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Abstract
Images of outdoor scenes captured in bad weather suffer
from poor contrast. Under bad weather conditions, the light
reaching a camera is severely scattered by the atmosphere.
The resulting decay in contrast varies across the scene and
is exponential in the depths of scene points. Therefore, tradi-
tional space invariant image processing techniques are not
sufficient to remove weather effects from images. In this
paper, we present a fast physics-based method to compute
scene structure and hence restore contrast of the scene from
two or more images taken in bad weather. In contrast to pre-
vious techniques, our method does not require any a priori
weather-specific or scene information, and is effective under
a wide range of weather conditions including haze, mist, fog
and other aerosols. Further, our method can be applied to
gray-scale, RGB color, multi-spectral and even IR images.
We also extend the technique to restore contrast of scenes
with moving objects, captured using a video camera.

1 Towards Weather-Free Vision
Most outdoor vision applications such as surveillance, tar-
get tracking and autonomous navigation require robust de-
tection of image features. Under bad weather conditions,
however, the contrast and color of images are drastically de-
graded. Hence, it is imperative to remove weather effects
from images in order to make vision systems more reliable.
Unfortunately, the effects of bad weather increase exponen-
tially with the distances of scene points from the sensor. As
a result, conventional space invariant filtering techniques fail
to adequately remove weather effects from images.

Recently, there has been an increased interest in the im-
age processing and vision communities on issues related to
imaging under bad weather. Kopeika et al [5, 17] de-blur
atmospherically degraded images using a weather-predicted
atmospheric modulation transfer function, and an a-priori
estimate of the distance from which the scene is imaged.
Oakley et al [12, 15] describe a physics based method to re-
store scene contrast without using predicted weather infor-
mation. However, they assume that scene depths are known
beforehand, and approximate the distribution of radiances in
the scene by a single gaussian with known variance.

Narasimhan and Nayar [10] analyze the color variations
in the scene under different weather conditions based on
the dichromatic atmospheric scattering model proposed in
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[11]. Using constraints on scene color changes, they com-
pute complete 3D structure and recover clear day scene col-
ors from two or more bad weather images. However, they
assume that the atmospheric scattering properties do not
change with the wavelength of light. This property holds
over the visible spectrum only for certain weather conditions
such as fog and dense haze. Furthermore, the dichromatic
model is ambiguous for scene points whose colors match
the color of fog or haze.

Polarizing filters have been used widely by photographers to
reduce haziness in images. However, polarization filtering
alone does not ensure complete removal of haze. Schechner
et al [13] further analyzed 2 or more polarization filtered im-
ages to compute scene structure and dehaze images. Another
work by Grewe and Brooks [2] uses wavelet based fusion of
multiple bad weather images to get a less blurred image.

In this paper, we present a physics based method to restore
contrast completely from two or more images taken in bad
weather. A monochrome atmospheric scattering model that
describes how scene intensities are effected by weather con-
ditions is presented. This model is valid in both the visible
and near-IR spectra, and for a wide range of weather con-
ditions such as mist, haze, fog and other aerosols. Based
on this model, an automatic algorithm to recover com-
plete scene structure from two images taken under different
weather conditions is presented. Using the computed struc-
ture, contrast is restored from a single image of the scene.
We extend our algorithms to handle video and describe a
simple heuristic to restore contrasts of moving objects in the
scene whose depths are unknown.

The entire analysis in this paper is done for monochrome
(narrow spectral band) images. However, we show that our
methods can be applied to images taken using gray-scale,
wide-band RGB, multi-spectral and also narrow-band IR
cameras. The effectiveness of these sensors under various
weather conditions is discussed.

2 Atmospheric Scattering Models
Scattering of light by physical media has been one of the
main topics of research in the atmospheric optics and astron-
omy communities. In general, the exact nature of scattering
is highly complex and depends on the types, orientations,
sizes and distributions of particles constituting the media, as
well as wavelengths, polarization states and directions of the
incident light [1, 3]. Here, we focus on two models - attenu-
ation and airlight, that form the basis of our work.



2.1 Attenuation and Airlight

The attenuation model describes the way light gets attenu-
ated as it traverses from a scene point to the observer. The
attenuated irradiance is given by (see [7, 10]),

Edt(d, λ) =
E∞(λ) r(λ) e−β(λ)d

d2
. (1)

where, d is the depth of the scene point from the observer
and λ is the wavelength. β(λ) is called the scattering coeffi-
cient of the atmosphere; it represents the ability of a unit vol-
ume of atmosphere to scatter light in all directions. β(λ)d is
called the optical depth of the scene point. E∞ is the horizon
brightness and r is a function that describes the reflectance
properties and the sky aperture1 of the scene point.

The second atmospheric scattering model we consider is
called the airlight model. The airlight model quantifies how
a column of atmosphere acts as a light source by reflecting
environmental illumination towards an observer. The irradi-
ance due to airlight is given by (see [6]),

Ea(d, λ) = E∞(λ) (1 − e−β(λ)d) . (2)

The total irradiance E received by the sensor is the sum of
irradiances due to attenuation and airlight respectively :

E(d, λ) = Edt(d, λ) + Ea(d, λ) . (3)

2.2 Wavelength Dependence of Scattering

Generally different wavelengths of light are scattered differ-
ently by atmospheric particles. Interesting atmospheric phe-
nomena such as the blueness of the sky and the bluish haze
of distant mountains are examples of the wavelength selec-
tive behavior of atmospheric scattering [4, 8]. In these cases,
the blue wavelengths are scattered more compared to other
visible wavelengths. On the other hand, fog and dense haze
scatter all visible wavelengths more or less the same way.

Over the visible spectrum, Rayleigh’s law of atmospheric
scattering provides the relationship between the scattering
coefficient β and the wavelength λ [6] :

β(λ) ∝ 1
λγ

, (4)

where, 0 ≤ γ ≤ 4 depending on the exact particle size
distribution in the atmosphere. For pure air, γ = 4; short
(blue) wavelengths dominate and we see the clear blue sky.
For fog, γ ≈ 0; all wavelengths are scattered equally and
we see grayish (or white) fog. A wide gamut of atmo-
spheric conditions arise from aerosols whose particle sizes
range between minute air molecules (10−4µm) and large fog
droplets (1−10µm). Such aerosols (eg., mild haze and mist)
show a significant wavelength selectivity (0 < γ < 4).

1Solid angle subtended by the area of sky visible to a scene point.

2.3 Weather Conditions and Camera Response

Different cameras measure irradiance over different color
bands. Some examples include, gray-scale cameras (en-
tire visible spectrum), conventional color cameras (3 broad
bands R, G and B), and multi-spectral cameras (multiple nar-
row color bands). In the appendix, we derive an expression
for the brightness recorded by a monochrome (narrow spec-
tral band) camera, using (3). In this derivation, we assume
that the scattering coefficient β remains constant within the
spectral bandwidth of the monochrome camera.

Keeping the above assumption in mind, we now discuss un-
der what weather conditions can our methods be applied to
various sensors. Recall from section 2.2 that the scattering
coefficient for fog and dense haze remains more or less con-
stant over the visible spectrum. Accordingly, a broad band
RGB or gray-scale camera suffices to analyze images taken
in fog and dense haze. For other aerosols such as mild haze
and mist, multi-spectral cameras or cameras fitted with nar-
row band filters should be used in order to apply our meth-
ods. Finally, scattering coefficients of most weather con-
ditions vary significantly in the near-IR spectrum [16] and
hence, narrow-band IR cameras have to be used for the anal-
ysis beyond the visible wavelengths.

3 Contrast Restoration of Iso-Depth Regions
We now describe a simple method to restore scene contrast
from one bad weather image, using depth segmentation of
the scene. We define depth segmentation as the extraction
of iso-depth regions in the scene. Note this does not mean
that actual scene depths have to be known. In several sit-
uations, it may be easy to interactively provide the neces-
sary segmentation. For instance, in urban scenes with frontal
views of buildings, a user can easily mark out regions that
roughly have the same depths. Later, we will present two au-
tomatic depth segmentation techniques using images taken
under different weather conditions.

Consider an image taken in bad weather. The brightness at
any pixel recorded by a monochrome camera is given by,

E = I∞ ρ e−βd + I∞ (1 − e−βd) , (5)

where, I∞ is termed as sky intensity (see appendix). We call
ρ the normalized radiance of a scene point; it is a function
of the scene point reflectance (BRDF), normalized sky illu-
mination spectrum, and the spectral response of the camera,
but not the weather condition defined by (β, I∞).

Now consider two scene points Pi and Pj at the same depth
d from a sensor. Their pixel intensities are given by,

E(i) = I∞ ρ(i) e−βd + I∞ (1 − e−βd) ,

E(j) = I∞ ρ(j) e−βd + I∞ (1 − e−βd) . (6)



The observed contrast between Pi and Pj can be defined as,

E(i) − E(j)

E(i) + E(j)
=

ρ(i) − ρ(j)

ρ(i) + ρ(j) + 2(eβd − 1)
. (7)

This shows that the contrast degrades exponentially with the
depths of scene points in bad weather. Eliminating the un-
known e−βd from (6), we obtain,

1 − ρ(i)

1 − ρ(j)
=

I∞ − E(i)

I∞ − E(j)
. (8)

For robustness, we consider all the pixels at the same depth,

1 − ρ(i)∑
j(1 − ρ(j))

=
I∞ − E(i)∑
j(I∞ − E(j))

. (9)

Then, the normalized radiance of any scene point is obtained
using,

ρ(i) = 1 − (
∑

j

1 −
∑

j

ρ(j) )
I∞ − E(i)∑
j(I∞ − E(j))

. (10)

This procedure is repeated independently for each depth in
the scene. So, if we have a priori depth segmentation of
the scene and have measured the sky intensity I∞, then ρ(i)

can be computed up to a linear factor
∑

j ρ(j). Since ρ is
independent of the weather condition, we have restored the
contrast of the scene using just one bad weather image.

4 Depth Edges from Two Weather Conditions
In this section, we present a simple cue to automatically
locate the depth edges (discontinuities) present in a scene
from two monochrome images taken under different but un-
known weather conditions. Note that closed contours of
depth edges can be used for depth segmentation. In outdoor
surveillance applications, video cameras capture the same
scene (albeit with moving objects) over long periods of time
during which the weather may change. Also, depth edges
in the static portion of any scene have to be computed just
once and not for every video frame. Hence, we see this as
an initialization step that needs to be done before applying
the contrast restoration algorithm of section 3 to all frames.

Consider a small image neighborhood that corresponds to
scene points that are at the same depth from an observer (i.e.,
no depth edges present). We call such a neighborhood as an
iso-depth neighborhood. From (5), the average brightness
of an iso-depth neighborhood is,

E =
[
I∞ e−βd

]
ρ +

[
I∞ (1 − e−βd)

]
, (11)

and the standard deviation of the neighborhood is,

σE =

√√√√ 1
n

n∑
i=1

(E(i) − E)2 . (12)
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Figure 1: Invariance of iso-depth neighborhoods to weather con-
ditions. (a)−(b) Signals representing the intensities of a neighbor-
hood of iso-depth scene points in two weather conditions. Airlight
(dashed lines) is constant for the entire neighborhood. (c) − (d)

Normalized signals in the two weather conditions match exactly.

Using (5), we simplify to obtain,

σE = I∞e−βd

√√√√ 1
n

n∑
i=1

(ρ(i) − ρ)2 . (13)

Normalizing the pixel values in the neighborhood, we get,

E(i) − E

σE
=

(ρ(i) − ρ)√
1
n

∑n
i=1 (ρ(i) − ρ)2

. (14)

For iso-depth neighborhoods, clearly the above equation is
invariant to the weather condition (β, I∞). More impor-
tantly, the invariance does not hold for a neighborhood that
contains depth edges. This is easily explained as follows.
The airlight does not remain constant across a neighborhood
with depth discontinuities. Hence, subtracting the mean (as
in (14)) will not remove the airlight completely.

Now let us consider two images captured under different
weather conditions. We assume that the two images are
taken under similar daylight distributions. However, the
magnitudes of the distributions (I∞) may vary. Figures 1(a)
and (b) illustrate the brightnesses within an iso-depth neigh-
borhood under two weather conditions. Figures 1(c) and (d)
show that the normalized signals under the two weather con-
ditions match perfectly. On the other hand, figure 2 illus-
trates that normalized signals of scene neighborhoods that
contain depth edges, do not match. Normalized SSD can be
used to determine the quality of the match.

It is interesting to note what happens if we treat the entire
image as a single neighborhood. Applying normalized SSD
to two images of a scene, a poor match implies that the
weather condition changed between the two images, and a
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Figure 2: Illustration of scene intensities of a neighborhood that
has a depth edge. (a) − (b) Signals representing the intensities of
the neighborhood under two weather conditions. Airlight (dashed
lines) varies across the neighborhood. (c)−(d) Normalized signals
in the two weather conditions do not match.

good match implies otherwise. For this, the scene should
have at least two different depths and the images should
be linearized using the radiometric response function of the
camera. This cue is helpful in deciding which frames can be
used to compute depth edges in a video sequence.

Figure 3 shows the experimental results of classifying im-
age edges into reflectance edges and depth edges for a real
scene captured under two different foggy conditions. The
time between the capture of the images was about half an
hour. The edge map of one of the images was computed us-
ing the Canny edge detector. For each edge pixel, we consid-
ered 15× 15 neighborhoods around the pixel in the two im-
ages. We applied normalized SSD to match these neighbor-
hoods. For the depth edges, the normalized SSD value was
high; for the reflectance edges, the value was low. The depth
edges are shown in white and reflectance edges are shown in
black (figure 3(d)). Note if both reflectance edges and depth
edges are within the same neighborhood, this method may
misclassify the reflectance edges as depth edges.

5 Scene Structure
In the previous section, we described a method to locate
depth discontinuities from two bad weather images. Note,
however, that normalized SSD is effective only in textured
neighborhoods (reflectance edges and depth discontinuities).
In other words, normalized SSD is not reliable for “flat” in-
tensity regions and regions where depth changes are grad-
ual. Moreover, due to the blurring seen in images taken un-
der poor visibility conditions, the edge maps may not be
reliable enough to create closed contours of depth disconti-
nuities (needed for depth segmentation).

( b )( a )

( d )( c )

Figure 3: Classification of images edges into reflectance edges and
depth edges. (a)−(b) Images of the same scene captured under dif-
ferent fog conditions (half an hour apart). (c) The image in (a) is
histogram equalized to aid visualization of depth edges (shown us-
ing arrows). (d) White pixels denote depth edges and black pixels
denote reflectance edges. Note that the edge detector was applied
to the original image in (a) and not the histogram equalized image.

In this section, we present a method to compute complete
structure of an arbitrary scene, from two images taken un-
der different weather conditions. In contrast to the methods
proposed in [11, 10] that require color images (3 color chan-
nels), our algorithm can be applied to both gray-scale as well
as color images.

Consider the observed pixel values E1 and E2 of a
scene point under two weather conditions (β1, I∞1) and
(β2, I∞2 ). Let us examine how the brightness of this scene
point changes from the first weather condition to the second.
From (5):

E1 = I∞1 ρ e−β1d + I∞1 (1 − e−β1d)
E2 = I∞2 ρ e−β2d + I∞2 (1 − e−β2d) (15)
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Figure 4: Plot of the pixel values E1 observed under one weather
condition versus the corresponding pixel values E2 observed under
another weather condition. Each line represents all the scene points
at the same depth from the sensor. All iso-depth lines intersect at
the horizon brightnesses (I∞1 , I∞2 ) of the two weather conditions.

Eliminating ρ from (15) we get,

E2 =
[
I∞2

I∞1

e−(β2−β1)d

]
E1 +

[
I∞2 (1 − e−(β2−β1)d)

]
,

(16)
which is linear in E1 and E2. Also, for the two weather con-
ditions, the coefficients of the linear equation depend only on
scene depth. In other words, for iso-depth scene points, the
plot of E1 versus E2 is a straight line.

Interestingly, if we substitute E1 = I∞1 in (16), we get
E2 = I∞2 , irrespective of the depth d. Therefore, the point
(I∞2 , I∞1) lies on the straight lines corresponding to differ-
ent depths in the scene (see figure 4). In other words, the in-
tersection of straight lines corresponding to different depths
yields the sky intensities I∞1 and I∞2 . To compute sky in-
tensities quickly, we divide the two images into blocks and
within each block we fit lines to the (E2, E1) pairs of scene
points. If the fit is good, we decide that the scene points in
the block are at the same depth. Then, we use at least two
such iso-depth blocks to estimate sky intensities.

Substituting the values of I∞1 and I∞2 in (16), we obtain
the scaled depth of each scene point:

(β2 − β1)d = − ln
I∞2 − E2

I∞1 − E1
− ln

I∞1

I∞2

. (17)

Thus, we have computed the depth map of a scene from two
images taken under different weather conditions.

6 Contrast Restoration using Scene Structure
In section 3, we described a method to restore scene contrast
given a depth segmentation of the scene. This method is sim-
ple and effective for scenes where depth changes are abrupt
(for example, an urban scene with frontal views of build-
ings). However, it is hard to define good depth segmentation
when scene depths change gradually (for instance, a natural
scene with mountains or an urban scene with a oblique view

of a road). In this section, we present a method to restore
contrast of an arbitrary scene using scaled depths (17) of
scene points.

We assume that there exists a black patch2 Eblack in the
scene whose radiance is zero. For instance, window inte-
riors in urban scenes are dark and can be assumed to be
black. We can either mark such a patch manually or detect
one automatically from the image (see [9]). Since the appar-
ent brightness of the black patch is solely due to airlight, its
optical depth can be computed as,

β dblack = − ln (1 − Eblack/I∞) . (18)

Then, the optical depth of any other scene point P i is ob-
tained using,

β di = (β dblack)
(

di

dblack

)
, (19)

where, the second term can be computed using the ratio of
scaled depths (see (17)). Then, the normalized radiance ρ i

of the scene point Pi is estimated using (5). Recall that ρ
does not depend on the weather condition (β, I∞). Thus, by
computing ρ for each scene point, we restore contrast of the
entire scene.

Note that structure computation requires two images to be
taken under different weather conditions but under similar
daylight spectra. However, contrast can be restored from
a single image of the scene taken under arbitrary weather
and illumination conditions. Figure 5(a) shows experiments
with a synthetic scene consisting of a stack of cylinders
with random brightness values. To this image, two different
amounts of fog are added according to the model described
in (5). Figure 5(c) and (d) shows the results of applying the
structure computation and contrast restoration algorithms to
images of the synthetic scene.

7 Experiments with Video : Moving Objects
Consider an outdoor surveillance video camera capturing
a scene (with moving objects) over an extended period of
time. We would like to process this video in real-time to
obtain a weather-free video. For the purposes of discussion,
we define the static part of the scene as the background, and
the moving objects in the scene as the foreground. The fore-
ground objects can be separated from the background us-
ing any background subtraction method (for instance, [14]).
Then, weather-free video is obtained using an algorithm that
has the following two stages:

• Initialization stage : We first detect any change in
weather condition using normalized SSD (section 4).
Then, the two frames that correspond to the different

2The black scene patch will not appear black in the image due to the
addition of airlight.
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Figure 5: Experiments on a synthetic scene - a stack of discs tex-
tured with random gray dots. (a) On the left is the 3D structure
and on the right is an image of the top view of the scene. The
gray levels on the structure are used only to illustrate the disks bet-
ter. (b) Two different amounts of fog are added to the image in
(a). (c) Iso-depth lines shown in the plot of pixel values under the
first weather condition versus the corresponding pixel values un-
der the second weather condition. X mark shows the intersection
(I∞2 , I∞1) of all the iso-depth lines. (d) The recovered structure
and contrast restored image.

weather conditions are used to compute scaled depths
of the background scene (section 5).

• Contrast Restoration : Note that the methods we de-
scribed hitherto cannot be used to restore contrast of
moving objects since their depths are unknown. There-
fore, heuristics are needed to assign depths to fore-
ground objects. One conservative heuristic is to ex-
amine the depths in a neighborhood around each mov-
ing object and assign the minimum depth to it. The
algorithm presented in section 6 can then applied to the
entire frame to restore scene contrast. We have yet to
study such heuristics in detail.

Experimental results with a video of a traffic scene taken un-
der foggy conditions are shown in figure 6. We used an off-
the-shelf 8-bit digital video camera and captured two short
video clips half an hour apart. We averaged 100 frames in
each video clip to reduce noise and used the resulting images
to compute structure of the background scene (buildings).
The scaled depths in the road region were linearly interpo-
lated. Then, contrasts of buildings, the road and moving
vehicles were restored for each frame of the video. Notice
the significant increase in contrast at various depths in the
scene (figures 6(d-e)). In our initial implementation, con-
trast restoration was applied to the video off-line. Current
work includes creating a real-time “de-weathering system”.

8 Summary
In this paper, we addressed the problem of restoring the con-
trast of atmospherically degraded images and video. We pre-
sented methods to locate depth discontinuities and to com-
pute structure of a scene, from two images captured under
different weather conditions. Using either depth segmenta-
tion (regions within closed contours of depth edges) or scene
structure (scaled depths), we then showed how to restore
contrast from any image of the scene taken in bad weather.
Note although structure computation requires changes in
weather, the contrast restoration algorithms do not. The en-
tire analysis is presented for monochrome images, however
our methods can be applied to images captured using multi-
spectral cameras, IR cameras and the usual broadband RGB
and gray-scale cameras.
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Appendix
Monochrome Camera Sensing in Bad Weather
In this section, we derive an expression for the intensity E,
of a scene point under bad weather, recorded by a camera
within a narrow wavelength band (λ, λ + δλ). From (3) we
write,

E =
∫ λ+δλ

λ

s(λ) (Edt(d, λ) + Ea(d, λ)) dλ (20)

where s(λ) is the spectral response of the camera. We as-
sume that the scattering coefficient β does not change ap-
preciably over the narrow spectral band and write,

E =
e−βd

d2

∫ λ+δλ

λ

E∞(λ)s(λ)r(λ)dλ . . .

+ (1 − e−βd)
∫ λ+δλ

λ

E∞(λ)s(λ)dλ (21)

Also, we write the sky illumination spectrum as,

E∞(λ) = I ′∞Ê∞(λ) (22)

where, I ′∞ is the magnitude of the sky illumination spec-
trum and Ê∞(λ) is the normalized sky illumination spec-
trum. Letting

g =
∫ λ+δλ

λ

Ê∞(λ)s(λ)dλ ,

ρ =
1

gd2

∫ λ+δλ

λ

Ê∞(λ)s(λ)r(λ)dλ ,

I∞ = I ′∞ g (23)

we rewrite the final brightness at any pixel as,

E = I∞ ρ e−βd + I∞ (1 − e−βd) , (24)

where, I∞ is termed as sky intensity. Note that ρ is a func-
tion of normalized sky illumination spectrum, scene point
reflectance and the spectral response of the camera, but not
the weather condition β. The algorithm we present in the
paper recovers ρ for each pixel to restore scene contrast.

Let us now examine the wavelength range in which this
model can be applied. By changing the limits of integra-
tion to [λ1, λ2], and assuming the scattering coefficient to
be constant over this wavelength band, we can use the same
model for a black and white camera (entire visible range), or
smaller color bands (R,G,B) for a color camera, or narrow
band multi-spectral cameras. Thus, for removal of fog and
dense haze, we can use RGB color or gray-scale cameras
whereas we must use narrow spectral band cameras for the
removal of many aerosols.


