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Abstract

Analytic conditions that are necessary for the maz-
tmum likelihood estimate to become asymptotically un-
biased and attain minimum variance are derived for
estimation problems in computer vision. In particular,
problems of estimating the parameters that describe the
3D structure of rigid objects or their motion are inves-
tigated. It is common practice to compute Cramer-Rao
lower bounds (CRLB) to approzimate the mean-square
error in parameter estimation problems, but the CRLB
is not guaranteed to be a tight bound and typically un-
derestimates the true mean-square error. The neces-
sary conditions for the Cramer-Rao lower bound to be
a good approzimation of the mean-square error are de-
rived. The tightness of the bound depends on the noise
level, the number of pizels on the surface of the object,
and the texture of the surface. We examine our analyt-
ical results experimentally using polyhedral objects that
consist of planar surface patches with various textures
that move in 3D space. We provide necessary condi-
tions for the CRLB to be attained that depend on the
size, texture, and noise level of the surface patch.

1 Introduction

In many practical problems in computer vision, non-
linear inversions are required to estimate parameters
from measured data [15, 18, 11]. These parameters, for
example, may be used to model the three-dimensional
(3D) structure of an object, its shape, its surface re-
flectance properties, or its motion in space. The non-
linear inversion of random data often leads to estimates
that are biased and do not attain the minimum vari-
ance possible, namely the Cramer-Rao lower bound
(CRLB). The maximum likelihood estimator (MLE) [1]
is widely used because if an asymptotically unbiased
and minimum variance estimator exists as the signal-
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to-noise ratio (SNR) becomes high, it is guaranteed
to be the MLE. Since exact expressions for the bias,
variance and error correlation of the MLE are often
difficult or impractical to derive analytically, it has be-
come popular in computer vision, pattern recognition,
image processing, and other disciplines to instead com-
pute limiting bounds such as the CRLB since these are
usually much easier to obtain. The CRLB, however,
typically provides an unrealistically optimistic approx-
imation to the MLE variance in many nonlinear inverse
problems.

Recently, general analytic conditions for the maxi-
mum likelihood estimate to become asymptotically un-
biased and attain minimum variance have been de-
rived [20, 29]. In this paper, we apply these gen-
eral statistical results to the classical computer vi-
sion problems of 3D motion and structure estima-
tion for rigid objects. The “Cramer-Rao lower bound
[-] plays an essential role” [19] in computer vision
and has been widely used in the literature to ad-
dress object motion and structure estimation problems
(3,4,5,6,7,8,9,13, 19, 20, 21, 22, 23, 25, 26, 27, 28].
Here we derive analytical expressions that are neces-
sary for the Cramer-Rao lower bound to be a good ap-
proximation to the mean-square error. Since the struc-
ture of real-world objects can be approximated by a
collection planar surfaces, we focus on the problem of
estimating the pose and motion of planar surfaces. We
show analytically and experimentally that the tight-
ness of the bound depends on the noise level, surface
texture, and the number of pixels comprising the sur-
face. In particular, we find that parameters describing
surfaces with little texture are more difficult to esti-
mate than those describing surfaces with sharply vary-
ing brightness levels. For surfaces with little texture,
the mean-square error for position estimation cannot
be approximated well by the Cramer-Rao lower bound,
even in low signal-to-noise.

The approach is to apply the tools of higher order
asymptotic inference, which rely heavily on tensor anal-
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ysis to expand the MLE as a series in inverse orders
of SNR. From this series, analytic expressions for the
first-order bias, second-order covariance, and second-
order error correlation of a general MLE are presented
in terms of the joint moments of derivatives of the log-
likelihood function with respect to the parameters to
be estimated. Since the first-order error correlation is
shown to be the CRLB, which is only valid for unbiased
estimates, the second-order error correlation provides a
tighter error bound on the MLE than the CRLB that is
applicable in relatively low SNR even when the MLE is
biased to first order. These expressions are then used to
determine general analytic requirements on SNR and
sample size that are necessary for a MLE to become
asymptotically unbiased and attain minimum variance.
This is done by showing when the first-order bias be-
comes negligible compared to the true value of the pa-
rameter and when the second-order covariance term
becomes negligible compared to the CRLB. The first-
order bias is evaluated for general multivariate Gaus-
sian data. The second-order covariance and error cor-
relation terms are evaluated for the special case of ad-
ditive Gaussian noise with parameter-independent co-
variance.

2 Uncertainty Models in Computer
Vision

In this section, we discuss various approaches to for-
malize statistical estimation problems in computer vi-
sion that differ in the way that uncertainty is modeled.
Our theoretical results are applicable to all these mod-
els and to any probability distribution. We illustrate
them experimentally in one example.

2.1 Geometric Uncertainty

For the “geometric estimation from noisy data”
[19], parameterizations are developed to model object
shape. The shape parameters are then estimated in the
presence of noise in observations that are 2D image or
3D world coordinates of object points in the scene.

The approach has been used to estimate the param-
eters that describe circles [25], lines, and conics [19).
The observed data, i.e., points on these curves, are as-
sumed to be corrupted by additive zero-mean Gaussian
noise. Cramer-Rao lower bounds have been derived to
approximate the mean-square estimation error {19, 25].

The geometric uncertainty framework has also been
‘used to address 3D motion parameter estimation [7,
27, 8, 26, 16]. The observed data are 3D coordinates
of object points that are obtained from the analysis of
a sequence of monocular [7, 8, 26, 16] and stereo [27]
images. It is assumed that the correspondence of the
object points has been established, but that the coor-

dinate positions are corrupted by zero-mean Gaussian
noise. CRLBs for estimating rotation, translation, ve-
locity, and acceleration parameters have been derived
in the above references.

2.2 Noise in Brightness Measurements

In this uncertainty model, the noisy observations are
the measured image brightness values. The noise is due
to the camera system, for example, introduced by cam-
era defocus, electronic shot noise of CCD cameras, or
small mechanical vibrations. Experiments with cam-
era systems have shown that this noise is Gaussian
[6, 23). This Gaussian distribution is expected as a con-
sequence of the central limit theorem. In particular, let
vector I represent a K, x K, image I(z,y) where the
rows of the image are concatenated into a column vec-
tor. Each component Ii of I contains an independent
intensity measurement I(z,y) for 1 < k < K, where
K = K; K, is the number of pixels.

Experiments have shown that the standard devia-
tion does not depend on brightness mean or pixel po-
sition. The noise, therefore, is additive and signal in-
dependent. The measured average skew and kurtosis
are very close to the corresponding Gaussian values
at each pixel. The sample covariance C of bright-
ness between image pixels indicates that the brightness
measurements are statistically independent across the
pixels, i.e., C = 021, where 1 is the identity matrix.
The probability density for I is therefore approximately
P(I) = 1/(2n0%)5/% exp(=1/202 5, (I — p)?) for
0 < Iy < oo, where the variance o is constant and the
mean py varies throughout the image.

This uncertainty model has been used to measure
the extent to which a planar object can be resolved
under affine parameterization and CRLBs have been
derived [6]. For the depth-from-defocus problem, where
depth is estimated from observed brightness values that
are blurred due to camera defocus, CRLBs have also
been derived [23].

2.3 Algorithmic Uncertainty

In many computer vision estimation problems, ob-
servations are not the measured brightness values di-
rectly, but instead are obtained from (preprocessing)
algorithms that may introduce noise. These algo-
rithms address, for example, edge detection, optical
flow, stereo correspondence, and image reconstruc-
tion. It is widely assumed that the observations
are corrupted by additive zero-mean Gaussian noise
[2,9, 12,13, 14, 17, 21, 22, 28].

Cramer-Rao lower bounds are derived for estima-
tion of the motion parameters of simulated rigid ob-
jects given noisy optical flow input {2, 13, 12, 21, 28].
The mean-square error of Canny’s algorithm has been
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shown to be higher by a factor of two than the lower
limit established by the Cramer-Rao bound [17]. In
medical imaging, CRLBs on the error variances of im-
age reconstruction for computed tomography, ultra-
sound tomography, and magnetic resonance have been
derived [10, 3]. CRLBs have been derived for esti-
mation of quadric surfaces given corresponding image
patches viewed by a stereo system, where the cor-
respondence algorithm introduce zero-mean Gaussian
noise [9]. CRLBs have also been derived for estima-
tion of tilt and slant angles [22] and elongation and
orientation [14] of planar textured surfaces.

2.4 Foreground/Background Uncertainty

In order to recognize objects in a scene, which is
the overall goal of many estimation techniques, trans-
formed object templates are often matched to the scene
image. Recent work proposes to model object and
scene variations by learning probability distributions
of the foreground and background with sampling meth-
ods {24]. Bayesian learning of posterior distributions is
based on estimating prior distributions, which are of-
ten assumed to be uniform, and the assumption that
large sample sets can be obtained. However, sample
sizes are commonly too small to provide the distribu-
tion reliably.

Our approach is based on classical rather than
Bayesian estimation theory. The sample-size issues we
discuss here are therefore unrelated to the sampling
issues in [24]). To compute the ML estimate, an ana-
lytical form of the distribution is required. In scenes
with zero-mean backgrounds and fixed object sizes, the
sum-squared difference or correlation measures maxi-
mize the likelihood; in more general scenes, they ap-
proximate the MLE [20].

3 Projection Model

Commonly, the central projection model is used to
describe the imaging geometry [15]. The origin of a 3D
coordinate system is placed at the projection center.
The z and y-coordinate axes are aligned with the im-
age plane, the optical axis serves as the z-coordinate
axis, and the distance between projection center and
image is given by focal length f. Spatial point co-
ordinates p = (X,Y,Z)T € R® are mapped into im-
age coordinates h(p) = (z,y)” € R?. If the depth Z
of a scene point p = (X,Y,Z)T is known, the scene
point can be related to image point (z,%)T by the per-
spective projection: p = (X,Y,2)T = (z,y, )T -?— =

%, %, 1)T Z. If a calibrated stereo system is available,

the Z-coordinates of scene points can be recovered [15].

4 Pose and Motion of Rigid Objects

We are interested in the recognition of rigid objects
and their motion, in particular, objects with surfaces
that can be well approximated by a collection of polyg-
onal faces. The pose of such a polygonal face can be
described by the position of its centroid and the ori-
entation of a unit vector normal to the surface. We
assume that each planar surface has an initial position
and orientation with respect to the camera. The ini-
tial view of the object serves as the object’s “surface
model.” To recognize the object in an arbitrary scene,
the transformation of the surface model into the scene
surface must be determined.

Similarly, for the motion recognition problem, we
assume that a rigid object is given in an initial position
and orientation. To recognize the motion of the object,
the transformation of the initial object pose to the new
pose must be determined.

The six-parameter perspective transformation

T a11 G122 G313 To
Yy y=1| Gz ax a3 Yo (1)
1 0 0 1 1

maps an object point (zo,¥o) into a new object point
(x,y), where vector (ai3,a23,1) describes the transla-
tion of the object and parameters ai;, a2, @21, az22 the
linear distortion of the object. The perspective trans-
formation is used to model to the motion of the ob-
ject or differences between object and model pose. It
is convenient to describe the linear distortion of the
object in terms of its rotation a, contractions sz, sy,
and skew £, and its position in terms of its transla-
tion (tz,ty,1). The affine transformation can then be
written as (z,y,1)7 =

sz cos{(a) sy sin(a) ts o
~szsin(a+€) sycos(a+€) ty w |- (2
0 0 1 1

5 Object Pose and Motion Estimation

The problem of recognizing a rigid object’s pose or
motion in a scene can be described as the problem of
estimating the parameter vector 8 = (ai1, ..., a23) given
the image data I. Using the noise model introduced
in Section 2.2, the likelihood function for 6, given the
image data I, is

K
P(1|6) = —(Era—ijm exp (-—2—}'—2 E(Ik - mk(e))z)
k=1
@)

where the mean m(6) explicitly depends on the pa-
rameters to be estimated, while the noise variance 2
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is independent of the parameter set. For n indepen-
dent and identically distributed snapshots of the im-
age, the probability density is [];—, P(1}8). Note K is
the length of image vector I and differs from n.

5.1 Definitions and Notation

The log-likelihood function £(0) is defined as £(8) =
In([T.., P(1]6)) when evaluated at measured bright-
ness values I. Let the number of parameters be m and
the rth coordinate of @ be denoted by 6”. The partial
derivative of the log-likelihood function with respect
to 67 is then denoted by ¢, = 8¢/06", for 1 <r < m.

We use the letter v for joint moments of the log-
likelihood derivatives. More specifically, if Ry =
T11.--Tings---y Bm = Tml...Tmn,, are sets of coordi-
nate indices, the joint moments of the log-likelihood
derivatives are vg, ... g, = E[lRr, ...¢g,,). Here n,, in-
dicates the order of the derivative of the mth parame-
ter. For example, assume R; = rs and Ry = t. Then
VR, = Vrsg = ?[Era] = E[:,zga] and VR, R, = Vrst =
E[l,54:] = E[g”;—gg %f]

For two indices r and s, the Fisher information is
defined by Jrs = E[€.£s]. To describe the components
of the inverse Fisher information matrix J—!, we lift
the indices, i.e., J™ = [J7}],s. In general, lifting the
indices produces quantities that are denoted by
yR1 B -
Jrusu | Jrmnm Smam Vs11...81ng reerSml oS *

We use the Einstein summation convention, which
says that the product a’b = 3" a;b; of two vectors a
and b can be written as a*h;. So whenever an index
occurs twice in a term, once in the subscript, once in
the superscript, summation over the index is implied.

5.2 Asymptotic expansions of bias, error
correlation, and covariance of the
MLE

The maximum likelihood estimate (MLE) 6 is
defined to be the value of @ that maximizes the
log-likelihood function £(@) for the measured image
data I. It can be expressed as an asymptotic expan-
sion around € in increasing orders of inverse sample
size n~! or equivalently (SNR)~!. Typically we have
n = 1, a single snapshot, with high SNR. Note that
SNR is always linearly proportional to n but not nec-
essarily to K. The generic component £, can be ex-
panded around @ as

0=t + €56 —0)° +1/20,5,(6 —0)°6 — 6) +
1/6 brsin(@—0)°6 -0 —0) 4 ..., (4)

where (8 — 6)* = 6° — 6%, etc. [1). Inversion of Eq. 4
yields
(6—0) =J 4V + Lot ly + T T H b,V +
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l(urstu + 3Vrsu.]uwuwtu)£seteu + V”quHuueset +
g.] TS Holly,  +  FJTJUIYYHg bl +
Jregte gy H oy Huwly, ¥V + ... )]
where Hgr = £r — vr and the symbol V indicates a
drop of asymptotic magnitude of order n~'/2 under
ordinary repeated sampling, or equivalently a drop of
SNR~'/2. More specifically, the first term J™£, is of
order O,(n~1/2), which means a polynomial of order
n~1/2, The second term 1v7*4,4, + Jr* Jt“Hy L, is of
order Op(n~!), and the remaining terms that are shown
are of order O,(n~%/2). From Equation (7), Naftali
and Makris [20] derive general analytic expressions for
the bias, error correlation, and covariance of the max-
imum likelihood estimate to the second order. The

ﬁrst—prder bias of the maximum likelihood estimate 8
is b(6™) =

- 1
E[(6-0)"] = 577 T* (Vatu +200t,0) V+0p (n %) (8)
as shown in [1, 20]. A necessary condition for the
MLE to become asymptotically unbiased is for this
first-order bias to become much smaller than the true
value of the parameter 7.

The error correlation of the MLE is shown to be [20)]
Cor (9’, é“) =

E[6- 0@ -6 =J" VV+5VV, (9)

where the second order term S is defined as
2meJchlnm(Jrlea + Jaler)Vs,b,c("l) +
%chJef(JraJub + Jas er)”bce,d,f,s(nz) +
Jtu(J”JabJCd‘f‘erJachs‘*’JadJTchs)Vst,u,bc,d(nz)+
mech-]tpUlmnVapq(jll‘JrlJan'm + _I_JrsJal Jor 4
%JaerlJon)Vs’t,b’c(n% + %Jsml/lmn(tl nch(JrlJab +
Jaler) + 2anch(Jrl Jat + Jalth) + JclJtn(erJab +
JndJ'rb)) Vs,t,bc,d(nz) + %‘me]ncJodVlmno(J”Jla +
J”J”)Va,b,c,d('nz) +4me(JrsJal + Janr’)Va,m,zb(nl),
where notation such as vece,q,f,s(n*) means the n? or-
der terms of the joint moment vpce 4 7,s- Note that the
first term J7® is of order Op(n~!), while the remaining
terms are of order Op(n™2).

The covariance of the MLE is Cov (5’”, 9’) =

B[(6" - B0 ~ Bl¢*)] = J* YV +5-Q (10)

where @ = 1J70 J J9% JU% (1 bz + Watulioy 2 (n)
+ 2Vst,quyz(n1) + 4Vst,quy,z(n1)) VV.

The first term J™ is of order Op(n~') and the remain-
ing terms are of order Op,(n=2).

5.3 Cramer-Rao Lower Bound

The first order term J”° in Eqs. 9 and 10 is the
Cramer-Rao lower bound [20]. A necessary condition



for the MLE to attain minimum variance is for the
second-order term in Eq. 10 to become much smaller

than the first-order term, the CRLB. For Gaussian
data, Jps = nfo® 3 K y=1(ﬂ§%g—lﬂm)

The pixels in the background that are located next
to the object’s occluding contour will generally be af-
fected by small changes in 6. Intuitively, it is easier to
estimate 8 if there is large contrast between object and
background. To provide an error bound that does not
vary with the unknown object background, it is prac-
tical to define the parameter estimation problem only
for set O~ of pixels comprising the expected object
g(z,y;0) and not its boundary. With this definition,
the brightness contrast between object and unknown
background does not contribute to the object’s Fisher
information. The Fisher information matrix then be-
comes

1 8q(z,y; 0) q(z,y; )
Ji=2 2 ( 9 ) v
(z,y)€0~

We will use the letter n to indicate the number of pixels
in the set O~.

5.4 Asymptotic Bias, Error Correlation
and Covariance of the MLE for Gaus-
sian Data

The problem of recognizing an object’s pose or mo-
tion in a scene is described as the problem of estimating
a parameter vector 6 in additive Gaussian noise with
parameter-independent covariance (Eq. 3). The first-
order bias for multivariate Gaussian data is
b(6™) = 23_1 Zt =1 E?:l % [J-I]N[J_I]tu(

1 -1_8°C_(-18C
atr(C aosaotc 0% -

2 Zs,t tr(C—lmo—uC_l 'gfg)T + ( ao-aov )Tc—l( 2 ) -
2!!

E (eoaoagu )TC_I(agt) +(aga )TC 1(391: )C-l(agt)_

T (S)TC(ES)CH(S)).

The second-order bias, error correlation, and covari-

ance have been evaluated similarly for Gaussian data
[20, 29).

5.5 Singie Parameter Case

For the case of image data in additive Gaussian noise
that depends on a single parameter 4, the bias, mean-
square error, and variance of the MLE 6 can be derived
from Eqgs. 8-10. The bias b(8) is zero for the scalar case.
The mean-square error and variance are therefore the
same and reduce to var(d) = MSE(8) — b*(4) =

Sy

MSE(O)———VV-G— (s ) 5

VV +0p(n7%), (12)

where

3 2 2 . 2
Slzz"’”’eo"(gﬂ%bl’ﬂ) ,5422(2,”60_(6_4%#)) .

5.6 Position Estimation

Consider the example that the true position
(61,82) = (zo,y0) of the object g is unknown. Let
us estimate the coordinates xp and yo separately. The
maximum likelihood estimate of parameter zy corre-
sponds to the peak output of a matched filter for a
signal in additive Gaussian noise. To derive the joint
moments of the log-likelihood function for xo, we only
need to evaluate the first and second derivatives of ob-
ject g with respect to z¢ and substitute them into the
sums

2 2
S = z (aq(z;xo)).__ Z (a%(:))’ (13)

(z.¥)€0- (== y)EO™
&q(x — z0) 3%q(z)
s ¥ (Lol 3 (Z89) 0y
(z,y)€0— (z,y)€0™

The mean square error of the MLE in position coor-
dinate ¢ is then evaluated by Eq. 12.

6 Experiments and Discussion

We consider the example of position estimation as
described in Section 5.6. We use Eq. 12 to compute
the mean-square error in the estimate of position coor-
dinate zo for various planar surfaces. The first set of
surfaces are shown in Fig. 1 with a (1) smooth texture,
and (2) face texture. The Cramer-Rao lower bounds
are shown as functions of image noise in Fig. 2.

Surface A.1 Surface A.2 Surface B.1 Surface B.2

Figure 1: Images of two planar surfaces in space. On
the left, surfaces A.1 and B.1 have smoothly varying
brightness patterns. On the right, a face pattern is
superimposed on surfaces A.3 and B.3.

Each graph in Fig. 2 is plotted as a function of the
standard deviation of the image noise. The standard
deviation shown as a fraction of the maximum dynamic
range of the brightness. The errors lie in the subpixel
range. Consumer video cameras typically take images
that contain at most 22 = 256 brightness levels and
have a high signal-to-noise ratio. For example, with
a low standard deviation of ¢ = 3 brightness levels,
which is 3/255 = 1.2% of the maximal dynamic range,
the CRLBs on position error for the textured surfaces
in Fig. 1 are shown in Table 1 below. The errors in
position estimation are given in pixel widths.
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Figure 2: The CRLB on position error (solid lines) and
the second-order error term (dashed lines) are shown as
a functions of Gaussian additive noise. The standard
deviation of the noise is plotted as the fraction of the
maximum dynamic range of the brightness.

Table 1: CRLB on Position Error
with o0 = 3 Gray Levels

Surface | Smooth | Face Number of
Texture | Texture | Pixels K

A 0.00178 | 0.00049 | 795

B 0.00202 | 0.00013 | 2821

Since the same texture is superimposed on surfaces A.3
and B.3, the mean-square error depends on the number
of pixels that comprise the respective surfaces, and is
therefore larger for surface A.3 than for surface B.3. A
comparison of the results for the same surface shape
but different textures illustrates the dependence of the
CRLB bound on texture. The intuitive argument that
it is easier to estimate the position of a surface with
a strongly varying texture than a surface with small
texture changes is demonstrated by our quantitative
results.

A necessary condition for the maximum likelihood
estimate of position coordinate z¢ to attain minimum
variance is for the second-order term (o2 /Sl)2 Sy/S1
in Eq. 12 to become much smaller than the first-order
term ¢%/S;, the Cramer-Rao lower bound. We com-
pute the ratio

(0‘2/51)2 54/51 _ (7254
(72 / S1 - Sl
of the second- to the first-order terms. Note that this
ratio is small when o0 << /51/S;. The sums S
and S, depend on the number of pixels on the surface
and the brightness changes on the surface.

Figure 2 shows the second-order term as a function
of noise level for the four surfaces (dashed lines). Our
experiments show for these surfaces that the second-
order term can be neglected for noise levels that are
typical for consumer video cameras. However, the
second-order term cannot be neglected for surfaces
with little texture, such as the transformed surfaces
shown in Figs. 3 and 4. The surfaces shown in these
images have been created with a small number of dig-
itization levels. Surfaces C-1, D-1, C-2 and D-2 have
been created with 3 and 6 brightness levels, respec-
tively. For Surface D-1 the second-order error term is
larger than the CRLB for noise a level of ¢ > 3 which
is typical for a consumer video camera.

7 Conclusions

(15)

We have used higher order asymptotic statistical
theory to derive necessary analytic conditions for the
Cramer-Rao lower bound to become a good approxima-
tion to the mean-square error of parameter estimates
for the 3D structure and motion of rigid objects.

The accuracy of the approximation depends on the
noise level, the number of pixels comprising the sur-
face, and the texture of the surface. Our analytical
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Figure 3: Surfaces C-1 and C-2 have textures for which
the second-order term cannot be neglected. For Surface
C-1, the second-order term is larger than the CRLB
for noise levels o > 8, which corresponds to 3% of the
maximum dynamic range. For Surface C-2, the second-
order term is larger than the CRLB for noise levels
o > 12, which corresponds to 4.6% of the maximum

dynamic range. y
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Figure 4: Surfaces D-1 and D-2 also have textures for
which the second-order term cannot be neglected. For
Surface D-1, the second-order term is larger than the
CRLB for noise levels o > 3, which corresponds to 1.2%
of the maximum dynamic range. For Surface D-2, the
second-order term is larger than the CRLB for noise
levels o > 8, which corresponds to 3% of the maximum
dynamic range.
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results are applied in experiments using surfaces with
smoothly and sharply varying brightness levels. For
surfaces with smoothly varying textures and surfaces
with a small number of digitization levels, the CRLB
does not approximate the mean-square error for posi-
tion estimation well. We provide necessary conditions
for the CRLB to be attained that depend on the size,
texture, and noise level of the surface patch.
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