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Abstract

In this paper we study the problem of shape analysis
and its application in locating facial feature points on
frontal faces. We propose a Bayesian inference solution
based on tangent shape approximation called Bayesian
Tangent Shape Model (BTSM). Smilarity transform
coefficients and the shape parameters in BTSM are
determined through MAP estimation. Tangent shape
vector is treated as the hidden state of the model, and
accordingly, an EM based searching algorithm is
proposed to implement the MAP procedure. The major
results of our algorithm are: 1) tangent shape is updated
by a weighted average of two shape vectors, the
projection of the observed shape onto tangent space, and
the reconstruction of shape parameters. 2) Shape
parameters are regularized by multiplying a ratio of the
noise variations, which is a continuous function instead of
a truncated function. We discussed the advantages
conveyed by these results, and demonstrate the accuracy
and the dability of the algorithm by extensive
experiments.

1. Introduction

The geometrical description of an object can be
decomposed into two parts. the geometrical transform and
the shape. A common vision task is to recover both pose
parameters and low-dimensional representations of the
underlying shape from observed images. This procedure
is usualy referred as “shape analysis’ or “shape
registration”.

Shape analysis has been advanced in both the literature
of statistics and vision. The statistical theory of general
shape space began with the work of Kendall [6] in 1977.
Kendall described shape distribution in a Riemann
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manifold which is highly curved and nonlinear. Statistical
techniques were first introduced to anadyze the
probabilistic distribution of shape in this manifold.
Subsequent developments [7][5][2] have led to several
practical statistical approaches to analyzing objects using
probability distributions of shape and likelihood based
inference. A comprehensive survey can be found in Small
[5]. General shape space has been proved to be highly
nonlinear. However, as for a set of concentrated data,
tangent space provides a good linear approximation to
general shape space. More importantly, modeling shapein
tangent space can convert statistical shape analysis to
standard multivariate analysis[7].

In image analysis literatures, practica parametric
deformable models [3][10][11] have been developed to
deal with the problems like segmentation or feature points
localization. These models are generally capable of
incorporating prior knowledge with observations directly
derived from image data. In particular, Active Shape
Model [3] proposed by Cootes et.al. in 1992 attracts a
wide range of attention. ASM condsts of a point
distribution model capturing shape variations of valid object
instances, and a set of grey gradient distribution models,
which describe local texture of each landmark point. Cootes
developed an iterative searching algorithm to actively update
the model parameters according to the observed image. The
major advantage of ASM is that the model can only
deform in the ways leant from the training set. That is, it
can accommodate considerable variability and it is still
specific to the class of object it intends to represent.
Specifically, in ASM the principle component analysis
(PCA) technique is used to model both 2D shape
variations and local grey level structures.

In this paper, we address the problem of shape analysis
from two aspects. First, shape analysis problem is
formulated in Bayesian framework. Specifically, we
describe the prior model of tangent shape vectors, the
likelihood model and the posterior of model parameters.
Second, an EM based searching algorithm is given to
estimate tangent shape and other model parameters. The



derived updating rules highlight the advantages of BTSM
shape registration

The rest of the paper is organized as follows: we begin
with the description of tangent space approximation and
the probabilistic formulation of shape registration. We
describe the parameter estimation algorithm and compare
the updating rules of ASM searching and BTSM
searching in Section 3. Section 4 provides experimental
results. We discuss some related problems and draw the
conclusions and in Section 5 and 6.

2. A Bayesan Formulation

Registration

to Shape

The probabilistic formulation of shape registration
problem contains two models: one denotes the prior shape
distribution in tangent shape space and the other is a
likelihood model in image shape space. Based on these
two models we derive the posterior distribution of model
parameters. The MAP estimation of the parameters can be
obtained using the EM algorithm.

2.1 Tangent Space Approximation

Assuming that a planar shape is described by N
landmark pointsin the image, we can represent it by a 2N-

dimensional vector s . The difference between two planar

shapes is usually measured by their Procrustes distance
[12]. Furthermore, given a set of training shape vectors
{s}, , the most popular way to align them into a

common co-ordinate frame is Generalized Procrustes
Analysis (GPA) [1]. The procedure essentialy equals to
minimize a quadratic loss function defined by

L(1) = Y IIT(5) - #IF . where T,(5)is a 2D similarity

alli
transform of 5 . See [12] for the details of GPA.

The tangent space is a linear approximation of the
general shape space in the vicinity of the mean shape
vector. More specificaly, the tangent space C, is
defined as the space norma to T(w) and passing
through . The Euclidean distance in the tangent space is
a good approximation to the Procrustes distance, if most
of shape instances are close. § can be transformed
onto C, by algning § with as
{xOC,:x= T(s)hz . % is often referred as “tangent
shape vector” and represented as a 2N-dimensional
vector. The residuals are computed as {t = x — 4}, in
tangent space instead of image space, to remove the
difference introduced by similarity transformT, .

Note that the dimension of C,is2N -4, where the

degenerated dimensionality is corresponding to the degree

of freedom of similarity transformation in a 2d Euclidean
space. Furthermore, since any transformed shape vector
from 1 can be represented by a linear combination of

{e€, 1,1}, the complement space of C, is spanned

by {e,€,u, 1/} . Therefore, the covariance matrix of
tangent shape,

Var (X)= T 00T ()

will has at least four zero eigenvalues with corresponding
eigenvectors{e,e , 1,4 } . In other words, the tangent
shape variances in this complement space must be zero.

2.2. Prior Tangent Shape M odel

We apply a probabilistic extension of traditional PCA
to model tangent shape variation, which is similar to
PPCA proposed by Tipping and Bishop [4]. The model
can be written as

o7 (x-u) :[(I)' ]b +& 2
(2N=4-r)xr

a) ®" : (2N —4) x2N is the tangent projection matrix
whose row vectors are the eigenvectors of Var(X).
®, :2N xr congststhefirst r columnsof @ .

b) b, the shape parameter, is a r-dimensional vector
distributed as multivariate Gaussian N(O, A) ,
where A =diag(4,,....4,) . A is the ith eigenvalue
and r isthe number of modesto retain in PCA.

C) & denotes an isotropic noise in the tangent space. It

is a 2N-4-dimensional random vector which is
independent with b and distributes as

1 2N-4

p(e) ~expl-lleIF/(20")} (0° = 2D

=r+l

After some simple algebra the model (2) can be
rewritten as:

X=Uu+®db+de (3)
By adding an isotropic Gaussian noise term we associate
PCA with a probabilistic explanation, thereby allowing to
compute the posterior of model parameters.

Each item of b reflects a specific variation aong the
corresponding principle component (PC) axis. Instead of
using all modes and 2N-4-dimensional shape parameters,
we only select a subset of them to reconstruct the shape
with shape variations we concern about. The fewer the
modes are used, the more compact the model will be, and
the smoother the reconstructed shape tends to be. On the
other hand, more modes are involved in describing shape,

Le= (1,0,1,0,...,],0)T : X" is obtained by rotating planar shape x by 90°,
18 X = (%, %eeXon )| = X = (X, Xy Koy Xopgoa)'
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Figure 1: Shapes reconstructed by the first three PCs: in each
row the middle one is the mean shape. Else are obtained by

varying corresponding PC from —&/X to 3\/X

more flexible the model is. Shape variation along the first
three PCs is visualized in Figure 1. The interpretation of
PCs is not straight forward. A possible interpretation is
that the first PC describes variations in vertical direction,
the second PC may explain the variation on mouth, and
the third PC may account for out-of-plane rotation.

The tangent space noise € can also be viewed as a
compensation of missed shape variation during PCA
projection. When the number of modes is larger, more
variation is retained in PCA model and the noise variance

o?issmaler.

2.3. Adaptive Likelihood M odel

To incorporate image evidence into the Bayesian
framework one requires a likelihood P(I | x,8) which is
usualy a probability distribution of the grey levels
conditional on the underlying shape. However, directly
parameterizing P(1 | x,8) may not be a good idea, because
| and X are not in a same physical coordinate system,
and the parametric form of P(l | x,8) is usualy complex
and nonlinear. In BTSM, we redefine the likelihood as
P(y|x,8) . Assume y® is the shape estimated in the last

old

iteration, by updating each landmarks of y°¢ with its

local texture we obtain y, which is called “observed shape
vector”. The distance between observed shape y and the
true shape can also be model as an adaptive Gaussian as
(4). By adaptive we mean the variance of the model is

determined by the distance between y and y°®in each
iteration step.
y=sUpx+c+r 4

a) y: observed shape vector,
b) s. scale parameter;

cosd -siné . .

U,=1,0 . : rotation matrix;
sind cosé

- G
c=1, D(c

] : trandlation parameter.
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Figure 2. A graphical illustration of Bayesian tangent shape
model: circles stand for variables, dashed circles denote noise
terms and rectangles denote model parameters.

(O denotes K ronecker product?.)
Cc) n: isotropic observation noise in the image space.

n~N(O, pl,) . pis set by p* =clly* -y,
where ¢ isamanually chosen constant.

old

2.4. Posterior

Now we can compute the posterior of model
parameters (b,s,c,6) given the observed shape vector y .
By applying Bayes rule we have derived the equation (5).
Directly optimizing the posterior is difficult.
Alternatively, if the tangent shape x is known, the
posterior of model parameters conditional on both x and
y are much simpler. This leads us to implement the EM

based parameters estimation algorithm.

p(b,c.s.01Y) ©)
0 exp{-%[wz +5207) (| OIT,(y) - b + 07T, A () )

_ _ _ const
ST IAT I DAB) G R

where the const do not vary with (b,c,s,6) and®_, is the

sub-matrix of ® by removing the first r columns. The
derivation isleft to the appendix A.

2.5.BTSM as A Hidden Variable Mod€

A graphical illustration of BTSM is shown in Figure 2.
The tangent shape x is the hidden variable and vy is

observation. The prior shape model and the likelihood
model are connected through tangent shape.

3. Parameter Estimation in BTSM Searching

In this section, we describe an EM algorithm for
estimation the MAP parameters of BTSM model. Before

2 A OB :(aijB)i’j :mpxnq



immersing ourselves in the details of derivation, however,
let us first present the results of EM parameter estimation
and compare them with those of ASM.

3.1. Comparison between BTSM and ASM

The iterative updating procedure of ASM is shown in
Figure 3. In ASM, tangent shape xis directly constructed
from shape parameter b , where b is a truncation of

T,*(y) 's coordinates within the range of (-3,/diag(A),
diag(A)) . In BTSM we derive the updating equations

of xand b shown in Figure 4. (See Section 3.2 and 3.3
for the details of derivation.) The major difference of the
two algorithms comes from their updating rules of the
tangent shape x and shape parameter b.

a) In BTSM, the tangent shape x is updated by a
weighted average of the shape reconstructed from
the shape parameter b and the tangent projection of
the observed shapey . In this way, the estimation of

X encodes both prior shape knowledge and image
evidence. It is interesting to note that the weight pis

automatically chosen by computing the ratio
between the variance o of prior noise in tangent
space and the variance p of the observation noise.
They are aligned to the same scale by multiplying
the scale factor Sof similarity transform. When p is
large, which implies the image is noisy or the
observation is not stable, shape parameters are more
important for updating x . On the other hand,
when p is small, the shape estimation may be
converged already, we need not to regularize it too
gtrictly.

b) Regularization on shape parameters is required to
generate valid shape instances. Using a continuous
regularization function often is preferred to using a
truncation function because numericaly,
discontinuous regularization on b may result in a
unstable estimation. That is, the result may shift
back and forth instead of converging to a point. In
BTSM, the shape parameter is constrained by
multiplying a contrained factor R=A(A+0°1)™ .
Remember that A represents prior shape variance
matrix and o represents the resudial variance. (See
Section 2.2 for details). Specifidly, along the ith

principle axis, b is updated by
b =A /(A +0?) (Pl x), where @ is the ith column
of d.

In short BTSM algorithm enjoys its merits in two
aspects. weighted representation of tangent shape and
continuous regularization of shape parameters. These
results are derived from optimizing an explicit and
continuous loss function using EM.

T, (y):@=agmin||T,(x) - y|F
o0 i
%\\g\\x\ Computing pose parameters
X=pu+Pb
Reconstructing tangent shape
from a r-dim subspace

projection &
truncation

2

&
001)@[{2/
Cx:
“% b =max{min{®'T;*(y),3/diag(N)},

-3ydiag(A)}
Regularizing observed shape
through projection and truncation

Figure 3. Updating rules of Active Shape Model

T (y)
g =agmin||T,(x) -y

b=R® x, R=A(A+5°l)"
A continuous regul arization of

shape parameters Compute pose parameters

X=p+(1=p) ®b +pPBT(y)
p=0°/(0* +s7p?)
Recover tangent shape using the
information of both shape parameters
and observed shape; weights are
determined by noiseratio.

Figure 4. BTSM updating rules: Tangent shape x is estimated by
a weighted sum of the shape reconstructed from shape
parameters b and the transform of the observed shape y to the
tangent space.

3.2. Expectation Step

Given a sat of complete data{x,y} , the complete

posterior of model parameters is smply a product of the
following two distributions,

p(b|x) Dexpt 1/2ZbN\ “br o~ [ @ bif]} (6)
p(vIxy) Oexpt V2[ 0" |y XyIF]} ™

where X =(x,x,e,e’) and y=(sl@osf sEnbc,c,)" .

Taking the logarithm and the conditional expectation, we
obtain:

QWY ¥oa) ®)
=(log p(b,c,s,8|x,y)) =(log p(b| X) +log p(y| X, y))
=-2[b Ao (Ix-p - @bIF) 407 Iy X))

+ const



Computing the Q-function of (8) essentialy equals to
calculate two statistics, the conditional expectations of x

and || x [P with respect to p(x|y,c,s,6)

(X)=p+@1L-p) Db +pdIT, (y) )
(IXIF) =l (x) IF +(2N -4)0? (10)

where p=0°/(c° +s?p*) and 0> = (0> +s°p™)™". The
detailed derivation is left to the appendix B.

3.3. Maximization Step

The M step maximizes the Q-function over model
parameters. Since the terms depending on b and y are
decoupled in (8), it is a much simpler expression to
maximize than the logarithm of the posterior in (5). We
use “ ~" to denote the updated parameters. By computing
the derivative of the Q-function we have,

b=ANA+0%) O] (0 - 1) = NA+0%) D[ (%) (11)

S Y0 YOOT 1h L 12
g (<||x||2>’<||x||2>’Néyw,\,éyz.) (12)

Accordingly, the updating equations of each pose
parameter are,

S=\F+ . O=atan(y/;) and €= (v, 1) (13)
3.4. Inhomogeneous Obser vation Noise

In Section 2.3 we assume the observation noise is
distributed as an isotropic Gaussian. This assumption may
not always hold, because the noise of each feature
landmark may be different due to partial occlusion, noisy
background or other effects in the image. We can choose
a diagona variance matrix instead for the observation
noise 1 as,

n~N(O, %),%=dag(p’,...p5) 0l, (14)
where 10i2 = C((y;i“il _Y2i—1)2 +(y;ild ~Ysi )2) EM algorithm
can aso be applied to this case with dight modification.

Instead of computing (x) and <x2>, the statistics we

need to compute in the E-Step is (x) and <XTZ'1X> . The

results of EM parameters estimation are given in the
appendix C.

4. Experimental Results

In this section we compare BTSM with ASM and
demonstrate BTSM searching improves both accuracy

Figure 5. An example of BTSM searching: (Left) Initia shape
mask, we perturb its orientation and scale parameter to make the
task more difficult. (Middle) Searching result after 10 iterations
at the top layer. (Right) Final result by searching al three layers.

and stability.
4.1. BTSM Sear ching

Similar to ASM the BTSM searching agorithm is
decomposed into two major steps: local texture matching
and EM inference for shape and transformation
parameters. As usual, the searching is run in a multi-
resolution framework. A three level Gaussian image
pyramid is formed on a testing image by repeated sub-
sampling. Model instance starts at thel/ 4 resolution of the
image. Different dimensions r of shape parameter vector
are used for different pyramid layers. We chooser =5for
the first layer, r = 20for the second layer, and r =40 for
the third layer. Figure 5 shows a typical example of
BTSM searching. More searching results of ASM and
BTSM are shownin Figure 10.

4.2. Accuracy

To compare the accuracy of the two agorithms
quantitatively we divide our database into two parts, one
used for training and the other used for testing. Our database
contains 870 grey-scale images in the FERET database [§],
the AR database [9] and other collections. Each image
contains a face with a dze ranging from
150x150t0220% 220, and with different facia expressons
and different illumination conditions. A tota of 83 face
landmarks are labeled manudly on each image of the
training set.

We train both the ASM model and our model on 599
faces, and use the else 271 images for testing. For each
testing image, an initid guess of face location are provided
by a Boogsting based face detector and then, the mean face
shape mask is transformed and putted on the detected region.
We perturb the shape mask by randomly rotating (from 0° to
45°) and scaling (from 1 to 1.2). The perturbed shape is
used as initial values and is fed into the two agorithms.
The searching processes would not stop unless the results
are converged or the number of iterations is over than
100.
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Figure 6. Comparison of the accuracy of BTSM and ASM: x-
axis demotes the index of test images and y-axis denotes the

difference  of the edtimation errors  dist(BTSM),
—dist(ASl\/I)j between ASM and BTSM. Points below

y = 0 (blue points) denote images with better performance by

BTSM and red points are opposite. For a total of 271 testing
images, 248 of them are marked blue and 23 of them are marked
red, which means on 91.51% testing images the searching
results of BTSM are better than that of ASM.

Figure 7. An ambiguous searching result: an unstable algorithm
does not guarantee that the model converges to similar results
while searching in similar images. The figure shows the
searching results on three contiguous frames with a dlightly
change in view. Notice the inconsistent searching results on the
nose and the chin of the boy.

To compare the accuracy of the two algorithms, we
compute the estimation error by a difference measure
defined by the sum of the distance between searched
landmark and annotated landmark.

dist(A); = (5" = %) +(y" -y)?

dist(A) j denotes estimation error of algorithm A on the
image j, where (x,Y;)is annotated coordinates of the
ith landmark and (x", y") is the searched coordinates of

the ith landmark by algorithm A. We have plotted |
~ dist(BTSM), - dist(ASM),; in Figure 6. It is shown

that on 248 of 271 (91.51%) images, the search results of
BTSM are better than that of ASM.
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Figure 8. Comparison variation of estimation results in one
individual dimension of shape parameter b: (Top) Five
intermediate results of ASM searching and BTSM searching.
(Bottom) The evolution of the shape parameter b[2] with the
increasing of iterations number. Red points denote b[2]
produced by the truncation procedure of ASM. Blue points are
b[2] estimated by BTSM algorithm.
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Figure 9. Comparison of variations of the alignment errors on
eye points. (Top) Four intermediate results of ASM searching
and BTSM searching. (Bottom) the evolution of eye errores of
ASM and BTSM.

4.3. Stability

Another character of shape analysis agorithms we
concern is numerical stability of estimation results. For a
robust searching algorithm we expect that variation of
estimation results decreases with the increasing of
iteration numberi . An unstable algorithm will produce
ambiguous results. See Figure 7 for an example.

We explore the stability of ASM and our BTSM
algorithm in two ways. The first is the variation of
estimation results in one individual dimension of shape
parameter b, and the next is the variation of some facial
component. Figure 8 compares the variations in the
estimation of the second shape parameter b[2] . Figure 9

compares the variations of the estimation errors on eyes.



Figure 10. Comparison of BTSM and ASM searching results: (First and Third Rows) results of ASM searching;
(Second and Fourth Rows) results of BTSM searching

We have plotted the value of b[2] and dist(eye) for every

15 steps of iterations. From the figures we can observe
that the variations of the estimation results by BTSM
agorithm are much smaller.

5. Discussion
. Observation
Tangent Vector
X .
p(xb) p(ylx6)

Figure 11. A generdization of BTSM model

BTSM can be extended to a more general form
illustrated by the undirected graph in Figure 11. The prior
model describes shape variation, the observation model
incorporates image evidence and they are connected
through the tangent shape. While the tangent shape is
estimated, due to its local Markov property, the MAP
estimation of pose parameters depends only on the right
side of the graph, and it is degenerated to standard
Procrustes Analysis with the assumption that the
observation noise is an isotropic Gaussian. Note that the
equation (25) eguals to estimate pose parameters using
weighted Procrustes analysis. Similarly the MAP
estimation of shape parameters is completely determined
by the left part of the graph given the tangent shape.
Figure 11 provides a general framework for shape

analysis problem. In contrast to directly optimizing a
huge, heuristically defined loss function, the statistical
treatment in BTSM provides the flexibility to deal with
different problems in different sub-models. For example,
if we are interested in modeling multimodal shape
variations like exaggerated face expression, we may
parameterize the left part as a Gaussian mixtures; if we
are interested in handling partial occlusion or image
noise, we may implement the right part using robust
statistics methods. Approximate inference algorithm may
need to be adopted in both cases.

BTSM shape registration runs very fast since we
derive analytical solution in EM parameter estimation. In
E-step, computing the expectation of the two statistics
(please refer to (9) and (10)) includes only three matrix
multiplication. In the M-step, parameters updating rules
(equations (11) and (12)) involves only one matrix
multiplication and some inner products of vectors. In our
experiments, it takes about 200 ms in general for BTSM
to converge on a 300x300 face on a Pentium3-800Hz
machine; and for smaller faces it takes less time (from
60ms to 200ms, depends on the size of the face).

6. Conclusion

This paper presents a Bayesian approach for shape
registration problem. By projecting shape to tangent shape,
we have built the models describing the prior distribution
of face shapes and their likelihood. We have developed
the BTSM algorithm to uncover the shape parameters and
transformation parameters of an arbitrary figure. We have



compared our agorithm with the classic ASM agorithm
and demonstrated its accuracy and efficiency.
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Appendix
A. Posterior Distribution of Parameters

By combining (3) with (4) and multiplying @] on both
sides of the equation we have,
T, () =u+®b+e +sU.n  (E2s7U,7)
SU+D D+ D +DE) +AAE
= O[T, (Y) =b =(1,,0,on-smr) )(E + P'E) (15
where A=(e,e,u, i) . Since &£ and & are independent,
the distributions of £+ ®"¢& and A" & can be computed as,
(£+07)~N(O, (02 +570%)1 )
A&~ N(0, s?p%l,) (16)
Combining (15) and (16) we obtain the likelihood of

model parameters. The posterior of model parameters is
computed by applying the Bayesrule as (5).

B. Detailed Derivation of Expectation Step

The conditional probability of the tangent shape vector
X given the observed shape y and model parametersis

p(x|y,c,s,6) (17)
0 expt %[a'z I @ blf

+8°07 | x =T, (V) IF1} when A" (x - ) =0
0, otherwise

The tangent shape x can be written as
X=(AA" + PP )X = AAT U+ PP x= u+dPP'x (18)
where A= (g€, 1) . Since x is an isotropic Gaussian,
the elements of x on the two orthogonal subspaces are
independent, i.e. A"x 3P "x. So
p(® x| A" (x - 1) =0) = p( P x)
=N(@-p)®' 1y +p ' 11, 3°15y,) (19)
where g, = y+ @b, i, =T,*(y),p =0°/(0” +s*p*) and
=(c*+sp?)* Therefore  the
expectation of xis
(x)= AAT 11+ DE(D'X)
=(1-p)PP'p +pPP p, +AA L (20)
= {+(L-p)Pb+pOTT(y)
and the conditional expectation of the norm of xis
(@)= AP +E N @ xIP=|(x)| +2N -98* (21)

conditional

C. EM for Inhomogeneous Observation Noise

We ignore the details of the derivation and just present
the results of E-step and M-Step. Let us denote

A é (0.*2 + SZz*l)*l

P2(l +o°s’z ™)™

a2 AP+ d.b) +(1 =P)T, (y)]
Let B2 Orth(AY?A) , whose column vectors form an
orthogonal basis of the column space of AY?A.

The E-step:
(x)=NA"?[a +BB" (A ~a)] (22)

(X'Z7%) = (x)" T(x) +tr(AZ?) ~tr(AT'BBT)  (29)

The M-step:
b=AA+0) O] (0 - ) = NA+0%) DX (24)

N T

N
N ‘*2 ) -2 !
I Yoy FAR A
_ 1] _ 1] N il N
X'z 1x> (xTzlx> o7 o7

i=1 i=l




