiandJ. Ma-
lik [8] proposeto normalizethe costof an (A, B)-cut as
follows:

c(C)
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In additionto minimizing the similarity betweenA and B,
the normalizedcut maximizesthe normalizedassociation,
i.e. the similarity within eachgroup. The problemof min-
imizing the normalizedcutis NP-hard,andin [8] they find
an approximatesolution basedon the generalizedeigen-
value problem (for aninterestingdiscussionof segmenta-
tion algorithmsbasedn eigervectorssee[9]).

Normalizedcut algorithmhasbeenvery successfuand
has been applied to mary types of grouping problems.
However there are caseswhenit hasdifficulties. Perona
and Freeman6] provide an example. They considerseg-
mentationof a structuredforegroundfrom an unstructured
backgroundseefigure 4(a) for an illustration. The fore-
ground pixels have large similarity to eachother, but the
backgroundpixels are dissimilar Bipartitioning into the
foregroundandthe backgroundails eitherdueto a badap-
proximationor thefactthatnormalizedcutseekdo partition
theimageinto two groupswherepixels within eachgroup
aresimilar.

While remaving the biasto small sgmentsnormalized
cut is biasedtowardssplitting the imageinto two partsof
equalweight. An extremeexampleis in figure 1. Theback-
groundis 50 by 100 with intensity 120. The foreground
consistsof a 10 by 10 squarewith intensity 150. On the
left sideof the squarethereis a narrav rampbetweerfore-

Ne(C) =
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groundandthe backgrounds.t. thereis a gap5 pixel wide

in the edgebetweenthe squareand the background. As-

sumethateachpixel is connectedo its 4 nearestheighbors.
The normalizedcostof the cut which separateshe square
from thebackgrounchascostat least;72%— = g5 where
w is the costof an edgebetweenpixels of the sameinten-
sity (herewe just consideredhe costof the highestof two
termsin equation(1)). However the normalizedcostof a
cutwhich splitstheimagevertically in two equalpiecesis
approximately; 5% — + 30w — — - Thusregardless
of the weights, the cut which seversonly high costedges
hascostsmallerthanthe costof a cut which seversjust 5

high costedges.

Onecanthink aboutotherwaysto normalizethe cut, for
exampleby thetotal numberof edgesn the cut. Intuitively
this correspondso finding the highestcontrastedge. First
of all this approactstill createamary small clusters. Sec-
ond considerfigure 2(a). This figure has3 rectanglesof
differentsizestacled on top of eachotherThe bottomand
thetop rectanglesreshadedDueto theshadingtheinner
andoutercontoursaroundthe middlerectangledecreasén
contrastfrom left to right. For mary weight choices,the
optimalcut normalizedby numberof edgeds shavn in fig-
ure 2(b). It consistsof the brightestpartsof the contours
aroundthe middle rectangleand cutsthroughthe inside of
the middle rectangle. The cost of including a few heary
edgesds averagedut, andasaresultthe bestcontourfound
is acombinationof thetwo distinctcontourspercevedby a
humanobserer.

An interestingapproachnot basedon bipartitioningis
by Y. Gdalyahu,D. Weinshalland M. Werman[3]. They
proposeastochasticegmentatioralgorithmwhichis based
on k-way cuts,whichis a generalizatiorof thetwo way cut
definedbefore.

1.3 Our approach

We proposea new algorithmbasecdn rootedgraphcuts.
Out of thethreemethodgdiscussedbove, our algorithmis
mostsimilar to the onein [10]. However insteadof parti-
tioning the graphoptimally into k& subgraphswe usegraph
cutsto directly searchfor a closedcontourof a small cost
aroundeachpixel.

We introducea new graphnodet andconnecthe pixels
on the boundaryof the imageto ¢ with edgesof appropri-
ately chosernsmallweight. This new additionto the graph
structuresenestwo purposesFirstit assignsomelow cost
to the contourconsistingof theimageboundary(the costof
this contouris the sumof the weightsof edgesincidenton
t). Secondlynodet intuitively representshe sceneoutside
the imagewhich is not similar to ary of the pixel nodes.
Thusto find a low cost contouraroundp we separatep
from the external nodet by a minimum (p, t)-cut. This



cut createsa group of pixels C, containingp. We show

that we canfind minimum cutss.t. C,’s areeithernested
in eachother or disjoint. Thus C}’s give a natural parti-

tioning of the graph. In additionthis propertyallows usto

implementthe algorithm efficiently. We excludefrom the

segmentatiorell C,,’s which areuninterestingfor example
all C,’s which aresmallerthansomeprescribedsize. This

procedureautomaticallygroupssmallcomponentsogether
or memgestheminto larger clusters. Effectively our algo-
rithm performssegmentationby finding significantclosed
contourswhich cantouchbut cannotintersect.We thenre-

cursiely applyouralgorithmto eachsegmentuntil acertain
stoppingcriterionis reachedThis criterionimpliesthatno

moreinterestingcontourscanbe found.

This paperis organizedasfollows. In section2 we ex-
plainouralgorithm,in section3 we shov how to implement
it efficiently, andin section4 we presenthe experimental
results.

2 NestedCuts
2.1 Graph Structure

We begin by describinghe structureof our graph.Let P
bethesetof all imagepixelsandlet V' = {{p,q} | p,q €
P} be a prescribedneighborhoodsystem. A common
choicefor A is the setof all pixel pairswithin somedis-
tancefrom eachother The setof verticesin our graphis
V =P U {t}. Thesetof edgess

E =N U {{p,t} | p isontheimagebordef}.

Thespecialnodet alwayssenesasoneof theterminals.It

is intuitively interpretecasanodeoutsidetheimagedissim-
ilar to every pixel node.Theweightof edges{p, ¢} € N is

proportionalto the similarity betweenpixelsp andg. The
weightof edges{t, p} will bediscussedater, butin general
wewill keepit low.

2.1.1 Main Theorems

Givenapixelp, let C beaminimum(p, t)-cut. We have the
following results:

Theorem1 If ¢ € C, thenthereis a minimum(g, £)-cutC’
s.t.C;, C Cy.

Theorem?2 If ¢ ¢ C,, thenthereis a minimum(g, £)-cutC’
s.t.eitherC,NCp =B or C, C Cy.

We will give intuition aboutthe theoremsin a simple
situationwhen cutsform paths.V¢ give the generalproofs
in theappendix.

Supposetheoreml is false. Let C’ be any minimum
(g,t)-cut. This caseis illustratedin figure 3(a). Here

(a) Theoreml
Figure 3.

thick solid anddashededgesshow cut C andthin solid and

dashededgesshawv cut C'. Cut ¢’ consistsof the dashed
thin pathandthe solid thin path. It preferscuttingalongthe

thin solid pathinsteadof thethick dashedath. Thatmeans
thatthethin solid pathis cheapethanthethick dashegath.

ButthencutC shouldalsoprefercuttingalongthethin solid

pathinsteadof the thick dashedhath,andwe geta contra-
diction.

Now supposeheoren® isfalse.Let C’ beany minimum
(¢,t) cut. Consideffigure1(b). AgaincutC’ preferscutting
alongthe thin solid pathinsteadof the thick dashedpath.
But thatmeanghatcut C' shouldalsoprefercuttingthethin
solid edge whichis againa contradiction.

2.2 Weightson edges{p, t}

We assignthe sameedgeweight w,; for all edgesin
{{p,t} | p is ontheimagebordet. Thechoiceof w; plays
animportantrole in the algorithm. In generalwe wantto
assignw; a low weight, since eachpixel p is not simi-
lar to t. Anotherway of looking at it is that the contour
consistingof the border of the image should have a low
cost. However, if w; is too small, thenfor all p the opti-
mal (p,t)-cutis s.t. C, = P. Thereforewe choosea dis-
creterangeW = {wWpin, Wmae } andwe usebinary search
to find the smallestw; € W s.t. 3C, with threshold <
|Cpl < |P| — threshold. Here|S| denoteshe setsizeand
threshold is the smallestsgmentsize we allow. If there
is no suchw; the segmentationis stopped. Otherwisethe
imageis segmentedby C,,’s andwe apply thealgorithmre-
cursiely to eachresultingsegment.

Thusw; controlsthe maximumcostof cutswe arewill-
ing to includein the sgmentation We do notincludein the
segmentationary cut of costmore thanw; multiplied by
the boundarylength. So our choiceof wy,;;, andwy, . IS
asfollows: w.,;n, is justthe smallestpossibleedgeweight;
Wmae 1S the largestpossibleedgeweight s.t. the contour
consistingof edgeswith weightsw,y,,, would be still con-
sidereda goodcontourto includein the segmentation.No-
tice now thatin mary caseghe boundarylengthis longer
thanthe length of contoursinside the image(If we expect
animageto containcontourslongerthanthe boundarywe
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cancreatemoreedgedo ¢ from the boundarypixels). The
segmentationis stoppedwhenthereis no cut cheapethan
wWmae timesthe boundarylengthwhich is a gooddecision
becausg¢henmostlik ely thereareno goodcontourdeft. If

wy € W with the desiredpropertyis found andit is not
equalto wy,,,, then after we are done sgmentingthere
maybestill good contourswhich are not found (i.e. con-
toursconsistingof edgeswith weightsin W but largerthan
currentw;). But thenthealgorithmproceedsecursvely to

find thosecontours.

2.3 NestedCuts algorithm

0. Create a new graph

1. Use binary search to find snall est
we €W s.t. thereis a Cp with
threshold < |Cp| < |P| — threshold

2. If w, at step 1 is not found,

3. For each p find C.
Discard Cp if |Cp| < threshold or
|Cpl > |P| — threshold

4., Recursively apply the algorithmto
all segnents.

exit

At thedeepetitevelsof recursionthe costsof cutsgetlarger
Thuswe getahierarchyof sgmentationsvherethe deeper
levelsof the hierarchyin generakontainwealer contours.

In the currentimplementatiorthedecisiononwhetheror
notincludeC), in thefinal segmentatioris basednits size.
However ary othercriterioncanbe usedinstead.

3 Efficient Implementation

As statedthealgorithmin the previoussectionwould be
very inefficient. In this sectionwe discussthree stepswe
take to implementit efficiently.

3.1 Sampling

Recallthatin stepl of our algorithmfor a givenw; we
needto testif thereis a Cp s.t. threshold < |Cp| <

|P| — threshold. To implementthis testefficiently we
sampler pixelsat random. If afterr trials no satishctory
Cy is found,we assumehatno such(, exists.
Supposégherearen pixels,ands of themsatisfythede-
siredproperty Thenthe probabilitythatwe make r random
trials without replacementind do not find ary of theses

pixelsis 05"; In practicewe chooser sothatif atleast
10% of pixels have the desiredproperty the probability to

missall of themis lessthan10%.

3.2 Graph Reduction

Theoremdl and?2 allow usto reducehegraphsize.Sup-
posewe wantto computean (s, t)-cutands € C, for some
p. Thenallp € Gp canbe contractednto onenodé. Fur
thermoreif thereis g s.t. Cq C Cp thenall nodesin Cy can
alsobecontractednto onenode.

Therequiredstorages linearin thesizeof thegraph.We
keepa separatgraphfor eachC), which containsonly the
nodesof Cp,. As soonasanew C; C C), is found,a new
graphfor C, is createdandall nodesof C, arecontracted
to onenodein thegraphfor Cp.

3.3 Further speedups

We can further reducethe computationsrequired in
step3 of our algorithm. Supposeor a pixel p we have al-
readycomputedthe minimum (p, ¢)-cut C andg € Cp. It
is easyto obsenethatif thecostof theminimum (g, p)-cut
is largerthanor equalto ¢(C) thenthe minimum (g, t)-cut
and(p, t)-cutareequal.We canexploit this fact.

The cost of the minimum (g, p)-cut is equal to the
amountof flow we can pushfrom ¢ to p, see[2]. Thus
if we canpushflow of coste(C) from g to p thenCy = C,.
If neighboringpixels p and ¢ have similar color, thenwe
canpushflow of coste(C') usingjust afew edgedrom the
graph. Indeedwe found thatin mary caseswe can push
enoughflow justthrougha singleedgefrom ¢ to p.

The algorithmproceedsasfollows. In the beginningall
pixels are marked unprocessedWhile thereis an unpro-
cessedpixel p we computethe minimum (p, t)-cut C and
markp to be processedFor all neighborsy of p which are
closein colorto p andarestill unprocessedye cuta small
pieceof thegraph(usuallyof 40 nodes)roundpixelsp and
g andcheckif we canpushflow of sizec(C) from ¢ to p. If
yeswe markg asprocesse@ndcontinuethis processow
looking attheneighborof ¢. If noweleave ¢ unprocessed.

1To contractnodesin somesetS we replaceall nodesin S by a new
nodes, remove all edgeswith both endpointsin S, andreplacemultiple
edgesetweens andp ¢ S by asingleedgewith weightequalto the sum
of themultiple edgeweights.
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Figure 5. Baseball image. Size 221 by 147. Running time 10 minutes. 5 levels in the hierarchy.

4 Experimental Results

In this sectionwe presensomeexperimenton segment-
ing intensityimages.The mostimportantparametersf the
algorithmare the edgeweights. Usually sggmentationre-
sultsarerathersensitve thesewneights. Theimportantfactor
in choosingthe edgeweightsis to make surethey decrease
rapidly enoughwith the decreasén similarity. A common
choice(usedin [10],[8], [3]) is

_ Up—19)? —d(p,q)?
’LU( aq) =€ 7T Xe ‘74

wherel, is the intensity of pixel p, d(p, ¢) is the distance
betweenpixels p andg ando; andoy arethe control pa-
rameters We chosedifferentweightswhich have a similar
functionalform:

2M_|Ip —1I4|
w(p, q) = maz (72(“”1) ,1)
For all theexperimentswe setM = 25, threshold = 50,
Wmnaz = 2'%, wmin = 1. For theimagein section4.1 we
used4 nearesheighborsandfor all otherimageswe used
8 nearesheighbors.Theresultsaredisplayedby assigning
eachsegmenta uniqueintensity

4.1 Structured foreground and unstructured
background

Figure4 shovs anexamplesimilarto theonein [6]. The
intensitiesaredistributeduniformly betweerD and255 for
the background between50 and 55 for the larger square
and between80 and 85 for the smallersquare. Our algo-
rithm achievesgood segmentation foregroundsquaresare
segmentedut andthe unstructuredackgrounds grouped
together A few spuriouspixels which have similar inten-
sitiesto the intensitiesof the squareget groupedtogether
with thesquares.

4.2 Baseballimage

Figure 5(a) shavs a baseballimage from [8]. Fig-
ures5(b) and (c) shawv our resultsat the top and the bot-
tom level of the hierarchy On the top level, the significant
piecesof both playersare sgmentedout. On the bottom
level, the backgroundand the playersare split into more
parts. Interestinglythe shoeof the top playeris segmented
out, even thoughthe pixels inside shoehave visibly large
intensityvariation. This is becausdhe contouraroundthe
shoeis strong,andeventhoughthe contoursnsidetheshoe
arealsostrongthey do not surroundarny segmentof signifi-
cantsize.

Notice thatin spitethe factthatwe forbid C}’s of small
size, there are sggmentsof small size, especiallyon the
higherlevels of hierarchyaroundtheintensityedges.Sup-
poseC, C C, andC, passesursizerequirementsNever-
thelesC; andC), canoverlapin suchaway thatC, breaks
C,, in smallpiecesgespeciallyaroundtheboundary In prin-
ciple this canbe easilydetectecandcorrectedput we have
notimplementedhis yet.

4.3 Peppersimage

Figure6(a)shavs animagewith pepperdakenfrom the
machinevision textbook. Figures6(b) and(c) show there-
sultsat thefirst andthelastlevels of the hierarchy On the
bottom of the hierarchythe thin long pepperin the fore-
groundis segmentedout from a similar pepperon the bot-
tom of theimageandfrom a small pieceof similar pepper
ontheleft. Howeverthe otherbig peppemntheforeground
is splitinto severalparts.
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Figure 6. Peppers image. Size 128 by 128. Running time 2.5 minutes. 5 levels in the hierarchy.

Appendix

PrROOF: (Theoreml)
Supposéhe theoremis false. Let C’ be ary minimum

(g,t)-cut. DefineedgessetS2Z, which containsall edges

pq’ _
betweerpixelsin C, N C, andC, N Cj.

SPl={e|enCp,NCy#0 and enC, N C} # 0}

Similarly we defineS2?, 27,681, Spa,
lows:
Skl ={e|enCpynCy#0 and enCp, N Cy # 0}
Shi={elenCpynC; #0 and enC, N C} # 0}
Spe =1{elenCpynCy#0 and enCp,NCY # 0}
Shi={e|lenCpyNCy# 0 and enC, N Cy # 0}
SP={e|lenCpynC)#0 andenCp,NC} # 0}

74 }
andS,; asfol

Usingthe setsdefinedabaove we cansplit C andC’:
C =8P U SETU P U SET
C' = SpIuUSEI U SETU SPL.
We candefinetwo new cuts,a (g, t)-cutC"” anda (p, t)-cut
CIII:
C" = SpUSHUSHE
C =8Py SeTy SBL
ObserethatCy = C, N C, andCy’ = Cp U C,;. Now
c(C") > ¢(C"), or otherwiseC" is the minimum (g, t) cut
requiredby thetheorem Sinceall S¢¢’s aredisjoint, we get
that ) ) B
c(SEI) > c(Sp]) + c(Sgq)-
Using this fact and writing out the costsof C andC" in

termsof the S’s we derive thate(C) > ¢(C"), whichis a
contradiction. ]

The proof of theorem2 is very similar to the proof of

theoreml.
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