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Abstract

We presenta systemfor modelingbuildings from a sin-
gle correlation-basedDigital ElevationModel(DEM). The
model is constructedin two stages. The first stage seg-
mentsthe DEM into planar surfacepatchesthat describe
the building. Thesecondstage generatesthe final polygo-
nal modelof thebuilding usingweakgeometricconstraints.
We use robust estimationmethodsat different stages of
our modelingprocessto develop an efficient and noise-
insensitivemodelingsystem.Theproposedsystemis fully
automaticanddoesnot useanya priori informationabout
the shapeof the buildings. We presentresultson isolated
buildingsandon a largeareaof thecity of Berlin.

1. Intr oduction

Automaticextractionof descriptionsof buildings in 3D
is an essentialtask for a variety of applicationssuch as
telecommunicationsandurbanplanning. This task is dif-
ficult becauseof the complexity, numberanddiversity of
3D objectsof theurbanenvironment.Mostof themodeling
taskis currentlydonemanually. Thecostandtime involved
in manualreconstructionis high andhasmotivatedmuch
active researchon automatic3D detectionandreconstruc-
tion of buildings. In this paper, we presenta systemfor the
automaticmodelingof buildings from a single rangedata
image,a Digital ElevationModel (DEM). DEMs cancome
from laseraltimetryor stereo-basedmatchingof opticalim-
ages. The objective is to provide digital modelsto assist
planningfor wirelessnetworks.

We startwith a denseraw DEM that wasmadeusinga
correlation-basedstereomethod[5]. TheDEM hasa 50cm
resolutionand is madefrom 37.5cmresolutionaerial im-
ages.This DEM is theonly input of our modelingsystem.
The global strategy of this systemconsistsof two stages:
Thefirst stageis thesegmentationof theDEM into locally
planarsurfacesto recoverthevariousfacetsof thebuildings

from the raw DEM. We merge the redundantpatchesand
selectthebestpatchesto describethebuilding. Thesecond
stageis thevectorizationof theboundariesof eachsurface
patchto obtainthe modelof the buildings asfollows: we
built a syntheticDEM with theselectedplanarpatches.We
extractboundariesof thedifferentregionsof this synthetic
DEM to build an initial polygonalmodelsof thebuildings.
Finally, a refiningprocedureimposesgeometricconstraints
to regularizethe model. This modelingsystemprocesses
eachbuilding independently. It is restrictedto the build-
ings with flat roofs,but it is ableto modelbuildingsof all
shapes.In anotherreport,we have validatedtheresultsfor
the intentedapplication,that is simulationof coveragefor
planningof wirelessnetworks.

Previous Work A varietyof methodshave beenusedfor
building reconstruction(seefor exemple[1, 2, 3]). These
methodscan be divided into model-basedand strategy-
basedapproaches.The model-basedapproachesintegrate
into the modelsomeknowledgeaboutthe 3D real world.
The strategy-basedapproachesusea strategy to construct
themodel.Thisstrategycanbegrouping,matchingof prim-
itivesfrom multiple images,or robustapproximationof hy-
pothesesextractedfrom aDEM. Thesystemdescribedhere
follows thesecondclassof approaches.We proposeto use
several robust methods(seefor exemple[7]) to solve the
complex problemsof ourstrategy.

2. Detectionof buildings

We apply thewholeprocessonebuilding at a time. We
automaticallydetectandextract, from the raw DEM, each
building or groupof adjacentbuildings. First, we build a
heightmapby subtractingtheDigital TerrainModel (DTM
obtainedmanually)from the raw DEM. Then,we extract
eachblob which hasa sufficient sizeof our heightmapby
usinganarbitrarythreshold(weused6 meters)to obtainthe
objectsabovetheground,suchasbuildingsandvegetation.



Finally, we build a local DEM for eachextractedblob by
maskingthegroundin the raw DEM. We applya segmen-
tation andvectorizationprocessesto eachbuilding (in the
local DEM) independently, thenmergeall resultsto obtain
thefinal model.

3. Segmentationof the DEM

Thefirst objective is to extracta simpleandrepresenta-
tive descriptionof eachbuilding in the scenewithout any
previous knowledgeof their shape. By using a DEM as
the initial data, this problemcan be viewed as modeling
a cloud of 3D noisy data. Our approachis basedon the
ExSel++ framework presentedin [6]. Theauthorsdefinea
generalframework to extractparametricmodelsfrom dense
or sparsedata.Onecapabilityof theirframework is theabil-
ity to useandselectmultiple modelsto describethedata.

The DEM is a 2 -D map. Data from this mapmainly
correspondsto building roofsandground.Wehavechoosen
theplanarsurfacepatchmodelto describethedifferentparts
of thebuildings. We areableto describemostof thebuild-
ingsof the scenewith this simplemodel(exceptdomesor
cylindrical shapes).The segmentationprocessconsistsof
threemain stagesthat we will describeseparately:a data
explorationstagewhich generatesa list of modelhypothe-
ses;a merging stagewhich suppressesredundanthypothe-
ses;anda selectionstagewhich choosesthebestsetof hy-
pothesesthatdescribethedata.

3.1. Exploration stage
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Figure 1. (a) is the initial raw DEM and (b) the
or tho-ima ge of the building. The black area
in the other image is an example of extracted
hypotheses by the exploration stage.

Thepurposeof this stageis to producea list of possible
planarsurfacesof thebuilding (hypotheses).All thediffer-
entpartsof thefinal modelof thebuilding mustbefoundin
this stage.Theexplorationstageis basedon theRANSAC
procedure(RANdomSAmpleConsensus).Weadaptedthis
procedureto searchthe modelhypotheseswhich describe
thedifferentpartsof thedata(seefigure1).

Theexploratoryprocedureis iterative andeachstepcan
bedescribedasfollows: (1) randomlyselecta minimal set
of pointsto initialize amodelhypothesis,(2) grow thissub-
set with consistentdataand reject invalid points, and (3)
testthevalidity of themodelhypothesis(if thesupportset
exceedsa threshold). With a simple planarpatchmodel,
theminimal setof pointsneededto constructa planeis de-
fined by threenon-colinearpoints. We set the numberof
hypothesesto searchat 50.

Theminimalsetof pointsis selectedasfollows: thefirst
pointis randomlychosenfrom theDEM. Thetwo othersare
chosenfrom asmallwindow centeredat thefirst point. The
growing techniqueusesa searchprocessthatlooksfor can-
didatesneartheplanedeterminedby fitting thecurrenthy-
pothesis.Thecandidatesshouldbeneighborsin 2-D DEM
coordinates.We alsousea recency mapto conducttheex-
ploration of the scene. When we find a valid model hy-
pothesis,we storeit in therecency mapfor a finite number
of iterations(20 iterations).The valuesin the maparede-
creasedafter eachinitial randomsamplingeven if thereis
no valid hypothesis.Therandomselectionof theinitial set
of pointscannottakepointswhicharein therecency map.

3.2. Merging stage

We usea merging stagethat reducesthe redundancy in
thelist of hypothesesbeforetheselectionstage.We merge
two hypothesesif they have a significantoverlappingsur-
face,or if thereis a high probability that they correspond
to the samesurface. We estimatethe overlappingsurface
by using the numberof commonpoints of the two pla-
nar patches.Surfaceswith 80% overlaparemerged. The
secondconditionfor merging is basedon the statisticalF-
TEST. This statisticaltest comparesthe variancesof two
samplesof databy maximizingthe rejectionof the equiv-
alentcase.We computethe probability that the combined
patchesis betterthanthe individual. If theseprobability is
greaterthan0.9,we mergethetwo hypotheses.

3.3. Selectionstage

Thepurposeof theselectionstageis to decidewhichhy-
pothesesmust be kept. We want to remove the random-
nessof the explorationstageandselectthe minimum and
thebestsetof hypotheses.TheRANSAC procedurehasit
own selectionstageto selectthebestmodelof the list. We
however proposea different selectionprocessto find the
bestsetof models(i.e. planarpatches)that describesthe
building. This selectionstageis performedby castingthe
selectionproblemasan optimizationproblem. We useda
solutionbasedon the MDL principle (Minimum Descrip-
tion Length).



Thisstagedecideswhetherto keepor to rejectmodelhy-
pothesis:this is aBooleanoptimizationproblem.Thenum-
ber of hypothesesin thelist is thesizeof theproblem.
Let the vector be a setof mod-
els. is a Booleanvariablewhich expressesthepresence
( ) or not ( ) of themodel within theso-
lution . Thedescriptionlength valuefor thesubset
is definedasfollows:

(1)

is able to take into accountthe quality of a modeland
thepairwiseinteractionbetweenthemodels.The function

expressesthe benefitvalue for a particularmodel
of the list, and expressesthe costvalueof

theinteractionbetweenthemodels and . mustbe
maximizedto find thebestsubsetof models.We take:

(2)

(3)

,
is aweightwhichallowsusto adjusttheprefer-

enceof oneof thetwo terms, is thesizeof thesupport
of themodel and is thesumof residuals. is theEu-
clideandistancebetweenapoint andamodel .
favors the modelsfrom the list which have a largesupport
anda small error measure. limits the overlaps
betweenthemodelsof thesubsetthatweareevaluating.

To solve this Booleanoptimizationproblem,we needa
discreteoptimizationprocedure:we chosetheTabu search
proceduredescribedin [6]. Tabu searchis a generalheuris-
tic procedurefor globaloptimizationwhich canbeviewed
asanextensionof a steepestascentmethod.

3.4. The segmentationsystem

We developedtwo modesof explorationfor our exper-
iments. In the first modewe canusevery high resolution
DEMs. We do not constrainthehypotheses(i.e. theplanar
patches),so that we canfind all kind of roofs. With lower
resolutionDEMs, suchasthe onewe use(at 50cm/pixel),
the roofs are too coarseand the resultsof reconstruction
maynot bereliable. In thesecases,we usea secondmode
of exploration,wherehypothesesareconstrainedto corre-
spondto horizontalplanarpatches.Wetestedthesegmenta-
tion procedurewith multiple estimators(traditionalandro-
bust).Fromtheexperiments,weadopteddifferentmethods
for eachof the two modes.With thehorizontalconstraint,
we usethe LMS estimator. In the unconstrainedmodewe
usetheLS estimatorto keepthecomputationaltime low.
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Figure 2. The pair of images (a and d) cor -
responds to the initial DEM and an arbitrar y
view of the building using this DEM and the
or tho-photo, (b and e) corresponds to the
synthetic DEM built using a segmentation in
planar patc hes (22 patc hes selected) and (c
and f ) using the horizontal planar patc hes
segmentation (11 patc hes selected).

Resultsarepresentedin figure 2. We chosea complex
building to comparethe resultsof the two modesof seg-
mentation.Usingasegmentationinto planarpatchesof any
orientation(22 patches)allows us to obtaina bettervisual
3D reconstructionof thebuilding thanusinghorizontalpla-
narpatches(11 patches),but it is not alwaysreliable. The
high level of outliersin theDEM disturbsthesegmentation
process. The presenceof outliers requiresan increasein
thenumberof hypotheseswhich requiresa greatercompu-
tationaltime for eachstage.Theselectionprocessbecomes
a moredifficult task,which decreasesthe reproductibility
andthequality of the results.For this reason,we preferto
usethehorizontalplanarpatchessegmentation,whichgives
robustresultof reconstructionfor buildingsof all shapes.

4. Polygonalmodelof the building

Oncewe have extractedeachplanarsurfacepatchfrom
the roof of the building, we want to obtainthe polyhedral
modelof the building. Becausewe adopteda 2 -D strat-
egy to simplify theimplementationandto giveconsistency
to the final 3D model of the building, the 3D polyhedral
modelcorrespondsto a 2D polygonalmodelwith aneleva-
tion valueassociatedwith eachvertex. We proposea two-
stageprocess.Thefirst stageis thepolygonalizationof the
contoursof theselectedhypotheses,andthesecondstageis
an iterative refining procedure,which constrainssomean-
glesof thepolygonalmodelto beright or straight.



4.1. Polygonal approximation of the building

Pre-processing WeconstructasyntheticlocalDEM from
our list of modelswhereeachpixel is assignedto only one
model. This syntheticDEM allows us to guaranteea 2 -
D consistency of the futurepolygonalmodel. If a pixel of
the local DEM belongsto multiple models,thepixel is as-
signedto themodelwith thelowestelevation. If a pixel of
theDEM doesnot belongto any model,we take theeleva-
tion valueof the pixel from the raw DEM andassignthis
point to themodelwith theclosestZ valuein theneighbor-
hood.Next, we applya filtering procedurewith two stages.
First,wesuppressthesmallregions,thosewith lessthan50
pixels( ). Second,we applymorphologicalfilters to
smooththeboundaries(open/closethenclose/open).

ThesyntheticlocalDEM thatweobtainedcanbeviewed
asa segmentedimage. We proposea methodologyfor ex-
tracting the polygonalmodel from this segmentedDEM.
We begin by extractingtwo featuresfrom this image: the
junctions and the chains. Chainsare lists of successive
pointsalongtheboundariesof the differentregions. Junc-
tionsaretheendsof thechainsandcanhavedifferenttypes:
a simple junction is the intersectionof the borderof the
DEM and a chain, a double junction closesa chain, and
complex junction is at thethepointswheremultiple regions
meet.We presenttheframework in two distinctprocesses.
The first processcomputesa polygonalapproximationfor
eachchain,with thejunctionsremainingfixed. Thesecond
processanalyzesthe different configurationsof the junc-
tionsandadjuststheir positionsif necessary.

and

a. Cornercorrection

b. Processingof triple junction

Figure 3. Corner correction and junction pro-
cessing. Left is before and right is after .

Polygonal approximation of individual chains Our al-
gorithm for polygonalapproximationof individual chains
is basedon thesplit andmergealgorithm[4]. Theoriginal
algorithmusessuccessive split andmergestageswhile the
polygonalchainchanges.Then,a LeastSquaresapproxi-

mationstageestimatestheparametersof eachsegmentand
updatesthepositionsof thevertices.

Wehaveenhancedtheoriginalalgorithmwith threemain
features:(1) We addin the while loop, with the split and
mergestages,a new stagefor cornercorrection.This cor-
rectionhandlesthecasewherethecorneris ”rounded”and
is describedby two pointsinsteadof one(fig. 3a). (2) The
fitting stageof the segmentsand intersectionpoints is in-
sidethewhile loop becausethis stagemaystill requirefur-
ther split andmerge operations. (3) We usea LeastMe-
dian of Squares(LMS) estimatorto obtain a more robust
and representative solution of segments. Note that some
stagesgenerateverticesthat werenot presentin the origi-
nal chain.To selectthecorrespondingpointsin theoriginal
chain,we look for the nearestpointsin the original chain.
Thesepointsare usedto delimit the lists of pointsof the
chainusedfor segmentfitting.

Junction processing In thepolygonalapproximationpro-
cess,theendsof thechains(thejunctions)arefixedto avoid
a disconnectionin thepolygonalmodelof thebuilding. In
this process,we adjustthepositionsof the junctionsto ob-
taina morerepresentativepolygonalmodel.We processall
thejunctionsatthesametime. For eachtypeof junction,we
usea processbasedon LeastMedianof Squares.We ran-
domly sampletwo points in the differentchains,estimate
thepositionof thejunctionpoint andcomputeresidualsfor
all random-sets.Then,we selectthe solutionwhich mini-
mizesthemedianof residuals(fig. 3b).

4.2. Refining the modelwith angleconstraints

We haveextractedapolygonalmodelof thebuilding us-
ing a segmentedDEM. In this extraction,we have not as-
sumedany a priori knowledgeof theshapeof thebuilding.
We obtain polygonswith arbitrary angles. In man-made
environments,however, straightandright anglesareoften
present.Wepresentnext aprocesswhichtriesto imposean-
gle constraintson theglobalpolygonalmodelof thebuild-
ing, still allowing for non-rightor non-straightangles,using
amethodbasedon M-estimator.

The initial polygonalmodel of the building consists
of segmentswhicharelinkedby junctionsor verticesof the
polygonalchainsof the building model. Sincewe want to
preservetheglobalconsistency of themodel,thestrategy is
appliedto the global model. We approachthe problemof
orthogonalizationby theoptimizationof anobjective func-
tion . Thebestsolution correspondsto the minimum
of theobjective function:

(4)

This objective function comprisestwo components:a
component whichconstrainsanglesto be or and



acomponent whichrelatestheresultto theinitial data.We
associateoneanglefor eachpoint of thepolygonalchains,
two anglesfor the triple junction, andso on. The simple
junctionsare fixed becausethey correspondto bordersof
theimages.Let bethesetof all theanglevariablesof the
polygonalmodel,wehave:

(5)

Thecomponent allowsusto forcethepolygonalmodelto
havepreferedangles( , , , and ). Theorthog-
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Figure 4. (a) pol ygonal appr oximation and (b)
refinement.

onalizationprocessonly usesthepolygonalmodelasinput
data. We needto usea componentwhich relatesresult to
theinitial dataandavoidslargedistortionsonthepolygonal
model. Let be the setof pointsof the polygonalmodel
(junctionsandverticesof thepolygonalchains),we have:

is a point of the currentpolygonalmodel and is the
samepointof theinitial model. and aretwo weights
which control the influenceof the two componentsof the
objective function. We choose and

( is the thresholdusedin the mergestage
of the polygonalapproximationprocess)to have the same
costfor a distanceof from the initial modelandfor an
angulardifferenceof . Becausewehaveaninitial model
closeto thesolution,weusetheM-estimatormethodfor the
optimizationwith theTuckey function. After optimization,
weapplya mergeiterativeprocessto eliminatesomeof the
straightanglesor zero anglesfrom the polygonalchains.
Thewholeprocess,however, doesnot ensurethat theopti-
mizedpolygonsdo not intersect,sinceeachchainor junc-
tion is consideredseparately. Thoughthis situationdid not

occuredin our experiments,a final stageshouldcheckand
correcttheglobalmodelconsistency. Resultsarepresented
in figure4. Theorthogonalizationprocedurecorrectsmost
of theanglesof thebuilding.

5. Results

Theresultsof themodelingsystemarepresentedin fig-
ure 5. We appliedthe processon a 1km 1km areaof the
city of Berlin. The initial DEM hasa groundresolutionof
50cm. The resultspresentedin the previous figures[1-4]
wereobtainedwith anerrortolerancethresholdof 2 meters
in the explorationstage.This low thresholdallowed us to
show thatthesegmentationprocesscanrecoverall theparts
of thebuildings.For figure5, we useda thresholdof 4 me-
tersin to extractonly themaincomponentsof theroofs.
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Figure 6. Comparison of the 3D views gen-
erated from the initial raw DEM (a) and from
the output of the automatic building modeling
process (b).

Figure 5a shows the results of the polygonalization
stage.Themodelpreservesthemainstructuresof thebuild-
ingsin theDEM. Figure5b shows thefinal orthogonalized
model. We recover most of the straightand right angles
of the polygonalmodels. Figure6 shows 3D views from
the initial raw DEM andfrom the outputof the automatic
modelingprocess.Notethatthereconstructionis a visually
betterrepresentationof thescene.Usingrobustestimation
techniquesat the differentstagesof our global strategy al-
lowed us to recover a consistentandrepresentative model
of eachbuilding. Thecomputingtimesona Sunultrasparc
10 areabout25 minutesfor the completesegmentationof
thebuildings,4 minutesto extract thepolygonalmodelsof
thebuildingsand20 minutesfor thepolygonalization.

In oneapplication,the digital modelsprovide inputsto
planningtools for wirelessnetworks. Thesetoolssimulate
thecoverageof a cell in thecity to helpreducethenumber
of survey measurementneeded.To validatethe resultsof
ourautomaticsystem,wecomparedin anotherreportto ap-
pearthe simulateddigital models,obtainedfrom different
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Figure 5. Berlin results of automatic building extraction: (a) the pol ygonal appr oximation result su-
perimposed on the DEM composed by all the extracted objects above the ground (small components
are then discar ded). (b) the final or thogonaliz ed model superimposed on the or tho-ima ge of the
scene . Note that the model describes well the main structures of the buildings.

methods(the initial raw DEM, the automaticmodelbuild
by ourmethodandamanualprocess),with referencemodel
from a survey. Resultsshow that the quality of the results
of simulationwith the automaticDEM is similar to those
obtainedwith themanualDEM.

6. Conclusion

We presenteda systemfor modelingbuildings from a
single Digital Elevation Model (DEM). This systemuses
variousrobustestimationmethodsto extractthemainrepre-
sentativecomponentsof thebuilding despitealargeamount
of noisein theDEM. We constructthepolygonalmodelof
the building in two stages. The first stagesegmentsthe
DEM into planarsurfacepatchesfor describingthe build-
ing. Then, the polygonalizationstagegeneratesthe final
polygonalmodelof thebuilding by usingweakconstraints.
Thissystemis fully automaticanddoesnotuseany apriori
informationabouttheshapeof thebuildings.

We presentedresultsfrom a scenewith multiple build-
ings in a 1km 1km areaof Berlin. The polygonalmodel
is shown to correctly representthe buildings in the scene.
The performanceof the systemdependson the quality of
the initial DEM. In anotherreport,the resultwasalsoval-
idatedagainsta mobile network planningapplication,and
usingtheresultof ourmethodsshowedlargeimprovements

in quality overusingtheinitial raw DEM.
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