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Abstract

We presenta systenfor modelingbuildings from a sin-
gle correlation-basedigital ElevationModel (DEM). The
modelis constructedin two stages. The first stage sey-
mentsthe DEM into planar surfacepatchesthat describe
the building. The secondstage genertesthe final polygo-
nal modelof thebuilding usingweakgeometricconstaints.
We use robust estimationmethodsat different stages of
our modelingprocessto develop an efficient and noise-
insensitivemodelingsystem.The proposedsystenis fully
automaticand doesnot useanya priori informationabout
the shapeof the buildings. We presentresultson isolated
buildingsandon a large areaof the city of Berlin.

1. Intr oduction

Automaticextractionof descriptionsof buildingsin 3D
is an essentialtask for a variety of applicationssuchas
telecommunicationsand urbanplanning. This taskis dif-
ficult becauseof the compleity, numberand diversity of
3D objectsof theurbanernvironment.Most of themodeling
taskis currentlydonemanually Thecostandtimeinvolved
in manualreconstructionis high and hasmotivatedmuch
active researcton automatic3D detectionandreconstruc-
tion of buildings. In this paper we presenta systemfor the
automaticmodelingof buildings from a single rangedata
image,a Digital ElevationModel (DEM). DEMs cancome
from laseraltimetryor stereo-basethatchingof opticalim-
ages. The objectie is to provide digital modelsto assist
planningfor wirelessnetworks.

We startwith a denseraw DEM thatwas madeusinga
correlation-basedtereomethod[5]. The DEM hasa50cm
resolutionand is madefrom 37.5cmresolutionaerialim-
ages.This DEM is the only input of our modelingsystem.
The global strateyy of this systemconsistsof two stages:
Thefirst stageis the sggmentationof the DEM into locally
planarsurfacesto recoverthevariousfacetsof thebuildings
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from the raw DEM. We merge the redundantpatchesand
selectthe bestpatchego describethe building. Thesecond
stageis the vectorizationof the boundarie®f eachsurface
patchto obtainthe modelof the buildings asfollows: we
built a syntheticDEM with the selectecplanarpatchesWe
extractboundarie®of the differentregionsof this synthetic
DEM to build aninitial polygonalmodelsof the buildings.
Finally, arefiningproceduremposesgeometricconstraints
to regularizethe model. This modelingsystemprocesses
eachbuilding independently It is restrictedto the build-
ings with flat roofs, but it is ableto modelbuildings of all
shapesin anothereport,we have validatedthe resultsfor
the intentedapplication,thatis simulationof coveragefor
planningof wirelessnetworks.

PreviousWork A variety of methodshave beenusedfor

building reconstruction(seefor exemple[1, 2, 3]). These
methodscan be divided into model-basedand strateyy-

basedapproaches.The model-basedpproachedntegrate
into the model someknowledgeaboutthe 3D real world.

The stratgy-basedapproachesisea stratgy to construct
themodel. Thisstratgyy canbegrouping,matchingof prim-

itivesfrom multiple imagesor robustapproximatiorof hy-

pothesegxtractedfrom aDEM. Thesystendescribedchere
follows the secondclassof approachesWe proposeto use
several robust methods(seefor exemple[7]) to solve the

comple problemsof our stratayy.

2. Detectionof buildings

We apply the whole processonebuilding at atime. We
automaticallydetectand extract, from the raw DEM, each
building or group of adjacentbuildings. First, we build a
heightmapby subtractinghe Digital TerrainModel (DTM
obtainedmanually)from the raw DEM. Then, we extract
eachblob which hasa sufficient size of our heightmapby
usinganarbitrarythresholdwe usedé meters}o obtainthe
objectsabove theground,suchasbuildingsandvegetation.



Finally, we build a local DEM for eachextractedblob by
maskingthe groundin theraw DEM. We apply a sgmen-
tation and vectorizationprocesses$o eachbuilding (in the
local DEM) independentlythenmeige all resultsto obtain
thefinal model.

3. Segmentationof the DEM

Thefirst objective is to extracta simpleandrepresenta-
tive descriptionof eachbuilding in the scenewithout any
previous knowledge of their shape. By usinga DEM as
the initial data, this problem can be viewed as modeling
a cloud of 3D noisy data. Our approachis basedon the
ExSel++framavork presentedn [6]. Theauthorsdefinea
generaframenork to extractparametrianodelsfrom dense
or sparselata.Onecapabilityof theirframework s theabil-
ity to useandselectmultiple modelsto describehedata.

The DEM is a 2%-D map. Datafrom this map mainly
correspondso building roofsandground.We have choosen
theplanarsurfacepatchmodelto describehedifferentparts
of the buildings. We areableto describemostof the build-
ings of the scenewith this simplemodel (exceptdomesor
cylindrical shapes).The sggmentationprocessconsistsof
threemain stagesthat we will describeseparately:a data
explorationstagewhich generates list of modelhypothe-
ses;a meming stagewhich suppressesedundanhypothe-
ses;anda selectionstagewhich chooseghe bestsetof hy-
potheseshatdescribehedata.

3.1 Exploration stage

Figure 1. (a) is the initial raw DEM and (b) the
ortho-ima ge of the building. The black area
in the other image is an example of extracted
hypotheses by the exploration stage.

The purposeof this stageis to producea list of possible
planarsurfacesof the building (hypotheses)All the differ-
entpartsof thefinal modelof the building mustbefoundin
this stage.The explorationstageis basedon the RANSAC
procedurdRANdom SAmpleConsensus\We adaptedhis
procedureto searchthe model hypothesesvhich describe
thedifferentpartsof the data(seefigure 1).

The exploratoryprocedures iteratve andeachstepcan
be describedasfollows: (1) randomlyselecta minimal set
of pointsto initialize a modelhypothesis(2) grow this sub-
setwith consistentdataand rejectinvalid points, and (3)
testthe validity of the modelhypothesigif the supportset
exceedsa threshold). With a simple planarpatchmodel,
theminimal setof pointsneededo constructa planeis de-
fined by three non-colinearpoints. We setthe numberof
hypotheses$o searchat 50.

Theminimal setof pointsis selectedasfollows: thefirst
pointis randomlychoserfromthe DEM. Thetwo othersare
choserfrom asmallwindow centeredatthefirst point. The
growing techniqueusesa searchprocesghatlooksfor can-
didatesnearthe planedeterminedy fitting the currenthy-
pothesis.The candidateshouldbe neighborsn 2-D DEM
coordinatesWe alsouseareceng mapto conductthe ex-
ploration of the scene. Whenwe find a valid model hy-
pothesiswe storeit in thereceny mapfor afinite number
of iterations(20 iterations). The valuesin the maparede-
creasedafter eachinitial randomsamplingevenif thereis
no valid hypothesisTherandomselectionof theinitial set
of pointscannottake pointswhich arein thereceng map.

3.2 Merging stage

We usea meming stagethat reduceghe redundang in
thelist of hypothesebeforethe selectionstage.We memge
two hypothesedf they have a significantoverlappingsur
face,or if thereis a high probability that they correspond
to the samesurface. We estimatethe overlappingsurface
by using the numberof commonpoints of the two pla-
nar patches.Surfaceswith 80% overlapare memged. The
secondconditionfor meming is basedon the statisticalF-
TEST. This statisticaltest compareghe variancesof two
samplesof databy maximizingthe rejectionof the equiv-
alentcase. We computethe probability that the combined
patchess betterthantheindividual. If theseprobabilityis
greaterthan0.9,we memgethetwo hypotheses.

3.3 Selectionstage

Thepurposeof theselectionstagds to decidewhich hy-
potheseanust be kept. We want to remove the random-
nessof the exploration stageand selectthe minimum and
the bestsetof hypothesesThe RANSAC procedurehasit
own selectionstageto selectthe bestmodelof thelist. We
however proposea different selectionprocessto find the
bestsetof models(i.e. planarpatches}hat describeghe
building. This selectionstageis performedby castingthe
selectionproblemasan optimizationproblem. We useda
solution basedon the MDL principle (Minimum Descrip-
tion Length).



This stagedecidesvhetherto keepor to rejectmodelhy-
pothesisthisis aBooleanoptimizationproblem.Thenum-
ber M of hypothese thelist L is thesizeof theproblem.
Let thevectorm® = [my, ma, ..., my] bea setof mod-
els. m; is a Booleanvariablewhich expresseshe presence
(m; = 1) or not (m; = 0) of the model M; within the so-
lutionm™ . ThedescriptionengthF valuefor thesubsetn
is definedasfollows:

Fm) = > wmeqrymi- QM) 1)
+ Z Moe{L},Mye{L—m; i - my - T(Mi, Mj)

F is ableto take into accountthe quality of a modeland
the pairwiseinteractionbetweerthe models. The function
Q(M;) expresseghe benefitvalue for a particularmodel
M; of thelist, and I(M;, M;) expresseshe costvalue of
theinteractionbetweerthe modelsi/; andA{;. F' mustbe
maximizedto find the bestsubsebf models.We take:

Q(Mi):Kl'ni—(l—Kl)'Ei (2)
—Kq-|D;NDj|+ (1 - K1) -Xy5) 3)
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I(Mi7Mj) = (

Eij = maX(ZwERiﬁRj d2 (.Z', Mi)7 ZxERiﬂRj d2 (I, Mj))’
K, € [0,1] isaweightwhich allows usto adjustthe prefer
enceof oneof thetwo terms,n; is thesizeof thesupportD;
of themodelM; andY; is thesumof residualsd is the Eu-
clideandistancebetweerapointz andamodelM;. Q(M;)
favorsthe modelsfrom thelist which have a large support
anda small error measure.I (M;, M;) limits the overlaps
betweerthe modelsof the subsethatwe areevaluating.

To solve this Booleanoptimizationproblem,we needa
discreteoptimizationprocedurewe chosethe Taku search
procedurelescribedn [6]. Taku searchs ageneraheuris-
tic procedurefor global optimizationwhich canbe viewed
asanextensionof a steepesascenimethod.

3.4. The segmentationsystem

We developedtwo modesof explorationfor our exper
iments. In the first modewe canusevery high resolution
DEMs. We do not constrainthe hypothesegi.e. the planar
patches)sothatwe canfind all kind of roofs. With lower
resolutionDEMSs, suchasthe onewe use(at 50cm/pixel),
the roofs are too coarseand the resultsof reconstruction
may not bereliable. In thesecaseswe usea secondnode
of exploration,wherehypothesesre constrainedo corre-
spondto horizontalplanarpatchesWe testedhe segmenta-
tion procedurawvith multiple estimatorqtraditionalandro-
bust). Fromthe experimentswe adoptedifferentmethods
for eachof the two modes.With the horizontalconstraint,
we usethe LMS estimator In the unconstrainednodewe
usethelLS estimatorto keepthe computationatime low.

Figure 2. The pair of images (a and d) cor-
responds to the initial DEM and an arbitrar y
view of the building using this DEM and the

ortho-photo, (b and e) corresponds to the
synthetic DEM built using a segmentation in
planar patches (22 patches selected) and (c
and f) using the horizontal planar patches
segmentation (11 patc hes selected).

Resultsare presentedn figure 2. We chosea complex
building to comparethe resultsof the two modesof sey-
mentation.Usinga segmentatiorinto planarpatchesf ary
orientation(22 patchesllows usto obtaina bettervisual
3D reconstructiorof the building thanusinghorizontalpla-
nar patchegq11 patches)put it is not alwaysreliable. The
high level of outliersin the DEM disturbsthe sggmentation
process. The presenceof outliers requiresan increasein
the numberof hypothesesvhich requiresa greatercompu-
tationaltime for eachstage.Theselectionprocesdvecomes
a more difficult task, which decreasesghe reproductibility
andthe quality of the results. For this reasonwe preferto
usethehorizontalplanarpatchesegymentationwhich gives
robustresultof reconstructioror buildingsof all shapes.

4. Polygonal model of the building

Oncewe have extractedeachplanarsurfacepatchfrom
the roof of the building, we wantto obtainthe polyhedral
modelof the building. Becausewne adopteda 2%-D strat-
egy to simplify theimplementatiorandto give consisteng
to the final 3D model of the building, the 3D polyhedral
modelcorrespondso a 2D polygonalmodelwith aneleva-
tion valueassociatedavith eachvertex. We proposea two-
stageprocess.Thefirst stageis the polygonalizatiorof the
contoursof the selectechypothesesandthe secondstages
an iterative refining procedurewhich constrainssomean-
glesof the polygonalmodelto beright or straight.



4.1 Polygonal approximation of the building

Pre-processing We constructasynthetidocal DEM from
our list of modelswhereeachpixel is assignedo only one
model. This syntheticDEM allows us to guaranteea 2%—
D consisteng of the future polygonalmodel. If a pixel of
thelocal DEM belongsto multiple models,the pixel is as-
signedto the modelwith the lowestelevation. If a pixel of
the DEM doesnot belongto arny model,we take the eleva-
tion value of the pixel from the raw DEM and assignthis
pointto the modelwith the closestZ valuein the neighbor

hood.Next, we applyafiltering procedurewith two stages.

First,we suppresshesmallregions,thosewith lessthan50
pixels(12.5m?). Secondwe apply morphologicafilters to
smooththe boundariegopen/closehenclose/opeh
Thesynthetidocal DEM thatwe obtainedcanbeviewed
asa sggmentedmage. We proposea methodologyfor ex-
tracting the polygonalmodel from this sgmentedDEM.
We begin by extracting two featuresfrom this image: the
junctions and the chains. Chainsare lists of successie
pointsalongthe boundarieof the differentregions. Junc-
tionsaretheendsof thechainsandcanhave differenttypes:
a simplejunction is the intersectionof the border of the
DEM and a chain, a double junction closesa chain, and
complejunctionis atthethe pointswheremultiple regions

meet. We presenthe framawvork in two distinctprocesses.

The first processcomputesa polygonalapproximationfor

eachchain,with thejunctionsremainingfixed. The second
processanalyzesthe different configurationsof the junc-

tionsandadjuststheir positionsif necessary
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Figure 3. Corner correction and junction pro-
cessing. Left is before and right is after.

Polygonal approximation of individual chains Our al-
gorithm for polygonalapproximationof individual chains
is basedon the split andmerge algorithm[4]. Theoriginal
algorithmusessuccessie split andmemge stageswhile the
polygonalchainchanges.Then, a LeastSquaresapproxi-

mationstageestimateshe parametersf eachseggmentand
updateghe positionsof thevertices.

We have enhancetheoriginal algorithmwith threemain
features: (1) We addin the while loop, with the split and
melge stagesa new stagefor cornercorrection. This cor-
rectionhandleghe casewherethe corneris "rounded” and
is describedoy two pointsinsteadof one(fig. 3a). (2) The
fitting stageof the sgmentsand intersectionpointsis in-
sidethe while loop becausehis stagemay still requirefur-
ther split and memge operations. (3) We usea LeastMe-
dian of SquaregLMS) estimatorto obtaina more robust
and representatie solution of segments. Note that some
stagesgenerateverticesthat were not presentin the origi-
nal chain.To selectthe correspondingpointsin theoriginal
chain,we look for the nearespointsin the original chain.
Thesepoints are usedto delimit the lists of pointsof the
chainusedfor sggmentfitting.

Junction processing Inthepolygonalapproximatiorpro-
cesstheendsof thechains(thejunctions)arefixedto avoid
a disconnectiorin the polygonalmodelof the building. In
this processwe adjustthe positionsof the junctionsto ob-
tain amorerepresentatie polygonalmodel. We processall
thejunctionsatthesameime. For eachtypeof junction,we
usea processhasedon LeastMedian of Squares.We ran-
domly sampletwo pointsin the different chains,estimate
thepositionof the junction pointandcomputeresidualgor
all random-sets.Then,we selectthe solutionwhich mini-
mizesthe medianof residualgfig. 3b).

4.2 Refining the modelwith angle constraints

We have extracteda polygonalmodelof the building us-
ing a segmentedDEM. In this extraction,we have not as-
sumedary a priori knowledgeof the shapeof the building.
We obtain polygonswith arbitrary angles. In man-made
ervironments,however, straightandright anglesare often
presentWe presennext aprocesshichtriesto imposean-
gle constrainton the global polygonalmodelof the build-
ing, still allowing for non-rightor non-straightanglesusing
amethodbasedn M-estimator

The initial polygonalmodel(2; of the building consists
of sggmentswhich arelinkedby junctionsor verticesof the
polygonalchainsof the building model. Sincewe wantto
preseretheglobalconsisteng of themodel,thestratayy is
appliedto the global model. We approachthe problemof
orthogonalizatiorby the optimizationof anobjective func-
tion O. Thebestsolution(2, correspondso the minimum
of the objective function:

O = min O()) = min (A(fl) + I(Q)) (4)

This objective function comprisestwo components:a
componentd which constrainganglego be90° or 180° and



acomponenf whichrelatesheresultto theinitial data.We
associat@neanglefor eachpoint of the polygonalchains,
two anglesfor the triple junction, andso on. The simple
junctionsare fixed becausdhey correspondo bordersof
theimages.LetI" bethesetof all theanglevariablesof the
polygonalmodel,we have:

A(Q) = ) W -sin(2a) (5)

a€clg

Thecomponentd allowsusto forcethepolygonalmodelto
have preferedangleq0°, 90°, 180°, and270°). Theorthog-

a

Figure 4. (a) polygonal approximation and (b)
refinement.

onalizationprocesonly usesthe polygonalmodelasinput
data. We needto usea componentwhich relatesresultto
theinitial dataandavoidslargedistortionsonthe polygonal
model. Let A bethe setof pointsof the polygonalmodel
(junctionsandverticesof the polygonalchains) we have:

I(Q)= > Wa-|p:i— Bl with B;€ Aq,

BEAg

(3 is a point of the currentpolygonalmodeland 3; is the
samepointof theinitial model.W; andV, aretwo weights
which control the influenceof the two componentf the
objective function. We choosel?; = 1/sin(2 x 10°) and
Wy = 1/ep (en is thethresholdusedin the merge stage
of the polygonalapproximationprocess}o have the same
costfor adistanceof ¢, from theinitial modelandfor an
angulardifferenceof 10°. Becauseve have aninitial model
closeto thesolution,we usethe M-estimatormethodfor the
optimizationwith the Tuckey function. After optimization,
we applya memgeiterative procesgo eliminatesomeof the
straightanglesor zero anglesfrom the polygonalchains.
Thewhole processhowever, doesnot ensurethatthe opti-
mizedpolygonsdo notintersect,sinceeachchainor junc-
tion is consideredseparately Thoughthis situationdid not

occuredin our experimentsa final stageshouldcheckand
correctthe globalmodelconsisteng. Resultsarepresented
in figure 4. The orthogonalizatiorprocedurecorrectsmost
of theanglesof the building.

5. Results

The resultsof the modelingsystemarepresentedn fig-
ure5. We appliedthe proceson a 1kmx 1km areaof the
city of Berlin. Theinitial DEM hasa groundresolutionof
50cm. The resultspresentedn the previous figures[1-4]
wereobtainedwith anerrortolerancethresholdof 2 meters
in the exploration stage. This low thresholdallowed usto
shav thattheseggmentatiorprocessanrecoverall the parts
of thebuildings. For figure 5, we useda thresholdof 4 me-
tersin to extractonly the maincomponent®f theroofs.

Figure 6. Comparison of the 3D views gen-
erated from the initial raw DEM (&) and from
the output of the automatic building modeling
process (b).

Figure 5a shaws the results of the polygonalization
stage.Themodelpreseresthemainstructuref thebuild-
ingsin the DEM. Figure5b shaws thefinal orthogonalized
model. We recover mostof the straightand right angles
of the polygonalmodels. Figure 6 shows 3D views from
theinitial raw DEM andfrom the outputof the automatic
modelingprocessNotethatthereconstructioris a visually
betterrepresentationf the scene.Using robust estimation
techniquesat the differentstagesof our global strateyy al-
lowed us to recover a consistentand representatie model
of eachbuilding. Thecomputingtimeson a Sunultrasparc
10 areabout25 minutesfor the completeseggmentationof
the buildings, 4 minutesto extractthe polygonalmodelsof
thebuildingsand20 minutesfor the polygonalization.

In one application,the digital modelsprovide inputsto
planningtools for wirelessnetworks. Thesetools simulate
the coverageof a cell in the city to helpreducethe number
of survey measurememeeded. To validatethe resultsof
ourautomaticsystemwe comparedn anotherreportto ap-
pearthe simulateddigital models,obtainedfrom different



Figure 5. Berlin results of automatic building extraction:
perimposed on the DEM composed by all the extracted objects above the ground (small components

are then discar ded).

(a) the polygonal approximation result su-

(b) the final orthogonaliz ed model superimposed on the ortho-ima ge of the

scene . Note that the model describes well the main structures of the buildings.

methods(the initial raw DEM, the automaticmodel build

by our methodanda manualprocess)with referencenodel
from a surwey. Resultsshav thatthe quality of the results
of simulationwith the automaticDEM is similar to those
obtainedwith the manualDEM.

6. Conclusion

We presenteda systemfor modeling buildings from a
single Digital Elevation Model (DEM). This systemuses
variousrobustestimatiormethodgo extractthemainrepre-
sentatve component®f thebuilding despitealargeamount
of noisein the DEM. We constructthe polygonalmodelof
the building in two stages. The first stagesegmentsthe
DEM into planarsurfacepatchedor describingthe build-
ing. Then, the polygonalizationstagegenerateghe final
polygonalmodelof the building by usingweakconstraints.
This systemis fully automaticanddoesnotuseary a priori
informationaboutthe shapeof the buildings.

We presentedesultsfrom a scenewith multiple build-
ingsin a 1kmx1km areaof Berlin. The polygonalmodel
is showvn to correctly representhe buildings in the scene.
The performanceof the systemdependson the quality of
theinitial DEM. In anothemreport,the resultwasalsoval-
idatedagainsta mobile network planningapplication,and
usingtheresultof our methodshovedlargeimprovements

in quality overusingtheinitial raw DEM.
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