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Abstract

A method for a real-time vision system that automati-
cally detects a user’s eye blinks and accurately measures
their durations is introduced. The system is intended
to provide an alternate input modality to allow people
with severe disabilities to access a computer. Volun-
tary long blinks trigger mouse clicks, while involuntary
short blinks are ignored. The system enables commu-
nication using "blink patterns:” sequences of long and
short blinks which are interpreted as semiotic messages.
The location of the eyes is determined automatically
through the motion of the user’s initial blinks. Subse-
quently, the eye is tracked by correlation across time,
and appearance changes are automatically analyzed in
order to classify the eye as either open or closed at
each frame. No manual initialization, special lighting,
or prior face detection is required. The system has
been tested with interactive games and a spelling pro-
gram. Results demonstrate overall detection accuracy
of 95.6% and an average rate of 28 frames per second.

1 Introduction

In recent years, there has been an effort to augment tra-
ditional human-computer interfaces like the keyboard
and mouse with intelligent interfaces that allow users
to interact with the computer more naturally and ef-
fectively. The goal is to develop computer vision sys-
tems that make computers perceptive to a user’s natu-
ral communicative cues such as gestures, facial expres-
sions, and gaze direction. Such systems are especially
relevant for people who cannot use the keyboard or
mouse due to severe disabilities.

The traditional human-computer interfaces demand
good manual dexterity and refined motor control which
may be absent or unpredictable for people with certain
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disabilities. The primary motivation of our research is
to provide an alternative communication tool for peo-
ple whose motor abilities are extremely limited by con-
ditions ranging from cerebral palsy and traumatic brain
injuries to multiple sclerosis or ALS. The access to in-
formation and enhanced communication that assistive
technology provides is both practical and empowering
for individuals with disabilities.

We propose a robust, accurate algorithm to detect
eye blinks, measure their duration, and interpret them
in real time to control a non-intrusive interface for com-
puter users with severe disabilities. The method pre-
sented employs visual information about the motion
of eyelids during a blink and the changing appearance
of the eye throughout a blink in order to detect the
blink’s location and duration. Moreover, the system
is designed to initialize itself automatically, and it ad-
justs for changes in the user’s position in depth. Using
the ”Blink Link,” as our prototype system is called, a
user who is capable of blinking voluntarily can gener-
ate mouse clicks through his or her eye blinks in order
to operate software applications requiring such input.

The system uses various computer vision techniques
in combination. Eye blink motion is used to auto-
matically locate the user’s eyes in the video sequence.
In particular, candidate motion patterns are compared
against a stored model of the properties of actual eye
blink motion in order to eliminate motion that is un-
likely to have resulted from blinks. The location in-
formation gained from the blink motion then offers an
opportunity to select an eye template online for further
tracking. The correlation between the open eye tem-
plate and the current eye in the scene reveals the extent
of the eye’s openness which, together with the comple-
mentary motion information obtained from both eye
areas, allows us to classify the eye as either open or
closed at each frame.

An array of techniques have been explored previ-
ously for locating eyes in images and eye blink detec-
tion. Methods for detecting the eyes include the use of
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gradient flow fields [11], color-based techniques for de-
tection of the eye sclera [2], horizontal gradient maps
of a skin-colored region [16, 17], and pupil detection
using infrared lighting [9, 12, 19]. Temporal differenc-
ing is often used to segment moving regions of interest
from a stable background [3, 4]. Methods for analyzing
the eye and its closure motion are suggested in Refs.
[1, 3, 13, 14, 16, 18]. A blink detector has been devel-
oped to detect drowsy drivers [13]. Preliminary work
on facial feature tracking has been reported that pro-
vides video-based interfaces for people with disabili-
ties [6, 15]. We are not aware of any papers that ad-
dress the issues of communication interfaces which op-
erate on eye blinks. Such interfaces demand the robust
and accurate classification of voluntary and involuntary
blinks, must work with assistive technology software,
and require exceptionally fast processing.

Our contribution is to provide a real-time system
which consistently runs at 27-29 frames per second
(fps), is completely non-intrusive and requires no man-
ual initialization, prior face detection, or special light-
ing. The system can reliably classify blinks as volun-
tary or involuntary based on their duration. Thus, it is
found to be a reasonable communication interface for
users who have the ability to blink their eyes. Our com-
munication system has also been tested for recognizing
substantial deformations of other features.

Alternative communication systems for disabled
computer users include head-mounted tracking de-
vices, tongue or hand activated switches, sip-and-puff
mouth-controlled joysticks, camera-based and electro-
oculographic gaze estimators [5, 6, 15]. The goal of in-
troducing eye blink detection functionality in a camera-
based system is to provide another point of access for
those users who may not be capable of motor controls
that some of the above methods demand.

User testing for the Blink Link is being performed
at Boston College’s Campus School, a school for chil-
dren with various severe disabilities. Currently, chil-
dren there use two systems as mouse replacements: the
”Camera Mouse” system uses a video camera to per-
form facial feature tracking [6], and the "Eagle Eyes”
system measures the user’s electro-oculographic poten-
tial to estimate gaze direction [5, 7]. Children use the
systems to spell out messages, play games, and even
participate in distance learning programs on the web.

2 System Overview

The system design can be broken down into four steps
as shown in Fig. 1: (1) motion analysis for the purpose
of locating the eyes, (2) eye tracking, (3) blink detec-
tion and length measurement, and (4) interpretation.

The eyes are located automatically by considering mo-
tion information between two consecutive frames and
determining if this motion is likely to be caused by a
blink. Once found in this manner, a grayscale tem-
plate is extracted from the blink location of one eye.
The eye is tracked and constantly monitored to estab-
lish to what extent it is open or closed at each frame.
A blink’s duration is defined as the count of consecu-
tive frames of closure. If at any time the eye tracker is
believed to be lost, then it is re-initialized by repeating
motion analysis on the subsequent involuntary blinks.

Note blink
length

v

4 Classify as
long or short

3 [ Compare *
segmented [—1— Start timer Use fpr }
eye to open communication

template application

Figure 1: System overview.

2.1 Motion Analysis

During the first stage of processing, the eyes are auto-
matically located by searching temporally for ”blink-
like” motion. This method analyzes a sequence of
the user’s involuntary blinks and exploits the redun-
dancy provided by the fact that humans naturally
blink regularly. The bi-directional difference image
[Dli; = |([Ftli,; — [Fi-1li,5)| is formed from previous
frame image F; ; and current frame image F; for all
pixels (¢,j) in order to capture both increasing and
decreasing brightness changes. The difference image
is thresholded to produce a binary image representing
regions of significant change, i.e. motion, in the scene.

Next the image undergoes erosion with a cross-
shaped convolution kernel in order to eliminate spu-
rious pixels generated by phenomena such as flickering
lights, high-contrast edges, or arbitrary jitter. For ex-
ample, the sharp contrast along the edge between the
face and the hair or shadow on the neck permits only a
negligible amount of movement to result in a significant
brightness change. Such irrelevant motion is noise to
the system, and therefore removed by the erosion pro-
cess (see Fig. 2).
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Figure 2: Thresholded difference image prior to erosion
(left), and same image after erosion (right). Erosion re-
moves noise caused by insignificant motion in the scene.

Finally, candidate eye ”"blobs” are extracted by la-
beling the connected components in the pre-processed
difference image. Each possible pairing of the compo-
nents is analyzed to determine if the pair is likely to
represent blink motion.

Each candidate component pair has a vector of prop-
erties p = [sg, Sy, Wr, Wy, by, hy] where s, s, are the
distances in z and y between each respective compo-
nent’s centroid, and w;, w,, h;, and h, denote the
width and height of each component, normalized by
their separation from one another. The candidate pairs
first undergo several filters that eliminate pairs whose
properties make them anthropomorphically infeasible,
such as excessive separation between the components in
the y-axis, or components whose dimensions are dispro-
portional to their separation from one another. Large
samples comparing the properties of non-blink motion
component pairs to those of true blink motion pairs re-
vealed several clear distinctions between the classes. As
a result, the majority of candidate motion components
can be quickly discarded by the filters to avoid consum-
ing additional online computation resources (see Figs.
3 and 4).

Subsequently, surviving candidate pairs are com-
pared to a model of known blink-pair measurements
by calculating the weighted Mahalanobis distance d be-
tween the candidate pair’s vector of properties p and
the mean vector of blink-pair properties g, where

=@ pp). (1)

The mean vector g and covariance matrix ¥ for com-
puting distance d are produced by manually identi-
fied blink-pairs at different depths and face orienta-
tions during training. Pairs having distances less than
a threshold are classified as non-members (not blinks),
and those classified as members proceed as candidates.
The Mahalanobis distance measure was chosen because
of its sensitivity to inter-variable changes in the train-
ing data.

For a given frame, if there exists a pair of motion
components whose Mahalanobis distance is less than

e )

Figure 3: Thresholded, segmented difference image
showing arbitrary motion (A), two candidate pairs
falling below the Mahalanobis distance threshold (B),
and one candidate pair identified as a blink (C). Red
boxes bound regions of motion and green lines connect-
ing the boxes indicate component pairings.
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Figure 4: Example of a filter applied to candidate eye
component pairs. Values associated with instances of
true eye blinks are significantly lower than those of non-
blink motion in the scene. A filter can therefore be used
to quickly discard candidate motion blobs that do not
describe eye blinks.

the threshold, then these components are the blink can-
didates for that frame. If there happens to be more
than one component pair that survives the threshold,
then only the pair with the lowest Mahalanobis dis-
tance is considered. Believing that the motion of the
candidate was caused by the quick closing and opening
of the eyes, a template of the open eye may be captured
instants (frames) later from the location in the image
of one of the eye components. The template’s size is
based on the bounding box of the segmented motion
blob. The area of segmented motion is directly propor-
tional to the size of the eye that caused it. Therefore,
the automatically chosen templates are depth-sensitive
and accurately proportional in size to the user’s eye at
the time of initialization.

During the initialization phase, n templates result-
ing from the n best candidate pairs are collected in this
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Figure 5: Details of motion analysis phase.

manner. Finally, the system determines which open eye
template is used by comparing all n choices against a
stored model of the open eye and selecting the template
with the highest correlation score.

2.2 Eye Tracking

Motion analysis alone is not sufficient to give the highly
accurate blink information desired. It does not provide
precise duration information, and multiple component
pair candidates may occur sequentially as the result
of a single blink. Relying on motion would make the
system extremely intolerant of extra motion due to fa-
cial expressions, head movement, or gestures. The user
must be allowed to move his or her head with relative
freedom if necessary.

Following initial localization, a fast eye tracking pro-
cedure maintains exact knowledge about the eye’s ap-
pearance. Thus, the eye may be evaluated for amount
of closure at the next stage. As described, the ini-
tial blink detection via motion analysis provides very
precise information about the eyes’ positions. Conse-
quently, a simple tracking algorithm suffices to update
the region of interest centered around the eye.

The system utilizes the normalized correlation coef-
ficient R(z,y) =

S oY T,y (z+2y+y)
\/Z;’:O Z:’:O T(2',y')? ZZ/:() Z:’:O I(z+a,y+y)?

where T(z',y') = T(«',y') — T, Wz + 2",y +¢) =
I+, +y') — I(z,y), and T(z,y) and I(z,y) are
the brightness of the pixels at (z, y) in the template and
source image, respectively, and T is the average value
of the pixels in the template raster and I(z,y) is the
average value of the pixels in the current search win-

Figure 6: Intermittent frames from a sequence during
the motion analysis phase when the template is being
found automatically by the user’s first several natu-
ral blinks. Rectangles around the face indicate that
blink-like motion was detected. The small rectangle
that appears around the eye three frames later indi-
cates where the open eye template is being selected.
The subsequent small rectangles indicate eye tracking.
A red circle on top of the eye (third row, second col-
umn) indicates that a blink is believed to have just
ended.

dow of the image. The coefficient R(x,y) is a measure
of match between the open eye template and all points
within the small search region surrounding the loca-
tion of the eye given from the previous frame. In this
way, the current eye position is updated nearly thirty
times per second and remains accurate sparing dra-
matic, sudden head movements or significant changes
in depth. For these events, it is critical that the tracker
declare itself lost and re-initialize using blink motion
analysis as discussed above. The tracker is believed to
be lost if the best match score found using the corre-
lation coefficient falls below a set threshold F' = 0.55.
The tracker does not get lost during the blink because
the closed eye and its closely neighboring pixels bear
enough similarity to the open eye template to pass the
threshold.

2.3 Blink Detection and Duration of
Closure Measurement

As the eye closes, it begins to look less and less like an
open eye; likewise, it regains its similarity to the open
eye slowly as it reopens. This is a simple but powerful
observation. During an eye blink, the best correlation
scores reported by the tracker can be plotted across
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Figure 7: Correlation scores over time comparing the
user’s eye at each frame to both the open eye tem-
plate and the closed eye template. The open eye scores
present a waveform indicating the captured blink pat-
tern: long, short, short. Such samples were collected
and used to identify an effective threshold O for clas-
sifying eyes as opened or closed at each frame.

time to depict a clear waveform that illustrates the
duration of successive blinks (see Fig. 7).

Experiments with the correlation scores between the
actual eye and its closed template confirmed that this
method succeeds from both aspects. However, the ap-
parent correspondence of the two measures would make
it redundant to compute both online, and so only the
open eye correlation is used in the current system.
Likewise, processing time may be conserved by track-
ing and computing the correlation for only one eye.
The motion analysis above can be used to verify or re-
fute the correlation score’s findings. Since the motion
components account for both eyes, correlating for the
second eye would be superfluous and is therefore omit-
ted. It is a simple task to specify in the software that
a particular eye or both eyes be considered.

The waveforms representing degree of closure are so
distinct that it is reasonable and useful to ”binarize”
the open correlation figures and thus classify the eye
as open or closed at each frame. In addition to the
threshold F' that indicates the tracker is lost, a thresh-
old O = 0.85 is needed for the minimum correlation
score interpreted as an open eye. These two thresholds
together allow the system to classify the eyes as being
open, closed, or unfound at every single frame. In this
way measuring blink length is possible. The system
interprets only longer, voluntary blinks as meaningful;
quick, involuntary blinks do not trigger mouse clicks.
Analysis of video sequences from various users indicates
that open eyes result in correlation scores ranging from

0.85 to 1.0, closed eyes result in correlation scores be-
tween 0.55 and 0.8, while "non-eye” segments of the
facial region result in scores ranging from 0 to 0.4.

3 Communication Strategies
Using Visual Cues

In feature-tracking systems such as the Camera
Mouse [6], some small section of the face is tracked
and is used to generate corresponding mouse motion.
A user makes a selection or issues a mouse click by
dwelling in the desired screen area for a given amount
of time. Although the dwelling approach is generally
effectual, it may result in undesired clicks being reg-
istered when a user needs to rest his or her head for
a moment. The "Midas Touch” problem occurs when
a user is unable to look anywhere without triggering
some system response [10]. The blink method pro-
posed in this work may be used in conjunction with
such feature-tracking methods in order to provide a
more active means of making selections. A prolonged
blink is a more emphatic way to indicate voluntary se-
lections.

The precise knowledge of blink duration offers an
opportunity for a different communication strategy re-
quiring only eye blinks: message encoding by blink pat-
terns. At first glance, one might consider the applica-
tion of the long/short inputs as a sort of Morse code
in which any desired message is spelled letter by let-
ter. Perhaps for some users with certain skills this is a
feasible approach. However, a less demanding protocol
was developed for this system. Long and short blinks
are translated into a binary Huffman code where each
prefix-free symbol is representative of a word or phrase
in a certain small subset of related vocabulary. In
practice, an individual controlling the computer with
only blinks would need to select a vocabulary subset
through some scanning software, and then proceed to
link words or phrases into the desired message. Com-
pared to straight Morse code, this approach requires
fewer blink inputs and thus offers faster service.

The idea of losing and regaining correlation to a
model in appearance was also extended to other facial
features to provide additional functional inputs from
body parts. For example, placing the tracker on the
mouth while it is in a resting position allows a user to
generate mouse clicks analogously to the blink method
by simply opening and reclosing his or her mouth.
Given the broad range of differing abilities possessed
by users of assistive technology, multiple options for
usage are certainly valuable.
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4 Hardware

Development and testing of the system was done with
a Sony EVI-D30 color video CCD camera, a Matrox
Meteor II image capture board, and a 1 GHz dual pro-
cessor PC with 256 MB RAM. Testing with people with
disabilities was done on a 800 MHz single processor PC
with 128 MB RAM. Grayscale images are processed at
320 x 240 pixels. When possible, two monitors are help-
ful but not necessary when running the Blink Link, for
this allows one to monitor the status of the eye tracker.

5 Experiments and Discussion

The system has been tested for its accuracy as well as
its usability as an input device. The following results
are based on sessions with 15 different subjects without
disabilities. They are summarized in Table 1. Several
videos of our experiments are provided on the web [8].

In order to measure the accuracy of eye blink detec-
tion, video sequences were captured of each user sit-
ting between two and four feet from the camera. The
users were asked to blink naturally but frequently and
exhibit mild head movement. Each sequence was pro-
cessed by the system in real time. Processed images
were saved and manually examined offline to determine
precisely how the system had interpreted the data.

The results show that 98% of the blinks were de-
tected. Only four blinks were missed out of the 204
actual blinks in the sequences. False positives were
encountered five times, making the overall detection
accuracy 95.6%.

Beyond simple detection accuracy, it was important
to test the system’s ability to classify blinks as involun-
tary (short) or voluntary (long). To achieve this, each
subject was asked to blink out designated blink pat-
terns. These sequences were then processed as above,
where the ground truth was fixed to be the intended
blink pattern. Patterns tested include sequences such
as long-short-short or short-long-short. No parameters
were altered for any single test. While the system al-
lows a user to adjust the threshold on the minimum
length of voluntary blinks online, part of the objec-
tive of these tests was to determine how well a single
threshold would hold for multiple users given no in-
struction about what the system defines to be a ”long”
or "short” blink. The experiments show that a single
threshold can be used and thereby reliably distinguish
involuntary blinks across our users.

The system correctly detected all but two of the
combined long and short blinks, yielding a 98% rate
of accuracy for detection for these samples. 93% of
the blinks were correctly classified as either long or

Table 1: Summary of Results

Overall detector accuracy 95.6 %
Long/short classification accuracy 93.0 %
Usability score as an input device 93.6 %
Average frame rate 28 fps

short. The five misclassified blinks can most often be
attributed to users who tend to make their long blinks
virtually identical to their short blinks.

In addition to the accuracy tests described above,
experiments were also performed to study how feasi-
ble eye blinking is as an input modality for the com-
puter. The idea is to use blinks to generate mouse
clicks. Short, involuntary blinks are filtered out and
only long, voluntary blinks cause a click. Applications
used to test the blink input require no mouse move-
ment; they operate entirely on mouse clicks regardless
of the mouse location. While the eye tracking infor-
mation may be used to generate mouse movement, for
this system cursor motion is not included since users
with severe disabilities do not necessarily have signifi-
cant head or eye motion control.

The subjects were observed trying several simple
games and one spelling program using the Blink Link.
The games are commercial software intended as edu-
cational exercises for children with disabilities who can
access a computer with a ”switch,” or a single input
signal that the user triggers in some way. Here, the
switch is the click that is generated by a blink. Be-
cause no cursor movement is considered, these games
use a scanning mechanism in which the user is pre-
sented with one option at a time. The user must then
blink a long blink when the desired option is presented.
For example, in one game used to assess reflexes and
coordination, a frog is depicted sitting in the marsh,
waiting for flies to come by. The user must blink vol-
untarily when a fly appears in order to have the frog
catch it with its tongue. In another game, images of fa-
miliar objects are shown, and the user must blink when
the image of a matching object is shown (see Fig. 8).

The scores received when playing such games are
good indicators of how well the system functions as
an input device. Subjects played one round each of
three different games. If a user’s score is defined as
the number of correct hits divided by the total sum
of hits and misses, then the mean score recorded for
the test subjects was 90%. Grand totals for the games
played amount to 421 hits and 29 misses, making a cu-
mulative score of 93.6%. Misses can be attributed to
instances when the tracker was lost because of fast head
movement, input blinks that were not long enough to
meet the voluntary length threshold, or false positives
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Figure 8: Sample games testing reaction time (left)
and visual matching abilities (right). The red outlining
box cycles through the options, and the user blinks
when the matching image is outlined. Figure courtesy
of Simtech Publications.

Figure 9: A user plays a scanning arcade game where
the object is to throw a baseball at the plates on the
shelf when they are outlined with a square. A long
blink causes a ball to be thrown.

caused by involuntary blinks that should have been fil-
tered out.

Users also tested a scanning spelling program using
eye blinks. The program organizes the letters of the
alphabet into groups and scans through these groups
in order, line by line. The user waits for his or her
desired row to be highlighted and then blinks. Next the
program scans through each individual letter in that
group, and the user blinks again when the desired letter
is highlighted. The subjects were told to spell ”GO
EAGLES.” The average time required to complete the
task in one trial was 95 seconds (see Fig. 10). Users
gain speed as they get accustomed to the system and
accumulate practice.

The subjects also tried using their mouths to gener-
ate mouse clicks. In the current system, mouth control
requires manual initialization of the template. It then
works in a similar manner to the eye blink control.
A brief opening and closing of the mouth generates a
mouse click. For some people this is an easier motion
to control, and thus a better input method.

The system is equipped to handle head movement,
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Figure 10: The scanning spelling game highlights each
consecutive row of letters. A blink causes it to highlight
each consecutive letter in that row, and another blink
causes the letter to be printed. Here, the second row
is highlighted in the left image. A blink selects the
letters E-H to be scanned from left to right; another
blink selects the letter E.

rotation in the image plane, and as much horizontal
head turning or vertical nodding such that neither eye
is completely occluded. Should the tracker become lost
because of a sudden acceleration of the head, it is re-
initialized within moments through blink motion anal-
ysis. Both eyes must therefore remain in the image for
the motion analysis method to identify them as blink-
ing. A user seated before a monitor with a camera
mounted on it may zoom the camera in or out so that
the face comprises anywhere from roughly 15% to 100%
of the image. For users with disabilities, the amount of
zoom must take into account the degree to which the
user may involuntarily move his or her head during the
session.

The use of the simple correlation coefficient for
tracking and degree of closure measurement has proven
to be effective for this system. However, there are clear
restrictions it imposes. For example, should the tem-
plate selected be considerably larger than the actual
eye in the image, then the eye comprises a smaller
percentage of the template used for determining the
degree of openness, and thus large movements of the
eyelid have less impact than desired. Likewise, should
a user begin to squint for an extended period of time,
his or her open eye template becomes out of date, and
the system may give faulty outputs until the tracker is
lost for some reason and re-initializes itself. For this
reason, the complementary motion analysis is valuable
for reinforcing or discarding classifications made by the
correlation component of the system.

6 Conclusions and Future Work

The algorithm and software presented in this paper
constitute an alternative communication method that
is suitable for people with severe disabilities. Results
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demonstrate the Blink Link’s ability to accurately dis-
tinguish between voluntary and involuntary blinks, an
important consideration for a system controlled by fa-
cial gestures or cues. The system runs consistently at a
frame rate of 27 to 29 fps, which is believed to be closer
to the real-time goal of 30 fps than other blink detec-
tion systems previously designed. Prior knowledge of
face location or skin color is not required, nor is any
special lighting. The use of blink patterns as commu-
nication signals proposed in this work offers a novel
approach to written word communication applications.

Some trackers used in human-computer interfaces
for people with disabilities require the user to wear
special transmitters, sensors, or markers. Such sys-
tems have the disadvantage of potentially being per-
ceived as a conspicuous advertisement of the individ-
ual’s disability. Since the Blink Link uses only a camera
placed on the computer monitor, it is completely non-
intrusive. The absence of any accessories on the user
make the system easier to configure and therefore more
user-friendly in a clinical or academic environment, as
discussed in [15]. It is accommodating to most natural
human movement because of its fast tracking and the
automatic re-initialization feature.

Further testing of the system with users with dis-
abilities is necessary to learn more about what is most
comfortable and effective as an interface. Ideas for ex-
tending this project in the future include the develop-
ment of the Huffman code blink system and a study of
its feasibility. The Blink Link may lend itself very well
to some combination with other assistive technologies
to improve the bit-rate of communication for people
with disabilities. It could also be used to augment in-
terfaces based on natural language processing or Amer-
ican Sign Language recognition.
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