
Depth Layers from Occlusions

Arno Schödl and Irfan Essa
GVU Center / College of Computing

Georgia Institute of Technology
Atlanta, GA 30332-0280, USA
fschoedl|irfang@cc.gatech.edu

Abstract

We present a method to extract relative depth informa-
tion from an uncalibrated monocular video sequence. Our
method detects occlusions caused by an object moving in
a static scene to infer relative depth relationships between
scene parts. Our approach does not rely on any strong as-
sumptions about the object or the scene to aid in this seg-
mentation into layers. In general, the problem of building
relative depth relationships from occlusion events is under-
constrained, even in the absence of observation noise. A
minimum description length algorithm is used to reliably
calculate layer opacities and their depth relationships in
the absence of hard constraints. Our approach extends
previously published approaches that are restricted to work
with a certain type of moving object or require strong image
edges to allow for an a-priori segmentation of the scene.
We also discuss ideas on how to extend our algorithm to
make use of a richer set of observations.

1. Introduction
Humans are able to tell scene structure even when visual
cues are scarce. Imagine the following experiment: We
produce a video of a white glowing ghost floating around
randomly in a dark room. In the video, taken from a static
viewpoint, the furniture in the room is only visible as dark
silhouettes, if the ghost happens to move behind it. A per-
son watching the resulting video will be able to learn about
the shape and the spatial arrangement of the furniture, with-
out having ever seen the room fully lit. Our goal is to
develop a method to extract similar information automat-
ically.

More specifically, we address the problem of separating
a scene into a set of depth-ordered layers from an uncali-
brated monocular video sequence. We assume that a single
object is moving through the static scene, and is both oc-
cluding scene parts, and is itself occluded by them. We
extract over time the region of the image that belongs to
the foreground object. These extracted regions form a se-
quence of blobs. The boundary of a blob can be either

observed blob

object boundary

scene boundary

occluding scene
(not directly
observable)

Figure 1: Nomenclature for a simple scene, a person stand-
ing behind a fence.

an object boundary itself, or a scene boundary, which is
a depth discontinuity in the scene causing an occlusion of
the object (Figure 1). We do not assume anything special
about the scene or the object. In particular the object can be
non-rigid, and the scene does not have to be presegmented
by image edges. From the sequence of blobs, we compute
a set of depth-ordered layers, and their opacities, which can
be used for applications like video compositing and surveil-
lance.

In the course of developing our algorithm, we show that
our problem is underconstrained. We use a minimum de-
scription length algorithm with a suitable encoding to find a
good set of layers and blob-to-layer assignments. We show
results on several sequences with a person as the moving
object.

2. Related Work

The concept of segmenting a scene into layers is not new
to computer vision. Some methods use layers to represent
jointly moving regions [9, 2]. In these approaches, optical
flow is used to segment a scene into layers of different mo-
tion. This approach has been extended to a layer plus height
offset representation by Shade et al. [5] and in a more re-

To appear in Proceedings of IEEE CVPR 2001 1 Kawai, Hawaii, Dec 11-13, 2001



cent work by Torr et al. [7]. All those techniques use the
rigid motion of layers to segment the scene.

Our algorithm on the other hand assumes a static scene,
that we segment into depth layers by observing a single
non-rigidly moving object. We assume that we can ex-
tract this object from the static background using a pro-
cess known as background subtraction. The most naive ap-
proach of background subtraction is simple thresholding of
the per-pixel color difference of the current image and a
stored background image. A lot of research has gone into
developing more sophisticated algorithms that allow for
lighting and color variations, making background subtrac-
tion a well-solved problem in computer vision [8, 3, 10].

Two recent publications use it as an input to identify
depth-ordered scene layers [1, 6]. Both assume that the
object is at a single depth at a time, rather than spanning
multiple depth values. There are two main problems that
need to be addressed: (1) It is trivial to say that any area
covered by the extracted blob is behind this blob, but the
opposite kind of information, which areas are in front of
the object, is not as readily available. Areas outside of the
blob could be either not part of the object, in which case
they do not supply any depth constraint, or they are part
of the object, but occluded by scene parts, which would
constrain the scene parts to be in front of the object. (2) The
depth of the object is usually unknown. Both problems are
related, and solving one helps solving the other. Previous
research addresses them using heuristics or a-priori scene
knowledge.

Stauffer and Grimson [6] determine the depth of the ob-
ject by assuming that the object is a person moving on a cal-
ibrated ground plane. They find the person’s head, which
is assumed to be always visible, and determine the person’s
position on the ground plane assuming a constant height.

Brostow and Essa [1] do not determine object depth a-
priori, but rely on an edge-based scene segmentation into
regions of constant depth. They use “motion edges” at
those pixels that coincide repeatedly with blob boundaries
to help separate neighboring regions that are similarly col-
ored. Then, they use a heuristic that a blob touching a re-
gion, but not overlapping it, has been occluded by that re-
gion. The region is then labeled as being in front of the
object. While this technique often works for large, cor-
rectly identified regions, identifying closed regions a priori
is brittle, and the heuristic breaks down for small image
regions.

3. Our Approach

We observe a static scene in which a moving object is oc-
cluding and being occluded by different parts of the scene.
Using background subtraction, we observe the visible part
of the object at time t 2 1:::T as a set of pixels �t which

depth

4
3
2
1

scene depth constraint scene depth constraint

same blobs,
but different depths

Figure 2: The position of a set of 1D blobs in a 2D world
and the inferred scene depths for two different assumed
blob depths. The depth assignments are arbitrary and re-
sult in different scene constraints.

we refer to as a blob.
We assume that the object at any time t is at a single

depth d(t). The part of the scene occluded by � t has a
depth larger than d(t). If we know the blob depths d(t), we
can assign minimum depths to the scene by applying the
depth constraints of the whole sequence to the scene. The
depth Æ(p) of a scene pixel p is then bound below:

Æ(p) > max
ftjp2�tg

d(t): (1)

Since we only know which blobs are occluding a scene
pixel p, but not which parts of the scene are occluding any
blobs, we cannot give an upper bound on the scene depth.

The shapes of the blobs are the result of occlusions,
which depend on relative depth differences. Thus, we are in
principle restricted to determining relative depth relation-
ships within the scene rather than absolute depths.

3.1. Depth from occlusion is underconstrained
For any given blob sequence f�tg, the set of constraints
given by equation 1 depends on the assumed blob depths
d(t). If d(t) is unknown, it is impossible to constrain the
depth of the scene. The 2D toy world in Figure 2 shows two
different sets of scene constraints for the same observation,
assuming different blob depths.

To resolve this ambiguity, we need to obtain some infor-
mation on the blob depths. We are using the following idea:
As stated in Section 1, the blob boundary is either formed
by the object boundary or a scene boundary. Scene bound-
aries will appear as part of the blob boundary if the scene
is overlapping the moving object, which can only happen
at those pixels where there is a scene depth discontinuity.
Object boundary pixels can appear anywhere, depending
on the movement of the object. Thus, when a given pixel
is repeatedly part of the blob boundary it is more likely to
be scene boundary than to be object boundary. In the next

To appear in Proceedings of IEEE CVPR 2001 2 Kawai, Hawaii, Dec 11-13, 2001



paragraph we will formalize this idea into an algorithm to
obtain depth information.

3.2. Depth computation using minimum de-
scription length

In order to derive scene depth information in the absence of
hard constraints, we use the principle of minimum descrip-
tion length [4, 11]. We discretize the scene depth into a few
(D < 10) layers and assume that every blob �t belongs to
such a depth layer d(t) 2 f1; 2; :::; Dg, where 1; 2; :::; D is
the order of layers from front to back.

We model the layer at depth d as a transparent set of
pixels �d. Here, �d must contain the union of all blobs that
have a depth equal or greater than layer d (we assume the
transparent region d is between object depth layers d � 1
and d).

�d = [f�tjt = 1:::T ^ d(t) � dg: (2)

For the minimum description length algorithm, we describe
�d as the set of pixels on its boundary. Every one of the
boundary pixels is assumed to be chosen from the set of all
screen pixels. To describe a layer with l boundary pixels,
using a screen resolution of s pixels, we need EM number
of bits:

EM = l log s: (3)

The observed blobs �t are also described in terms of
their boundary pixels. Boundary pixels of � t that coincide
with the boundary of the associated layer �d(t) are assumed
to be scene boundaries, and are encoded by choosing them
out of the layer boundary pixels. This takes log l number
of bits per encoded pixel, where l is the number of bound-
ary pixels of �d(t). Any blob boundary pixel lying in the
interior of �d(t) is chosen out of the layer’s interior pixels,
which for L interior pixels of �d(t) takes logL bits. Usu-
ally, L � l. Finally, we must encode the decision which
group the pixel belongs to, which we do using a per-layer
optimal bit allocation. If all the blobs belonging to a layer
have a total of b pixels that lie on the layer boundary, and i

pixels that lie in the interior, the total number of bits ED to
encode all the blobs belonging to this layer is thus

ED = b log
b+ i

b
+ i log

b+ i

i
+ b log l+ i logL: (4)

The total number of bits to describe a layer is EM+ED,
and the total number of bits to describe a scene is the sum
of description lengths over all layers. We are looking for
the blob-to-layer assignment that minimizes this descrip-
tion length.

sequence of �
t

t

no change

no change

1

2

3

4

5

6

Figure 3: The change of depth assignments for a sequence
of blobs during the course of an optimization. The grey
lines indicate which assignments are tried, the arrows indi-
cate at each step which assignments are kept.

3.3. Optimizing layer assignments
Obviously there is an exponential number of possible blob-
layer assignments, so enumerating all possible assignments
is not feasible. Instead, we developed an iterative scheme
that computes a sub-optimal, but in practice good blob-
layer assignment. We exploit the fact that the moving ob-
ject usually stays in the same depth layer for some time
rather than erratically changing its depth, creating subse-
quences of blobs that belong to the same layer. So if we
adjust the depth of whole subsequences of blobs at once
rather than of single blobs, we have a good chance of find-
ing subsequences that we can sort into a coarse layer struc-
ture. In practice, we are going from large subsequences to
small ones, so that after establishing the coarse structure,
we refine the assignments of smaller subsequences or indi-
vidual blobs.

In particular, we start with an initial assignment of all
blobs to a single layer. We then divide the time-ordered se-
quence of blobs into two halves and try all possible depth
assignments of the first half, then the second, then the first
again etc., recomputing the description length for every as-
signment change and keeping the best assignment. After
the depth assignments settle, which is the case when we try
both halves and none changes its depth, we divide the se-
quence into quarters and change the depth assignment of

To appear in Proceedings of IEEE CVPR 2001 3 Kawai, Hawaii, Dec 11-13, 2001



the quarters according to the same scheme. We continue
with eighth, sixteenth and so forth, until we change the
depth assignments of individual blobs (Figure 3).

Assume we currently use N depth layers (initially, N =
1). Then for any subsequence (halves, quarters, ...) whose
depth assignment we change there are usually 2N possi-
ble assignment to try: N � 1 layers that already exist (mi-
nus one for the layer the subsequence currently belongs to),
N�1 “gaps” between layers and 2 extra depth assignments
in front and behind of all other layers. If the best assign-
ment is not one of the already existing layers, a new layer
is created. Similarly, if after changing the assignment one
of the previously existing layers is empty, it is deleted.

After adjusting the blob depths to the single-blob level,
as the final step we are checking whether collapsing any
adjacent pair of layers into a single layer improves the re-
sult. For the sequences that we present in this paper, this
step did not change the result.

4. Results

All our input footage was recorded using an NTSC DV pro-
gressive scan camera at 720x480 resolution. Our first test
sequence, the lab sequence, shows our lab under construc-
tion, with a pile of building material lying in the middle.
A person enters in the back on the right, walks behind the
pile of material to the left and then walks back to the right
in front of the pile, but behind a pillar standing in the fore-
ground (Figure 4). A human would probably create three
depth layers, from front to back the pillar, the pile of mate-
rial and the back wall.

To process this sequence, we reduced the resolution to
240x180 to suppress noise, make boundary pixels line up
better, and to speed up computation. We extracted the fore-
ground blob by simply thresholding the L2 color distance.
Figure 4 shows the scene and a few blob images. Fre-
quently, shadows have been included into the foreground
blob, but they fall on scene parts behind the object, which
is acceptable. For the first experiment, to check the validity
of our algorithm, we fix the number of layers to two, which
results in three different scene regions: The front region,
which is never occluded by any blob, the middle region
that is occluded by the blobs assigned to the front layer but
not by those assigned to the back layer, and the back region
that is occluded by both layers of blobs. We expect those
three regions to correspond to the pillar, the pile of material
and the wall. During the course of the sequence, the person
is roughly moving from back to front. We modify the al-
gorithm, so that it assigns the first part of the sequence up
to some frame f to the back layer and the rest after frame
f to the front layer. The algorithm tests the depth assign-
ments for all values of f to find the assignment of mini-
mum description length. The graph in Figure 5 shows how

the the description length changes with f . The minimum
is marked with a circle, and the three regions that result
from this minimum are shown next to the graph. They cor-
respond very well to the expected segmentation into pillar,
material pile and wall.

Now we run our full algorithm, which automatically cre-
ates five layers, segmenting the scene into six regions (Fig-
ure 6). These six regions correspond roughly to what we
expect, but oversegment the scene somewhat. The first re-
gion is the same as in the previous two-layer experiment.
The second and third contain the material pile, and the last
three contain the back wall. Those last three layers clearly
show a flaw in our algorithm: When the object is standing
still, like on the right side of the scene where the person is
closing the door, certain boundary pixels are used repeat-
edly, which causes the algorithm to create a new layer for
this part of the sequence.

In the second sequence (Figure 7) the scene is seen
through a window frame. The person enters on the right
in front of a table, walks to the left, then back behind the
table to the right, where he picks something up. Then he
leaves the scene to the left. Again, there are three natural
layers, the window frame, the table and the back wall. We
reduced the resolution by a factor of two and cropped the
image to remove some of the window frame to speed up
computation. Our algorithm oversegments the scene again
into five layers and six regions. The first two correctly show
the window frame and the table, the other four show differ-
ent parts of the back wall. Here, too, the oversegmenta-
tion was caused by the person standing still and picking up
something from the floor.

5. Discussion and Future Work

Analysis of both sequences results in oversegmentation
when the blob is not moving. One way to overcome this
problem would be to adaptively subsample the input se-
quence, so that consecutive foreground blobs that are al-
most identical get discarded.

Obviously, the foreground object segmentation is only a
small subset of a large number of depth cues in a monoc-
ular video sequence of a static scene with a moving ob-
ject. The most obvious one that we missed, and the one
easiest to incorporate into the proposed framework, is ac-
cretion and deletion: At scene boundaries, when the object
appears or disappears behind a scene part, the texture of
the object is moving towards or away from the boundary,
while the scene boundary itself remains static. This local
movement of texture close to a static boundary could be
measured using suitable optical flow techniques and could
influence a prior for or against being encoded as object or
scene boundary. Overcoming this prior would incur extra
encoding costs, so scene interpretations that agree with the

To appear in Proceedings of IEEE CVPR 2001 4 Kawai, Hawaii, Dec 11-13, 2001



Figure 4: The lab sequence. Input scene and blobs extracted from the sequence.

0 50 100 150 200 250 300 350
frame #

d
e
sc

ri
p

ti
o

n
le

n
g

th
/

k
b

it

1300

1310

1320

1330

1340

1350

1360

1370

Figure 5: Separation of the lab sequence into two layers. The first part of the sequence becomes the back layer, the rest the
front layer. The boundary of those two parts is swept over the whole sequence and the description length is plotted. At the
minimum description length (circled) we obtain the shown image regions.

Figure 6: Automatic segmentation of the lab scene into six regions.

prior are preferred.

Semi-rigid shape constraints for the object can be in-
cluded in a similar way. We assume the shape of the object
at time t+1 is a 2D-translated version of the shape at time
t, and any observed deviation is an indication for an occlu-
sion, which is again incorporated as a prior.

We also make no use of the correlation between back-
ground image edges and scene depth discontinuities. Bros-
tow and Essa [1] relied on this information almost entirely,
which made their method brittle. In a more probabilistic
approach we would impose a prior on the encoding of � d,
decreasing the encoding cost for those boundary pixels that
coincide with image edges. Unfortunately, �d is still re-
stricted to be a union of the blobs, even if the edges strongly
indicate to expand a layer. For example, sometimes we may
want to include the rest of the uniform blue sky into the
backmost layer, although it was never occluded. This ex-
pansion could be done in a post-processing step by running
a shortest path algorithm over the grid of pixels, weighing

every pixel with its prior to be scene boundary.
There are many other important depth cues, that we

are not using at present: object shadows and scene light-
ing, changes in object size or geometric constraints like
straight/parallel lines, orthogonalities and planes.

Another shortcoming of our system is that it does not
jointly optimize depth assignment and background subtrac-
tion result. If the background subtraction system would
compute a probability for every pixel being foreground or
background instead of a binary result, we could attempt an
EM-style optimization, alternating between optimizing the
depth assignment and blob coverage. We have not explored
any such algorithm so far.

6. Conclusion
In this paper we present a principled approach of infer-
ring depth layers by observing a moving object in a static
scene. We use the output of a background subtraction sys-
tem, which divides the image into static scene regions and

To appear in Proceedings of IEEE CVPR 2001 5 Kawai, Hawaii, Dec 11-13, 2001



Figure 7: The construction sequence. Top row: input scene and blobs extracted from the sequence. Bottom row: automatic
segmentation into six regions.

regions covered by the moving object, as the only input to
infer depth. The problem is underconstrained in the sense
that any possible solution of object-to-depth assignments
is consistent with any observation. We make the prob-
lem tractable by proposing a suitable encoding of model
and data and finding the solution of minimum description
length for that encoding. We obtain good depth layers on
practical examples. We finally provide some ideas how a
richer set of observations can be included into our frame-
work.

Acknowledgements

We would like to thank the members of the Computa-
tional Perception Laboratory for discussions and Wasinee
Rungsarityotin and Gabriel Brostow for their help with
writing this paper. This research was partially supported
by a PhD fellowship from Microsoft Research and DARPA
grant #F49620-00-1-0376.

References
[1] G. Brostow and I. Essa. Motion based decompositing of

video. In International Conference on Computer Vision,
pages 8–13, 1999.

[2] T. Darrell and A.P. Pentland. Robust estimation of a multi-
layered motion representation. In IEEE Workshop on Mo-
tion 1991, pages 173–178, 1991.

[3] I. Haritaoglu, D. Harwood, and L.S. Davis. A fast
background scene modeling and maintenance for outdoor
surveillance. In ICPR00, pages Vol IV: 179–183, 2000.

[4] T.C.M. Lee. Segmenting images corrupted by correlated
noise. PAMI, 20(5):481–492, May 1998.

[5] Jonathan W. Shade, Steven J. Gortler, Li-Wei He, and
Richard Szeliski. Layered depth images. In Michael F. Co-
hen, editor, Computer graphics: proceedings: SIGGRAPH
98 Conference proceedings, July 19–24, 1998, Computer
Graphics -proceedings- 1998, pages 231–242, New York,
NY 10036, USA and Reading, MA, USA, 1998. ACM Press
and Addison-Wesley.

[6] C. Stauffer and W.E.L. Grimson. Adaptive background
mixture models for real-time tracking. In CVPR99, pages
II:246–252, 1999.

[7] P.H.S. Torr, R. Szeliski, and P. Anandan. An inte-
grated bayesian approach to layer extraction from image se-
quences. PAMI, 23(3):297–303, March 2001.

[8] K. Toyama, J. Krumm, B. Brumitt, and B. Meyers.
Wallflower: Principles and practice of background main-
tenance. In International Conference on Computer Vision,
pages 255–261, 1999.

[9] J.Y.A. Wang and E.H. Adelson. Representing moving im-
ages with layers. Image Processing, 3(5):625–638, Septem-
ber 1994.

[10] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland.
Pfinder: Real-time tracking of the human body. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
19(7):780–785, 1997.

[11] S.C. Zhu and A. Yuille. Region competition: Unifying
snakes, region growing, and bayes/mdl for multiband image
segmentation. PAMI, 18(9):884–900, September 1996.

To appear in Proceedings of IEEE CVPR 2001 6 Kawai, Hawaii, Dec 11-13, 2001


