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Abstract

e consider a scene, containing many objects moving with
constant vel ocity along straight line paths, seen fromthree ref-
erence viewpoints at three different times.The scene may even
consist only of moving objectswith no static features. Wewish
to create a new image sequence showing the scene from arbi-
trary viewing position and arbitrary time. We make use of a
newly discovered tool, the “ dual Htensor” [1], that connects
together three views of a coplanar configuration of (unlabel ed)
static and moving points. The newly synthesized images use
constant vel ocity in theworldto achiverealistic and physically
correct images.

1 Introduction

Consider the following dynamic image stabilization prob-
lem. We are given a coplanar configuration of static and mov-
ing objects (along straight line paths) seen in three different
views, each taken at adifferent time. Alternatively, thesceneis
3D but the cameras’ optical centersare aligned, or the cameras
are affine — in other words, the image to image transforma-
tionsare 3 x 3 homography matrices. The number of moving
objectscan bevery large— at the extreme, theentire scene may
consist of moving objects— and we are not given prior infor-
mation about which object i s static and which objects are mov-
ing. The only information is the three views, and we assume
we can find dense correspondences between them by means of
image correlation, for example.

We wish to stabilize the sequence, i.e., factor out the view-
ing transformation, and create a new segquence in which the
static features are stable whereas the moving features are syn-
thesized at new time steps as if they had been moving at con-
stant velocities. The synthesis can take the form of interpola-
tion or extrapolationin time.

Thistype of dynamic synthesis problem is useful for crest-
ing representations, such as animagemosaic [11, 12], that con-
tainatempora dimensionin additionto the spatial dimensions.
Also of interest are graphics applications like view-morphing
or themore recent dynamic view morphing [6]. Other applica
tionsinclude collision analysis between a moving vision plat-
form and approaching vehicles, and image sequence compres-
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sion. Our approach is most useful to these applicationsin sit-
uations where the scene is mostly planar, or the cameraisun-
dergoing mostly rotational motion, and the sceneisrichin dy-
namic information.

Themajor challengesin thistask aretwofold. First, the pro-
cess of factoring out the viewing transformeation boils down to
recovering the image-to-image transformations, i.e., the pair-
wise homography matrices. However, thefeatures are not nec-
essarily static in space, and moreover, there may be no static
features at all, i.e., al the matching triplets arise from mov-
ing featuresin space. In other words, we must use a technique
that can treat the measurements (matching triplets) arising from
static and moving pointsaike. To thisend, we adopt the“dual
Htensor” recently introducedin[1], described in Section 2, and
modify it to our needs. During the synthesis process the ob-
jects on the world plane should be moving with constant ve-
locity, but because of perspective effects the constant vel ocity
is not necessarily conserved in the image coordinate system.
We show that constant velocity in the world plane can be gen-
erated by constructinga 1D projectivetransformation between
the time function and the the warping transformation. In this
manner, physically correct interpolation and extrapol ation can
both be achieved during the synthesis process. It isthen aso
possible to use the transformation for collision anaysis or for
any other application that requires us to predict the positions
of moving features, assuming constant-vel ocity motion, at any
time step.

A relatively large body of research existson the synthesisof
physically correct new viewsfrom asmall number of reference
views (cf. [2, 8, 9, 5]), but none of these apply directly to dy-
namic scenes. Recently, the problem of reconstruction (using
known camera-to-camera transformations) of moving points
along straight line and conic paths was introduced in [3, 7].
However, this method assumes that five or more views are
available (nine, for conics). More closely related to our work
isthe dynamic view interpol ation between pairs of viewsintro-
ducedin[6]. Asin our case, the camera-to-camera transforma
tionismodel ed by ahomography matrix, but itisassumed to be
known (or recoverable by matching static points). Each mov-
ing object must somehow be segmented out (by forming lay-



Figure 1. The dual homography tensor and moving points.
The collineations A, B are from view 2to 1 and 3to 1 re-
spectively. If the triplet p, p’, p” are projections of a moving
point along aline on = then p, Ap’, Bp” are collinear in view
1. Thus, p' (Ap’ x Bp") = 0, 0r p'p”p"* Hyji = 0 where
Hij = emua?bz.

ers, one per object) and a number of matching points must be
identified on each object for the purpose of recovering itsrela-
tive motion (object fundamental matrix) and computing a pre-
warping transformation for theobject. In our approach, itisnot
required to segment the scene into static and moving points,
and there is no requirement for separate pre-warping of each
moving object in order to create a constant-velocity synthesis.
Furthermore, the synthesis process is physically correct at all
time steps, not only for those between (interpolation) the orig-
inal reference views but also for time steps beyond them (ex-
trapolation).

2 Background: Homographies and Dual Hten-
Ors

In the projective plane any four pointsin general position
can be uniquely mapped into any other four points. Such a
mapping iscalled acollineation and is defined, up to scale, by
a3 x 3 invertiblematrix. Such matrices are sometimes referred
to as homographies. A collineation is defined by four pairs of
meatching points; each pair provides two linear constraints on
the entries of the homography matrix. If H isahomography
matrix defined by four matching pairsof points, then H~7 (in-
verse trangpose) is the dual homography that maps lines onto
lines.

The projective planeisuseful for modeling theimage plane.
Consider a collection of points P, ..., P, in space lying on a
plane = viewed from two viewpoints. The projections of P;
are p;, pl in views 1,2 respectively. Because the collineations
formagroup, there existsauniquehomography matrix H . that
satisfies the relation H.p; = pi, ¢ = 1,...,n, where = de-
notes equality up to scale. H, isuniquely determined by four
matching pairs from the set of » matching pairs. Moreover,
H-Ts = s will map between matching liness, s’ arising from
3D lineslyingin the plane 7. Likewise, Hs' = s will map
between matching linesfrom view 2 toview 1.

Consider three views of a planar surface with the homogra-

phy matrices A, B from views 2 to 1 and from 3 to 1 respec-
tively. Let a point P be moving on the planar surface aong
some straight line path simultaneoudly with the motion of the
camera. Let theprojectionof P at timet; ontoview 1 bep, the
projectionof P at timet, ontoview 2 bep’, and the projection
of P a timeis ontoview 3 bep” — see Fig. 1). Because P
traces a straight line path we must have

pl (Ap" x Bp") = det(p, Ap’, Bp") =0

whether the point P did not move, i.e., theoptical raysthrough
p,p,p" intersect at a point, or P did move (the optica rays
intersect on a line). Therefore, the triplet of matching points
p,p’, p’" contributesameasurement regardless of whether P is
static or dynamic. The measurement is towards the following
object:

Hijk = emua?b}j (1)
where ¢;,,,, isthe cross product tensor, and the measurement
itself issimply p'p"/p""* H;;» = 0. To understand what this
means we must make a detour into tensor notation.

When workingwithtensor objectsit matterswhether the co-
ordinate vectors stand for pointsor lines. A point is an object
whose coordinates are specified with superscripts, i.e, p' =
(p*, p?, p?). These are caled contravariant vectors. A lingin
P? iscalled acovariant vector and isrepresented by subscripts,
i.e, s; = (s1,s2,s3). Indices repeated in covariant and con-
travariant forms are summed over, i.e, p's; = p'si + p?ss +
p3s3. Thisis known as a contraction. For example, if p isa
pointincident to (i.e., lyingon) aline s in P2, then p’s; = 0.

Vectorsarea so called tensorsof valence 1. 2-valent tensors
(matrices) have two indices and the transformation they repre-
sent depends on the covariant-contravariant positioning of the
indices. For example, a’ isamapping from pointsto points (a
collineation, for example), and hyperplanes (linesin P?) to hy-
perplanes, because ! p' = ¢/ and als; = r; (in matrix form:
Ap = qand AT s = r); a;; maps pointsto hyperplanes; and a’/
maps hyperplanes to points. When viewed as a matrix the row
and column positionsare determined accordingly: ina] and a;;
theindex ¢ runsover the columnsand j runsover therows, thus
b¥aj = ¢} isBA = C'inmatrix form. An outer product of two

1-valent tensors (vectors), a; b/, isa 2-valent tensor ¢! whose
i,j entriesare a;b’; note that in matrix form C' = ba™. A 3-
valent tensor hasthreeindices, say 1/7*. Thepositioningof the
indicesreveal s the geometric nature of the mapping: for exam-
ple p's; ka must be a point because thei,j indicesdrop outin
the contraction processand we are | eft with acontravariant vec-
tor (theindex k isasuperscript). Thus ka mapsapointinthe
first coordinateframe and alinein the second coordinateframe
intoapointinthethird coordinateframe. A singlecontraction,
say p'HI*, of a3-valent tensor leaves us with amatrix. Note
that when p is (1,0,0) or (0,1,0), or (0,0, 1) theresult isa
“dice” of thetensor.

The cross process (vector product) operationc = a x b can
be written as a “ skew-symmetric” matrix ¢ = [a]xb. We can
rewrite this in tensor form where ¢, = ¢;;4a’b’ isthe cross
product of two points (contravariant vectors) resulting in the
line (covariant vector) cj,. Similarly, ¢* = ¢*a;b; represents
the point intersection of thetwo lines a; and b;.



The tensor H;;; defined above was introduced in [1] and
referred to as a “dual homography tensor” or dua Htensor in
short. We see that each matching triplet p, p’, p” contributes
one linear equation

PiP/jP//kHijk -0

to the 27 entries of the dual Htensor, regardless of whether the
matches arose from a static or moving point (along a straight-
line path). Furthermore, in [1] it was shown that if among the
measurements, x triplets are known to arise from static points,
then the minimal number of moving pointsin the total set of
measurements should be at least 16 — 4. In other words, inan
completely unsegmented situation, i.e., it isnot knownwhether
amatching triplet has arisen from a static or moving point, one
needs at least 26 matching triplets, out of which 16 must arise
from moving points. At the other extreme, if four matching
triplets are known to arise from static points, then these four
matching tripletsare all one needsto solvefor H;jy.

3 Synthesisof Dynamic Scenes

Suppose we are given a set of matching tripletsp, p’, p” in
views 1,2,3 respectively. This can be aquired either by means
of dense matching (optica flow) as we do, or using a series
of sparse line segment correspondences of [10], The match-
ing triplets may arise from static or from moving points. In
the completely unlabeled configuration, i.e., when thereis no
prior information as to what measurement is static and what is
dynamic, we will need at least 26 measurements of matching
triplets(out of which at least 16 arise from dynamic points) for
alinear solution for the dual Htensor from pip// p'* H;;, = 0.
If some of the measurements are labeled as arising from static
points, fewer matching triplets are necessary (see the previous
section).

Once H;;; is recovered from the image measurements we
can factor out the viewing transformation between pairs of im-
ages using the image-to-image mapping induced by the planar
surface. Suppose we would like to map view 1 onto view 3,
i.e., for every point p in view 1 we back-project the intersec-
tion of the opticd ray through p and the planar surface onto p”’
inview 3. Thisisdone as follows (see Fig. 2):

The double contraction of pip"/ H;;;, isthe projection of the
straight line path of the scene point ontoview 3. If thepair p, p’
arise from a static point then p'p’ H, 1, vanishes. Let p’ range
over the two unit vectorse = (1,0,0)and e = (0, 1, 0); then

P’ = (p'ed Hyjp) x (p'é Hyjp)
Hence every pointin one view can be mapped directly ontoits
matching point in any of the remaining two views, for example
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Therefore, once the dual Htensor is recovered from any con-
figuration of static and dynamic pointsit can be used to stabi-
lize the static portion of the scene by warping the viewsonto a
canonical coordinate frame — which could be any one of the
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Figure 2. Thedual Htensor canform adirectimage-to-image
mapping (a collineation) between pairs of views. (a) Consider
apoint ' in view 2 and its matching points §, 6" in views
1,3. The matrix §” H,;; maps between two pencils of lines,
one through § in view 1 and the other through " in view 3.
Thus, p*6” H,; is aline through the matching point p”. (b)
We can therefore represent p”’ as the intersection of two lines
(p'e? Hiji) x (p'é® Hyj,) Where e, & are any two vectors, say
the standard basise = (1,0,0) ande = (0, 1, 0).
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Figure 3. Thepoint p’ isforward-warped to position p; in the
reference frame (view 1). The back-projection of p’ onto view
1ispj}, which coincideswith p if p, p’ arise from a static point
in space.

origina three frames (the reference view). The warping pro-
cess brings the static regions in the scene into alignment with
the reference view, whereas the dynamic regions are shifted
along the projection of the straight-line path onto the reference
view. We will now describe (i) the warping process, (ii) con-
stant velocity synthesis, and (iii) collision analysis of dynamic
festures.

3.1 Dynamic Warping

Suppose we wish to synthesi ze the scene from the viewing
position of view 1 (t = 1) at thetimesteps 1 < ¢ < 2. Wecan
usethe natural embedding of the Cartesian planein the projec-
tive plane P2 and identify the projective point p = [z, y, w]"
with the image point [u, v] T by [z, y, w]T +— [z/w,y/w]" in
the computations below. Let p; be the (yet unknown) position
of point p at timet. Let p), theback-projected matching point p*
ontoview 1, i.e.,p% = (p/jekHi]’k) X (p/jékHZ']'k). Let U5 de
note theimage displacement fromview 2toview 1, i.e, Uy =
p—p'. Thentheflow (dx, dy) needed to “forward warp” view
2 ontothereference view at timet, i.e., p; = p’ + [dz, dy] T, is

[ ;lz ] = Urz + (t = 1)(p} — p) 2



Note that if p, p’ arise from a static point, then p}, = p, i.e,
p), = p; thereforewe have U152 + (t — 1)0 = Uy, foral values
of ¢, so that p; will remain fixed at p regardless of the value of
t. A dynamic point, onthe other hand, will moveaongtheline
connecting p and p),. See Fig. 3 for an illustration.

Next, we wish to determinethe time step ¢ that conformsto
constant-vel ocity motioninworld coordinates, i.e., in thescene
coordinatesystem. Thiswill enable usto synthesize both inter-
polated and extrapolated motion of the dynamic regions.

We want to produce physically valid images, so we need to
preserve the correct speeds of the objects. Note that an object
moving at constant speed intheworld can produce apoint mov-
ing a varying speed on the image. Since the projection pro-
cess is a projective transformation, we know that the cross ra-
tio must be preserved. When converting 7" into ¢, we want to
preserve this cross ratio.

We will use the fact that we have three images at our dis-
posal and create a 1D collinestion between the progression of
time 7" in world coordinates and the term ¢ in equation (2). A
constant vel ocity inworld coordinatesisasuccession 1,2, 3, 7'
where 1,2, 3 correspond to the times of taking the three orig-
inal images, respectively. We wish to find for every choice of
T the corresponding value of ¢. Let p} be the back-projected
matching point p”” onto view 1, i.e. pf = (p"*e/ Hyjp) x
(p"*&/ H;;1). Thenat time T' = 3 we should have

1
‘ ||p7 —ol Ly
2k — 2l

Hence we have a 1D collineation .4 that maps the basis
(1,1),(2,1),(3,1) onto the basis (1, 1), (2, 1), (|lp} — pl| +
o5, — 2l [P, — pl|) For every chosen value of T we have

=]

Because three points uniquely determinea 1D collineation, we
can determine in thisway the synthesized position p, for any
time ", not necessarily between 1 and 3.

To handle problems arising from occlusion we note that
when1 < t < 2, p; can be generated by forward-warping
p’ as described above or by forward-warping p — the result of
which should be the same except in areas under occlusion. We
characterize the regions that have less information (due to oc-
clusion) by measuring a“dilation” factor from the dense corre-
spondencefield. A regionwhich isreveaed during thecamera
motion or object motionwill stretch or shrink depending onthe
direction of flow measurement (view 1to2 or 2to 1). Itisa-
ways preferable to take a region from the direction that results
in a shrinkage rather than an expansion. Therefore, we con-
sider theflow inboth directions/; » and Uz , and for each pixel
we choose the source image from which to perform forward-
warping that resultsin the smallest expansion, as measured by
the perimeter of the triangle defined by forward-warping the
neighborsin directions (N,SW,SE) using either /15 or Us;.

4 Experiments

We have conducted a number of experimentsin synthesiz-
ing new images at extrapolated time steps, i.e, 7 > 3 and

L |

(a) First Image. (b) Edges of the second view

overlayed on the third view.

(c) Second Image. (d) Edges of the first view

overlayed on the extrapol ated

(e) Third Image.
Figure 5. Time-extrapolation experiment. (a,c.e) are the
original images, (b) displaysthe overlay of two of the original
images, and (d,f) are extrapolated views overlaid on top of the
reference image; note that the static features are aligned.

() Enlarged section of 5(d).

T < 1, and dso from novel viewing positions. We have aso
used the concepts above to determinetimeto collisionin mov-
ing vehicle situations. Regarding synthesis of novel images,
consider Fig. 4, depicting images of aroad sequence. The mo-
tion of the camera was mostly rotational, as can be seen from
the overlay of thefirst and last imagesin Fig. 4c. The dual Ht-
ensor wasrecovered from adense flow field that was computed
in a coarse-to-fine framework [4]. Fig. 4d shows asynthesized
image extrapol ated backwardsintimeto 7 = —4. Theoverlay
of aportion of thisimage onto the reference imageisshownin
Fig. 4g9. Likewise, Figs. 4e,h show an image extrapolated for-
wardintimeto7' = 6 anditsoverlay ontothereferenceimage.
Finally, Figs. 4f,i show asynthesized top view of thetwo time-
extrapol ated scenes of Figs. 4d,e.

Fig. 5 depicts another situation involving three images of a
mostly planar scene with moving toy vehicles. Fig. 5d shows
an overlay of two out of the three views, and in Fig. 5ef an
time-extrapol ated image is synthesi zed overlayed on the refer-
ence image. Note that the static festures are aligned and the
dynamic features are displaced as a function of time.

In the last experiment, shown in Fig. 6, we made use of
the ability to correctly synthesize the position of dynamic fea-
turesacrosstimeto predict timeto collisionbetween aforward-
moving vision platform (on a vehicle) and neighboring vehi-



(g) Zoom of (d)

.(h) Zoom of (e)

and (e)
combined

Figure 4. Time-extrapolation experimentswith aroad sequence. (a,b) are the two extreme views, and (c) is their overlay, demonstrating
that the camera has undergone mostly rotational motion. (d) Synthesized image extrapolated backwardsintimeto 7' = —4. (€) Image
extrapolated forward intime to 7' = 6. (g,h) Overlay of (d,e) with referenceimage. (f,i) Top view of images (d,e).

cles. Thisis done as follows. We are given three images of
the scene when the camera is moving forward (along a straight
line), and the dual Htensor computed from the roadway (robust
estimation picksout the roadway asthe dominant planar region
inthescene). Wepick afixed locationp = p’ = p”" = (#,y,1)
in the three views corresponding to the center of the roadway.
Becausethevehicleismovingaong astraight lineweare guar-
anteed that the corresponding object pointstrace astraight-line
path. Therefore, the dual Htensor will back-project p’, p”’ onto
view 1 and create three collinear pointsp, p},, p,. SUPpPOSe, we
have a moving vehicle tracked along the three views; then its
matching pointsq, ¢’, ¢’ aso create atriplet of collinear points
4,4}, ¢ inview 1. Theintersection of the two lines will pre-
dict the point of collisioninview 1. The collisionwill occur if
there exist atimet such that p; =2 ¢; using the 1D collineation
framework defined in the previoussection. Alternatively, acol-
lislonwill occur if the crossratio of thequadruplesp, pf,, by, S
and ¢, ¢, ¢7, S are equal to one another, where S is the colli-
sionpointinimagel. Fig. 6illustratesthisideaby marking the
collision point in (d) and the back-projected pointsin (€).

5 Summary

We have presented a technique for synthesizing new im-
ages of dynamic scenes contai ning many objects moving along
straight-line paths. The method can handle any mixture of
static and dynamic features, including the extreme case in
which all the measurements arise from dynamic features. Our

method is based on two principles: (i) the use of the dual Ht-
ensor as an image-to-image mapping, and (ii) introducinga 1D
collineation between the time steps in the world coordinates
and the time steps in the reference image coordinates. The
latter allows us to create interpolations and extrapolations in
time and to predict the positions of dynamic features, assum-
ing constant-velocity motion, at any time step. We have im-
plemented theseideafor two applications: (i) dynamic morph-
ing, (ii) collision analysis. Other applications which were not
addressed here, that may benefit from these results, include dy-
namic image mosai cking and image sequence compression.
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