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Abstract—This paper presents an algebro-geometric solution to the problem of segmenting an unknown number of subspaces of

unknown and varying dimensions from sample data points. We represent the subspaces with a set of homogeneous polynomials whose

degree is the number of subspaces and whose derivatives at a data point give normal vectors to the subspace passing through the point.

When the number of subspaces is known, we show that these polynomials can be estimated linearly from data; hence, subspace

segmentation is reduced to classifying one point per subspace. We select these points optimally from the data set by minimizing certain

distance function, thus dealing automatically with moderate noise in the data. A basis for the complement of each subspace is then

recovered by applying standard PCA to the collection of derivatives (normal vectors). Extensions of GPCA that deal with data in a high-

dimensional space and with an unknown number of subspaces are also presented. Our experiments on low-dimensional data show that

GPCA outperforms existing algebraic algorithms based on polynomial factorization and provides a good initialization to iterative

techniques such as K-subspaces and Expectation Maximization. We also present applications of GPCA to computer vision problems

such as face clustering, temporal video segmentation, and 3Dmotion segmentation from point correspondences in multiple affine views.

Index Terms—Principal component analysis (PCA), subspace segmentation, Veronese map, dimensionality reduction, temporal

video segmentation, dynamic scenes and motion segmentation.
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1 INTRODUCTION

PRINCIPAL Component Analysis (PCA) [12] refers to the
problem of fitting a linear subspace S � IRD of unknown

dimension d < D to N sample points fxxxxjgNj¼1 in S. This
problem shows up in a variety of applications inmany fields,
e.g., pattern recognition, data compression, regression, image
processing, etc., and can be solved in a remarkably simple
way from the singular value decomposition (SVD) of the
(mean-subtracted) data matrix ½xxxx1; xxxx2; . . . ; xxxxN � 2 IRD�N .1

With noisy data, this linear algebraic solution has the
geometric interpretation of minimizing the sum of the
squared distances from the (noisy) data points xxxxj to their
projections ~xx~xx~xx~xxj in S.

In addition to these algebraic and geometric interpreta-
tions, PCA can also be understood in a probabilistic manner.
In Probabilistic PCA [20] (PPCA), the noise is assumed to be
drawn from an unknown distribution and the problem
becomes one of identifying the subspace and distribution
parameters in a maximum-likelihood sense. When the noise

distribution is Gaussian, the algebro-geometric and prob-

abilistic interpretations coincide [2]. However, when the

noise distribution is non-Gaussian, the solution toPPCA is no

longer linear, as shown in [2], where PCA is generalized to

arbitrary distributions in the exponential family.
Another extension of PCA is nonlinear principal compo-

nents (NLPCA) or Kernel PCA (KPCA),which is the problem
of identifying a nonlinear manifold from sample points. The
standard solution toNLPCA [16] is based on first embedding
the data into a higher-dimensional feature space F and then
applying standard PCA to the embedded data. Since the
dimension of F can be large, a more practical solution is
obtained from the eigenvalue decomposition of the so-called
kernel matrix; hence, the name KPCA. One of the disadvan-
tages of KPCA is that, in practice, it is difficult to determine
which kernel function to use because the choice of the kernel
naturally depends on the nonlinear structure of the manifold
to be identified. In fact, learning kernels is an active topic of
research in machine learning. To the best of our knowledge,
our work is the first one to prove analytically that the
Veronese map (a polynomial embedding) is the natural
embedding for data lying in a union of multiple subspaces.

In this paper, we consider the following alternative

extension of PCA to the case of data lying in a union of

subspaces, as illustrated in Fig. 1 for two subspaces of IR3.

Problem (Subspace Segmentation). Given a set of pointsXXXX ¼
fxxxxj2 IRDgNj¼1 drawn from n � 1 different linear subspaces

fSi� IRDgni¼1 of dimension di ¼ dimðSiÞ, 0 < di < D, with-

out knowing which points belong to which subspace:

1. find the number of subspaces n and their dimensions
fdigni¼1,

2. find a basis for each subspace Si (or for S
?
i ), and

3. group the N sample points into the n subspaces.
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1. In the context of stochastic signal processing, PCA is also known as the
Karhunen-Loeve transform [18]; in the applied statistics literature, SVD is
also known as the Eckart and Young decomposition [4].
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1.1 Previous Work on Subspace Segmentation

Subspace segmentation is a fundamental problem in many
applications in computer vision (e.g., image/motion/video
segmentation), image processing (e.g., image representation
and compression), and systems theory (e.g., hybrid system
identification), which is usually regarded as “chicken-and-
egg.” If the segmentation of the data was known, one could
easily fit a single subspace to each group of points using
standard PCA. Conversely, if the subspace bases were
known, one could easily find the data points that best fit
each subspace. Since, in practice, neither the subspace bases
nor the segmentation of the data are known, most existing
methods randomly choose a basis for each subspace and then
iterate between data segmentation and subspace estimation.
This can be done using, e.g., K-subspaces [10], an extension of
K-means to the case of subspaces, subspace growing and
subspace selection [15], or Expectation Maximization (EM)
for mixtures of PCAs [19]. Unfortunately, most iterative
methods are, in general, very sensitive to initialization; hence,
they may not converge to the global optimum [21].

The need for initialization methods has motivated the
recent development of algebro-geometric approaches to
subspace segmentation that do not require initialization. In
[13] (see, also, [3]), it is shown that when the subspaces are
orthogonal, of equal dimension d, and intersect only at the
origin, which implies thatD � nd, one can use the SVD of the
data to define a similarity matrix from which the segmenta-
tion of the data can be obtained using spectral clustering
techniques.Unfortunately, thismethod is sensitive to noise in
the data, as shown in [13], [27] where various improvements
are proposed, and fails when the subspaces intersect
arbitrarily [14], [22], [28]. The latter case has been addressed
in an ad hoc fashion by using clustering algorithms such as
K-means, spectral clustering, or EM [14], [28] to segment the
data and PCA to obtain a basis for each group. The only
algebraic approaches that deal with arbitrary intersections
are [17], which studies the case of two planes in IR3 and [24]
which studies the case of subspaces of codimension one, i.e.,
hyperplanes, and shows that hyperplane segmentation is
equivalent to homogeneous polynomial factorization. Our
previous work [23] extended this framework to subspaces of
unknown and possibly different dimensions under the
additional assumption that the number of subspaces is
known. This paper unifies the results of [24] and [23] and
extends to the case inwhich both the number anddimensions
of the subspaces are unknown.

1.2 Paper Organization and Contributions

In this paper, we propose an algebro-geometric approach to
subspace segmentation called Generalized Principal Compo-
nent Analysis (GPCA), which is based on fitting, differ-
entiating, and dividing polynomials. Unlike prior work, we
do not restrict the subspaces to be orthogonal, trivially
intersecting, or with known and equal dimensions. Instead,
we address the most general case of an arbitrary number of
subspaces of unknown and possibly different dimensions (e.g.,
Fig. 1) and with arbitrary intersections among the subspaces.

In Section 2,wemotivate andhighlight the key ideas of our
approach by solving the simple example shown in Fig. 1.

In Section 3, we generalize this example to the case of data
lying in a known number of subspaces with unknown and
possibly different dimensions. We show that one can
represent the union of all subspaces as the zero set of a
collection of homogeneous polynomials whose degree is the
number of subspaces and whose factors encode normal
vectors to the subspaces. The coefficients of these polyno-
mials can be linearly estimated from sample data points on
the subspaces and the set of normal vectors to each subspace
can be obtained by evaluating the derivatives of these
polynomials at any point lying on the subspace. Therefore,
subspace segmentation is reduced to the problem of classify-
ing onepoint per subspace.When those points are given (e.g.,
in semisupervised learning), this means that in order to learn
the mixture of subspaces, it is sufficient to have one positive
example per class. When all the data points are unlabeled (e.g.,
in unsupervised learning), we use polynomial division to
recursively select points in the data set that minimize their
distance to the algebraic set; hence, dealing automatically
with moderate noise in the data. A basis for the complement
of each subspace is then recoveredby applying standardPCA
to thederivatives of thepolynomials (normalvectors) at those
points. The final result is a global, noniterative subspace
segmentation algorithm based on simple linear and poly-
nomial algebra.

In Section 4, we discuss some extensions of our approach.
We show how to deal with low-dimensional subspaces of a
high-dimensional space via a linear projection onto a low-
dimensional subspace that preserves the number and
dimensions of the subspaces.Wealso showhow togeneralize
the basic GPCA algorithm to the case in which the number of
subspaces is unknownvia a recursive partitioning algorithm.

In Section 5, we present experiments on low-dimensional
data showing thatGPCAgives about half the error of existing
algebraic algorithms based on polynomial factorization, and
improves the performance of iterative techniques, such as
K-subspaces and EM, by about 50 percent with respect to
random initialization. We also present applications of GPCA
to computer vision problems such as face clustering,
temporal video segmentation, and 3D motion segmentation
from point correspondences in multiple affine views.

2 AN INTRODUCTORY EXAMPLE

Imagine that we are given data in IR3 drawn from a line S1 ¼
fxxxx : x1 ¼ x2 ¼ 0g and a plane S2 ¼ fxxxx : x3 ¼ 0g, as shown in
Fig. 1. We can describe the two subspaces as

S1 [ S2 ¼ fxxxx : ðx1 ¼ x2 ¼ 0Þ _ ðx3 ¼ 0Þg
¼ fxxxx : ðx1x3 ¼ 0Þ ^ ðx2x3 ¼ 0Þg:
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Fig. 1. Data points drawn from the union of one plane and one line
(through the origin o) in IR3. The objective of subspace segmentation is
to identify the normal vectors bbbb11, bbbb12, and bbbb2 to each one of the
subspaces from the data.



Therefore, even though each individual subspace is de-

scribedwithpolynomialsofdegreeone (linear equations), the

mixture of two subspaces is described with two polynomials

of degree two, namely,p21ðxxxxÞ ¼ x1x3 andp22ðxxxxÞ ¼ x2x3.More

generally, any two linear subspaces in IR3 can be represented

as the set of points satisfying some polynomials of the form

c1x
2
1 þ c2x1x2 þ c3x1x3 þ c4x

2
2 þ c5x2x3 þ c6x

2
3 ¼ 0:

Although these polynomials are nonlinear in each data

point ½x1; x2; x3�T , they are actually linear in the coefficient

vector cccc ¼ ½c1; . . . ; c6�T . Therefore, given enough data points,

one can linearly fit these polynomials to the data.
Given the collection of polynomials that vanish on the

data points, we would like to compute a basis for each

subspace. In our example, let P2ðxxxxÞ ¼ ½p21ðxxxxÞ; p22ðxxxxÞ� and
consider the derivatives of P2ðxxxxÞ at two points in each of the

subspaces yyyy1 ¼ ½0; 0; 1�T 2 S1 and yyyy2 ¼ ½1; 1; 0�T 2 S2:

DP2ðxxxxÞ ¼
x3 0

0 x3

x1 x2

2
64

3
75)

DP2ðyyyy1Þ ¼
1 0

0 1

0 0

2
64

3
75; DP2ðyyyy2Þ ¼

0 0

0 0

1 1

2
64

3
75:

Note that the columns of DP2ðyyyy1Þ span S?1 and the columns

of DP2ðyyyy2Þ span S?2 (see Fig. 1). Also, the dimension of the

line is d1 ¼ 3� rankðDP2ðyyyy1ÞÞ ¼ 1 and the dimension of the

plane is d2 ¼ 3� rankðDP2ðyyyy2ÞÞ ¼ 2. Thus, if we are given

one point in each subspace, we can obtain the subspace bases

and their dimensions from the derivatives of the polynomials at

these points.
The final question is to find one point per subspace, so that

we can obtain the normal vectors from the derivatives ofP2 at

those points.With perfect data,wemay choose a first point as

any of the points in the data set.With noisy data, wemay first

define a distance from any point in IR3 to one of the

subspaces, e.g., the algebraic distance d2ðxxxxÞ2 ¼ p21ðxxxxÞ2 þ
p22ðxxxxÞ2 ¼ ðx21 þ x2

2Þx2
3, and then choose a point in the data set

that minimizes this distance. Say, we pick yyyy2 2 S2 as such

point. We can then compute the normal vector bbbb2 ¼ ½0; 0; 1�T

to S2 fromDP ðyyyy2Þ. As it turns out, we can pick a second point

in S1 but not in S2 by polynomial division. We can just divide

the original polynomials of degree n ¼ 2 by ðbbbbT2 xxxxÞ to obtain

polynomials of degree n� 1 ¼ 1:

p11ðxxxxÞ ¼
p21ðxxxxÞ
bbbbT2 xxxx

¼ x1 and p12ðxxxxÞ ¼
p22ðxxxxÞ
bbbbT2 xxxx

¼ x2:

Since these new polynomials vanish on S1 but not on S2, we

can find a point yyyy1 in S1 but not in S2, as a point in the data

set that minimizes d1ðxxxxÞ2 ¼ p11ðxxxxÞ2 þ p12ðxxxxÞ2 ¼ x2
1 þ x2

2.
As wewill show in the next section, one can also solve the

more general problem of segmenting a union of n subspaces

fSi � IRDgni¼1 of unknown and possibly different dimensions

fdigni¼1 by polynomial fitting (Section 3.3), differentiation

(Section 3.4), and division (Section 3.5).

3 GENERALIZED PRINCIPAL COMPONENT ANALYSIS

In this section, we derive a constructive algebro-geometric
solution to the subspace segmentation problem when the
number of subspaces n is known. The case in which the
number of subspaces is unknown will be discussed in
Section 4.2. Our algebro-geometric solution is summarized
in the following theorem:

Theorem 1 (Generalized Principal Component Analysis).
A union of n subspaces of IRD can be represented with a set of
homogeneous polynomials of degree n in D variables. These
polynomials can be estimated linearly given enough sample
points in general position in the subspaces. A basis for the
complement of each subspace can be obtained from the derivatives
of these polynomials at a point in each of the subspaces. Such
points can be recursively selected via polynomial division.
Therefore, the subspace segmentation problem ismathematically
equivalent to fitting, differentiating and dividing a set of
homogeneous polynomials.

3.1 Notation

Let xxxx be a vector in IRD. A homogeneous polynomial of
degree n in xxxx is a polynomial pnðxxxxÞ such that pnð�xxxxÞ ¼
�npnðxxxxÞ for all � in IR. The space of all homogeneous
polynomials of degree n in D variables is a vector space of
dimension MnðDÞ ¼ nþD�1

D�1
� �

. A particular basis for this
space is given by all the monomials of degree n in
D variables, that is xxxxI ¼ xn1

1 xn2
2 � � �x

nD

D with 0 � nj � n for
j ¼ 1; . . . ; D, and n1 þ n2 þ � � � þ nD ¼ n. Thus, each homo-
geneous polynomial can be written as a linear combination
of the monomials xxxxI with coefficient vector ccccn 2 IRMnðDÞ as

pnðxxxxÞ ¼ ccccTn�nðxxxxÞ ¼
X

cn1;n2;...;nD
xn1
1 xn2

2 � � �x
nD

D ; ð1Þ

where �n : IRD ! IRMnðDÞ is the Veronese map of degree n [7],
also known as the polynomial embedding in machine learning,
defined as �n : ½x1; . . . ; xD�T 7!½. . . ; xxxxI; . . .�T with I chosen in
the degree-lexicographic order.

Example1(TheVeronesemapofdegree2inthreevariables).
If xxxx ¼ ½x1; x2; x3�T 2 IR3, the Veronese map of degree 2 is
given by:

�2ðxxxxÞ ¼ ½x2
1; x1x2; x1x3; x

2
2; x2x3; x

2
3�
T 2 IR6: ð2Þ

3.2 Representing a Union of n Subspaces with a Set
of Homogeneous Polynomials of Degree n

We represent a subspace Si � IRD of dimension di, where
0 < di < D, by choosing a basis

Bi¼: ½bbbbi1; . . . ; bbbbiðD�diÞ� 2 IRD�ðD�diÞ ð3Þ

for its orthogonal complement S?i . One could also choose a
basis forSi directly, especially if di 	 D. Section 4.1will show
that the problem can be reduced to the caseD ¼ maxfdig þ 1;
hence, the orthogonal representation is more convenient if
maxfdig is small.With this representation, each subspace can
be expressed as the set of points satisfying D� di linear
equations (polynomials of degree one), that is,

Si ¼ fxxxx 2 IRD : BT
i xxxx ¼ 0g ¼

n
xxxx 2 IRD:

D̂�di

j¼1
ðbbbbTijxxxx ¼ 0Þ

o
: ð4Þ
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For affine subspaces (which do not necessarily pass through
the origin), we use homogeneous coordinates so that they
become linear subspaces.

We now demonstrate that one can represent the union
of n subspaces fSi � IRDgni¼1 with a set of polynomials
whose degree is n rather than one. To see this, notice that
xxxx 2 IRD belongs to [ni¼1Si if and only if it satisfies
ðxxxx 2 S1Þ _ . . . _ ðxxxx 2 SnÞ. This is equivalent to

_n
i¼1
ðxxxx 2 SiÞ ,

_n
i¼1

D̂�di

j¼1
ðbbbbTijxxxx ¼ 0Þ ,

^
�

_n
i¼1
ðbbbbTi�ðiÞxxxx ¼ 0Þ; ð5Þ

where the right-hand side is obtained by exchanging ands
and ors using De Morgan’s laws and � is a particular choice
of one normal vector bbbbi�ðiÞ from each basis Bi. Since each
one of the

Qn
i¼1ðD� diÞ equations in (5) is of the form

_n
i¼1
ðbbbbTi �ðiÞxxxx ¼ 0Þ ,

�Yn
i¼1
ðbbbbTi �ðiÞxxxxÞ ¼ 0

�
, ðpn�ðxxxxÞ ¼ 0Þ; ð6Þ

i.e., a homogeneouspolynomial ofdegreen inDvariables,we
can write each polynomial as a linear combination of
monomials xxxxI with coefficient vector ccccn 2 IRMnðDÞ, as in (1).
Therefore, we have the following result.

Theorem 2 (Representing Subspaces with Polynomials). A
union of n subspaces can be represented as the set of points
satisfying a set of homogeneous polynomials of the form

pnðxxxxÞ ¼
Yn
i¼1
ðbbbbTi xxxxÞ ¼ ccccTn �nðxxxxÞ ¼ 0; ð7Þ

where bbbbi 2 IRD is a normal vector to the ith subspace.

The importance of Theorem 2 is that it allows us to solve
the “chicken-and-egg” problem described in Section 1.1
algebraically, because the polynomials in (7) are satisfied by
all data points, regardless of which point belongs to which
subspace. We can then use all the data to estimate all the
subspaces,withoutprior segmentationandwithouthaving to
iterate between data segmentation and model estimation, as
we will show in Sections 3.3, 3.4, and 3.5.

3.3 Fitting Polynomials to Data Lying in Multiple
Subspaces

Thanks to Theorem 2, the problem of identifying a union of
n subspaces fSigni¼1 from a set of data pointsXXXX¼: fxxxxjgNj¼1 lying
in the subspaces is equivalent to solving for the normal bases
fBign1¼1 from the set of nonlinear equations in (6). Although
these polynomial equations are nonlinear in each data
point xxxx, they are actually linear in the coefficient vector ccccn.
Indeed, since each polynomial pnðxxxxÞ ¼ ccccTn�nðxxxxÞ must be
satisfied by every data point, we have ccccTn�nðxxxxjÞ ¼ 0 for all
j ¼ 1; . . . ; N . We use In to denote the space of coefficient
vectors ccccn of all homogeneous polynomials that vanish on the
n subspaces. Obviously, the coefficient vectors of the
factorizable polynomials defined in (6) span a (possibly
proper) subspace in In:

span�fpn�g � In: ð8Þ

As every vector ccccn in In represents a polynomial that
vanishes on all the data points (on the subspaces), the vector
must satisfy the system of linear equations

ccccTnVVVV nðDÞ¼
:
ccccTn ½ �nðxxxx1Þ . . . �nðxxxxNÞ � ¼ 0T : ð9Þ

VVVV nðDÞ 2 IRMnðDÞ�N is called the embedded data matrix.

Obviously, we have the relationship

In � nullðVVVV nðDÞÞ:

Although we know that the coefficient vectors ccccn of
vanishing polynomials must lie in the left null space of
VVVV nðDÞ, we do not know if every vector in the null space
corresponds to a polynomial that vanishes on the subspaces.
Therefore, we would like to study under what conditions on
the data points, we can solve for the unique mn¼: dimðInÞ
independent polynomials that vanish on the subspaces from
the null space of VVVV n. Clearly, a necessary condition is to have
N �

Pn
i¼1 di points in[ni¼1Si, with at least di points in general

positionwithin each subspace Si, i.e., the di points must span
Si. However, because we are representing each polynomial
pnðxxxxÞ linearly via the coefficient vector ccccn, we need a number
of samples such that a basis for In can be uniquely recovered
from nullðVVVV nðDÞÞ. That is, the number of samplesN must be
such that

rankðVVVV nðDÞÞ ¼MnðDÞ �mn �MnðDÞ � 1: ð10Þ

Therefore, if the number of subspaces n is known, we can
recover In from nullðVVVV nðDÞÞ given N �MnðDÞ � 1 points in
general position. A basis of In can be computed linearly as the
set ofmn left singular vectors of VVVV nðDÞ associatedwith itsmn

zero singular values. Thus, we obtain a basis of polynomials
of degree n, say fpn‘gmn

‘¼1, that vanish on the n subspaces.

Remark 1 (GPCA and Kernel PCA). KernelPCAidentifiesa
manifold from sample data by embedding the data into a
higher-dimensional feature space FFFF such that the em-
bedded data points lie in a linear subspace of FFFF .
Unfortunately, there isnogeneralmethodology for finding
the appropriate embedding for a particular problem
becausetheembeddingnaturallydependsonthegeometry
of the manifold. The above derivation shows that the
commonly used polynomial embedding �n is the appropriate
embedding to use in KPCAwhen the original data lie in a
union of subspaces, because the embedded data points
f�nðxxxxjÞgNj¼1 lie in a subspace of IRMnðDÞ of dimension
MnðDÞ �mn, where mn ¼ dimðInÞ. Notice also that
the matrix C ¼ VVVV nðDÞVVVV nðDÞT 2 IRMnðDÞ�MnðDÞ is exactly
the covariance matrix in the feature space and K ¼
VVVV nðDÞTVVVV nðDÞ 2 IRN�N is the kernel matrix associatedwith
theN embedded samples.

Remark 2 (Estimation from Noisy Data). In the presence of
moderatenoise,wecanstillestimate thecoefficientsofeach
polynomial in a least-squares sense as the singular vectors
of VVVV nðDÞ associated with its smallest singular values.
However, we cannot directly estimate the number of
polynomials fromtherankofVVVV nðDÞbecauseVVVV nðDÞmaybe
of full rank.We use model selection to determinemn as

mn ¼ argmin
m

�2
mþ1ðVVVV nðDÞÞPm
j¼1 �

2
j ðVVVV nðDÞÞ

þ �m; ð11Þ

with �jðVVVV nðDÞÞ the jth singular vector of VVVV nðDÞ and � a
parameter. An alternative way of selecting the correct
linear model (in feature space) for noisy data can be
found in [11].

1948 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 27, NO. 12, DECEMBER 2005



Remark 3 (Suboptimality in the Stochastic Case). Notice
that, in the case of hyperplanes, the least-squares
solution for ccccn is obtained by minimizing kccccTVVVV nðDÞk2
subject to kccccnk ¼ 1. However, when n > 1 the so-found
ccccn does not minimize the sum of least-square errorsP

j mini¼1;...;nðbbbbTi xxxxjÞ2. Instead, it minimizes a “weighted
version” of the least-square errors

X
j

�j min
i¼1;...;n

ðbbbbTi xxxxjÞ
2¼:

X
j

Yn
i¼1
ðbbbbTi xxxxjÞ2 ¼ kccccTVVVV nðDÞk2; ð12Þ

where the weight �j is conveniently chosen so as to
eliminate the minimization over i ¼ 1; . . . ; n. Such a “soft-
ening” of the objective function permits a global algebraic
solution because the softened errordoes notdependon the
membership of one point to one of the hyperplanes. This
least-squares solution for ccccn offers a suboptimal approx-
imation for the original stochastic objective when the
variance of the noise is small. This solution can be used to
initializeother iterativeoptimizationschemes(suchasEM)
to further minimize the original stochastic objective.

3.4 Obtaining a Basis and the Dimension of Each
Subspace by Polynomial Differentiation

In this section, we show that one can obtain the bases

fBigni¼1 for the complement of the n subspaces and their

dimensions fdigni¼1 by differentiating all the polynomials

obtained from the left null space of the embedded data

matrix VVVV nðDÞ.
For the sake of simplicity, let us first consider the case of

hyperplanes, i.e., subspaces of equal dimension di ¼ D� 1,

for i ¼ 1; . . . ; n. In this case, there is only one vector bbbbi 2 IRD

normal to subspace Si. Therefore, there is only one

polynomial representing the n hyperplanes, namely, pnðxxxxÞ ¼
ðbbbbT1 xxxxÞ � � � ðbbbbTnxxxxÞ ¼ ccccTn�nðxxxxÞ and its coefficient vector ccccn can be

computed as the unique vector in the left null space of VVVV nðDÞ.
Consider now the derivative of pnðxxxxÞ

DpnðxxxxÞ ¼
@pnðxxxxÞ
@xxxx

¼ @

@xxxx

Yn
i¼1
ðbbbbTi xxxxÞ ¼

Xn
i¼1
ðbbbbiÞ

Y
‘ 6¼i
ðbbbbT‘ xxxxÞ; ð13Þ

at a point yyyyi 2 Si, i.e., yyyyi is such that bbbbTi yyyyi ¼ 0. Then, all
terms in (13), except the ith, vanish, because

Q
‘ 6¼iðbbbbT‘ yyyyjÞ ¼ 0

for j 6¼ i, so that we can immediately obtain the normal
vectors as

bbbbi ¼
DpnðyyyyiÞ
kDpnðyyyyiÞk

; i ¼ 1; . . . ; n: ð14Þ

Therefore, in a semisupervised learning scenario in which we
are given only one positive example per class, the hyperplane
segmentation problem can be solved analytically by evalu-
ating the derivatives of pnðxxxxÞ at the points with known labels.

As it turns out, the same principle applies to subspaces of
arbitrary dimensions. This fact should come at no surprise.
The zero set of each vanishing polynomial pn‘ is just a
surface in IRD; therefore, the derivative of pn‘ at a point
yyyyi 2 Si,Dpn‘ðyyyyiÞ, gives a vector normal to the surface. Since a
union of subspaces is locally flat, i.e., in a neighborhood of yyyyi
the surface is merely the subspace Si, then the derivative at
yyyyi lies in the orthogonal complement S?i of Si. By evaluating

the derivatives of all the polynomials in In at the same
point yyyyi, we obtain a set of normal vectors that span the
orthogonal complement of Si, as stated in Theorem 3. Fig. 2
illustrates the theorem for the case of a plane and a line
described in Section 2.

Theorem 3 (Obtaining Subspace Bases and Dimensions

by Polynomial Differentiation). Let In be (the space of
coefficient vectors of) the set of polynomials of degree n that
vanish on the n subspaces. If the data set XXXX is such that
dimðnullðVVVV nðDÞÞÞ ¼ dimðInÞ ¼ mn and one point yyyyi 2 Si

but yyyyi =2Sj for j 6¼ i is given for each subspace Si, then we have

S?i ¼ span
n @

@xxxx
ccccTn�nðxxxxÞ

���
xxxx¼yyyyi

; 8ccccn 2 nullðVVVV nðDÞÞ
o
: ð15Þ

Therefore, the dimensions of the subspaces are given by

di ¼ D� rank
�
DPnðyyyyiÞ

�
for i ¼ 1; . . . ; n; ð16Þ

with PnðxxxxÞ ¼ ½pn1ðxxxxÞ; . . . ; pnmn
ðxxxxÞ� 2 IR1�mn and DPnðxxxxÞ ¼

½Dpn1ðxxxxÞ; . . . ; Dpnmn
ðxxxxÞ� 2 IRD�mn .

As a consequence of Theorem 3, we already have the
sketch of an algorithm for segmenting subspaces of arbitrary
dimensions in a semisupervised learning scenario in which
we are given one positive example per class fyyyyi 2 Signi¼1:

1. Compute a basis for the left null space of VVVV nðDÞ
using, for example, SVD.

2. Evaluate the derivatives of the polynomial ccccTn�nðxxxxÞ at
yyyyi for each ccccn in the basis of nullðVVVV nðDÞÞ to obtain a
set of normal vectors in S?i .

3. Compute a basis Bi for S?i by applying PCA to the
normal vectors obtained in Step 2. PCA automati-
cally gives the dimension of each subspace
di ¼ dimðSiÞ.

4. Cluster the data by assigning point xxxxj to subspace i if

i ¼ arg min
‘¼1;...;n

kBT
‘ xxxxjk: ð17Þ

Remark 4 (Estimating the Bases from Noisy Data Points).
Withamoderate levelofnoise inthedata,wecanstillobtain
abasis for eachsubspaceandcluster thedataasabove.This
is because we are applying PCA to the derivatives of the
polynomials and both the coefficients of the polynomials
and their derivatives depend continuously on the data.
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Fig. 2. The derivatives of the two polynomials x1x2 and x1x3 evaluated at a
point yyyy1 on the line S1 give two normal vectors to the line. Similarly, the
derivatives at a point yyyy2 on the planeS2 give the normal vector to theplane.



Notice also that we can obtain the dimension of each

subspace by looking at the singular values of thematrix of

derivatives, similarly to (11).

Remark 5 (Computing Derivatives of Homogeneous

Polynomials). Notice that given ccccn the computation of

the derivatives of pnðxxxxÞ ¼ ccccTn�nðxxxxÞ does not involve taking
derivatives of the (possibly noisy) data. For instance,

one may compute the derivatives as @pnðxxxxÞ
@xk
¼ ccccTn

�nðxxxxÞ
@xk
¼

ccccTnEnk�n�1ðxxxxÞ, where Enk2 IRMnðDÞ�Mn�1ðDÞ is a constant

matrix that depends on the exponents of the different

monomials in the Veronese map �nðxxxxÞ.

3.5 Choosing One Point per Subspace by
Polynomial Division

Theorem 3 demonstrates that one can obtain a basis for each

S?i directly from the derivatives of the polynomials

representing the union of subspaces. However, in order to

proceed we need to have one point per subspace, i.e., we

need to know the vectors fyyyyigni¼1.
In this section, we show how to select these n points in the

unsupervised learning scenario in which we do not know the

label for any of the data points. To this end, notice thatwe can

always choose a point yyyyn lying on one of the subspaces, say

Sn, by checking that PnðyyyynÞ ¼ 0T . Since we are given a set of

data pointsXXXX ¼ fxxxxjgnj¼1 lying on the subspaces, in principle,

we could choose yyyyn to be any of the data points. However, in

the presence of noise and outliers, a random choice of yyyyn may

be far from the true subspaces. In Section 2, we chose a point

in the data set XXXX that minimizes kPnðxxxxÞk. However, such a

choice has the following problems:

1. The value kPnðxxxxÞk is merely an algebraic error, i.e., it
does not represent the geometric distance from xxxx to
its closest subspace. In principle, finding the
geometric distance from xxxx to its closest subspace is
a difficult problem because we do not know the
normal bases fBigni¼1.

2. Points xxxx lying close to the intersection of two or
more subspaces could be chosen. However, at a
point xxxx in the intersection of two or more subspaces,
we often have DpnðxxxxÞ ¼ 0. Thus, one should avoid
choosing such points, as they give very noisy
estimates of the normal vectors.

As it turns out, one can avoid both of these problems

thanks to the following lemma:

Lemma 1. Let ~xxxxxxxx be the projection of xxxx 2 IRD onto its closest

subspace. The Euclidean distance from xxxx to ~xxxxxxxx is

kxxxx� ~xxxxxxxxk ¼ n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PnðxxxxÞ

�
DPnðxxxxÞTDPnðxxxxÞ

�y
PnðxxxxÞT

r

þO
�
kxxxx� ~xxxxxxxxk2

�
;

where PnðxxxxÞ ¼ ½pn1ðxxxxÞ; . . . ; pnmn
ðxxxxÞ� 2 IR1�mn , DPnðxxxxÞ ¼

Dpn1ðxxxxÞ; . . . ; Dpnmn
ðxxxxÞ½ � 2 IRD�mn , and Ay is the Moore-

Penrose inverse of A.

Proof. The projection ~xxxxxxxx of a point xxxx onto the zero set of the

polynomials fpn‘gmn

‘¼1 can be obtained as the solution of

the following constrained optimization problem

min k~xxxxxxxx� xxxxk2
subject to pn‘ð~xxxxxxxxÞ ¼ 0 ‘ ¼ 1; . . . ;mn:

ð18Þ

By using Lagrange multipliers � 2 IRmn , we can convert
this problem into theunconstrained optimizationproblem

min
~xxxxxxxx;�
k~xxxxxxxx� xxxxk2 þ Pnð~xxxxxxxxÞ�: ð19Þ

From the first order conditions with respect to ~xxxxxxxx, we
have 2ð~xxxxxxxx� xxxxÞ þDPnð~xxxxxxxxÞ� ¼ 0. After multiplying on the
left by ð~xxxxxxxx� xxxxÞT and ðDPnð~xxxxxxxxÞÞT , respectively, we obtain

k~xxxxxxxx� xxxxk2 ¼ 1

2
xxxxTDPnð~xxxxxxxxÞ�; and ð20Þ

� ¼ 2
�
DPnð~xxxxxxxxÞTDPnð~xxxxxxxxÞ

�y
DPnð~xxxxxxxxÞTxxxx; ð21Þ

wherewe have used the fact that ðDPnð~xxxxxxxxÞÞT ~xxxxxxxx ¼ nPnð~xxxxxxxxÞ ¼
0 because D�nð~xxxxxxxxÞT ~xxxxxxxx ¼ n�nð~xxxxxxxxÞ. After replacing (21) on
(20), the squared distance from xxxx to its closest subspace is
given by

k~xxxxxxxx� xxxxk2 ¼ xxxxTDPnð~xxxxxxxxÞ
�
DPnð~xxxxxxxxÞTDPnð~xxxxxxxxÞ

�y
DPnð~xxxxxxxxÞTxxxx: ð22Þ

After expanding in Taylor series about ~xxxxxxxx ¼ xxxx and
noticing that DPnðxxxxÞTxxxx ¼ nPnðxxxxÞT , we obtain

k~xxxxxxxx� xxxxk2 
 n2PnðxxxxÞ
�
DPnðxxxxÞTDPnðxxxxÞ

�y
PnðxxxxÞT ; ð23Þ

which completes the proof. tu
Thanks to Lemma 1, we can immediately choose a point

yyyyn lying in (close to) one of the subspaces and not in (far
from) the other subspaces as

yyyyn ¼ arg min
xxxx2XXXX:DPnðxxxxÞ6¼0

PnðxxxxÞ
�
DPnðxxxxÞTDPnðxxxxÞ

�y
PnðxxxxÞT ; ð24Þ

and then compute the basis Bn 2 IRD�ðD�dnÞ for S?n by
applying PCA to DPnðyyyynÞ.

In order to find a point yyyyn�1 lying in (close to) one of the
remaining ðn� 1Þ subspaces but not in (far from) Sn, we
find a new set of polynomials fpðn�1Þ‘ðxxxxÞg defining the
algebraic set [n�1i¼1 Si. In the case of hyperplanes, there is only
one such polynomial, namely,

pn�1ðxxxxÞ¼: ðbbbb1xxxxÞ � � � ðbbbbTn�1xxxxÞ ¼
pnðxxxxÞ
bbbbTnxxxx

¼ ccccTn�1�n�1ðxxxxÞ:

Therefore, we can obtain pn�1ðxxxxÞ by polynomial division.
Notice thatdividingpnðxxxxÞby bbbbTnxxxx is a linear problemof the form
ccccTn�1RnðbbbbnÞ ¼ ccccTn , where RnðbbbbnÞ2 IRMn�1ðDÞ�MnðDÞ. This is be-
cause solving for the coefficients of pn�1ðxxxxÞ is equivalent to
solving the equations ðbbbbTnxxxxÞðccccTn�1�nðxxxxÞÞ ¼ ccccTn �nðxxxxÞ, where bbbbn
and ccccn are already known.

Example 2. If n ¼ 2 and bbbb2 ¼ ½b1; b2; b3�T , then the matrix
R2ðbbbb2Þ is given by

R2ðbbbb2Þ ¼
b1 b2 b3 0 0 0
0 b1 0 b2 b3 0
0 0 b1 0 b2 b3

2
4

3
5 2 IR3�6:

In the case of subspaces of varying dimensions, in
principle, we cannot simply divide the entries of the
polynomial vector PnðxxxxÞ by bbbbTnxxxx for any column bbbbn of Bn
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because the polynomials fpn‘ðxxxxÞg may not be factorizable.2

Furthermore, they do not necessarily have the common
factor bbbbTnxxxx. The following theorem resolves this difficulty by
showing how to compute the polynomials associated with
the remaining subspaces [n�1i¼1 Si:

Theorem 4 (Obtaining Points by Polynomial Division). Let
In be (the space of coefficient vectors of) the set of polynomials
vanishing on the n subspaces. If the data set XXXX is such that
dimðnullðVVVV nðDÞÞÞ ¼ dimðInÞ, then the set of homogeneous
polynomials of degree ðn� 1Þ that vanish on the algebraic set
[n�1i¼1 Si is spanned by fccccTn�1�n�1ðxxxxÞg, where the vectors of
coefficients ccccn�12 IRMn�1ðDÞ must satisfy

ccccTn�1RnðbbbbnÞVVVV nðDÞ ¼ 0T ; for all bbbbn 2 S?n : ð25Þ

Proof. We first show the necessity. That is, any polynomial of
degree n� 1, ccccTn�1�n�1ðxxxxÞ, that vanishes on[n�1i¼1 Si satisfies
the above equation. Since a point xxxx in the original
algebraic set [ni¼1Si belongs to either [n�1i¼1 Si or Sn, we
have ccccTn�1�n�1ðxxxxÞ ¼ 0 or bbbbTnxxxx ¼ 0 for all bbbbn 2 S?n . Hence,
pnðxxxxÞ¼: ðccccTn�1�n�1ðxxxxÞÞðbbbbTnxxxxÞ ¼ 0. If we denote pnðxxxxÞ as
ccccTn �nðxxxxÞ, then the coefficient vector ccccn must be in
nullðVVVV nðDÞÞ. From ccccTn�nðxxxxÞ ¼ ðccccTn�1�n�1ðxxxxÞÞðbbbbTnxxxxÞ, the re-
lationship between ccccn and ccccn�1 can be written as
ccccTn�1RnðbbbbnÞ ¼ ccccTn . Since ccccTnVVVV nðDÞ ¼ 0T , ccccn�1 needs to
satisfy the following linear system of equations
ccccTn�1RnðbbbbnÞVVVV nðDÞ ¼ 0T .

We now show the sufficiency. That is, if ccccn�1 is a
solution to (25), then for all bbbbn 2 S?n , cccc

T
n ¼ ccccTn�1RnðbbbbnÞ is in

nullðVVVV nðDÞÞ. From the construction of RnðbbbbnÞ, we have
ccccTn �nðxxxxÞ ¼ ðccccTn�1�n�1ðxxxxÞÞðbbbbTnxxxxÞ. Then, for every xxxx 2 [n�1i¼1 Si

but not in Sn, we have ccccTn�1�n�1ðxxxxÞ ¼ 0 because there is a
bbbbn such that bbbbTnxxxx 6¼ 0. Therefore, ccccTn�1�n�1ðxxxxÞ is a homo-
geneous polynomial of degree ðn� 1Þ that vanishes on
[n�1i¼1 Si. tu
Thanks to Theorem 4, we can obtain a collection of

polynomials fpðn�1Þ‘ðxxxxÞgmn�1
‘¼1 representing [n�1i¼1 Si from the

intersection of the left null spaces of RnðbbbbnÞVVVV nðDÞ 2
IRMn�1ðDÞ�N for all bbbbn 2 S?n . We can then repeat the same
procedure to find a basis for the remaining subspaces. We
thus obtain the following Generalized Principal Component
Analysis (GPCA) algorithm (Algorithm 1) for segmenting n
subspaces of unknown and possibly different dimensions.

Algorithm 1
(GPCA: Generalized Principal Component Analysis)
set VVVV n ¼½�nðxxxx1Þ; . . . ; �nðxxxxNÞ�2 IRMnðDÞ�N ;
for i ¼ n : 1 do
solve ccccTVVVV i ¼ 0 to obtain a basis fcccci‘gmi

‘¼1 of nullðVVVV iÞ, where
the number of polynomials mi is obtained as in (11);
set PiðxxxxÞ ¼ ½pi1ðxxxxÞ; . . . ; pimi

ðxxxxÞ� 2 IR1�mi , where
pi‘ðxxxxÞ ¼ ccccTi‘�iðxxxxÞ for ‘ ¼ 1; . . . ;mi;
do

yyyyi ¼ arg min
xxxx2XXXX:DPiðxxxxÞ6¼0

PiðxxxxÞ
�
DPiðxxxxÞTDPiðxxxxÞ

�y
PiðxxxxÞT ;

Bi ¼ PCA
�
DPiðyyyyiÞ

�
;

VVVV i�1 ¼ Riðbbbbi1ÞVVVV i; . . . ; Riðbbbbi;D�diÞVVVV i

� �
;with

bbbbij columns of Bi;
end do

end for
for j ¼ 1 : N do
assign point xxxxj to subspace Si if i ¼ argmin‘ kBT

‘ xxxxjk;
end for

Remark 6 (Avoiding Polynomial Division).Notice that one
may avoid computing Pi for i < n by using a heuristic
distance function to choose the points fyyyyigni¼1. Since a
point in [n‘¼iS‘ must satisfy kBT

i xxxxk � � � kBT
nxxxxk ¼ 0, we can

choose a point yyyyi�1 on [i�1‘¼1S‘ as:

yyyyi�1¼ arg min
xxxx2XXXX:DPnðxxxxÞ6¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PnðxxxxÞðDPnðxxxxÞTDPnðxxxxÞÞyPnðxxxxÞT

q
þ �

kBT
i xxxxk � � � kBT

nxxxxk þ �
;

where a small number � > 0 is chosen to avoid cases in
which both the numerator and the denominator are zero
(e.g., with perfect data).

Remark 7 (Robustness and Outlier Rejection). In practice,
there could be points in XXXX that are far away from any of
the subspaces, i.e., outliers. By detecting and rejecting
outliers, we can typically ensure a much better estimate
of the subspaces. Many methods from robust statistics
can be deployed to detect and reject the outliers [5], [11].
For instance, the function

d2ðxxxxÞ ¼ PnðxxxxÞ
�
DPnðxxxxÞTDPnðxxxxÞ

�y
PnðxxxxÞT

approximates the squared distance of a point xxxx to the
subspaces. From the d2-histogram of the sample setXXXX, we
may exclude from XXXX all points that have unusually large
d2 values and use only the remaining sample points to re-
estimate the polynomials before computing the normals.
For instance, if we assume that the sample points are
drawn around each subspace from independent Gaussian
distributions with a small variance �2, then d2

�2 is
approximately a �2-distribution with

P
iðD� diÞ degrees

of freedom. We can apply standard �2-test to reject
sampleswhichdeviate significantly from this distribution.
Alternatively, one can detect and reject outliers using
Random Sample Consensus (RANSAC) [5]. One can
chooseMnðDÞdata points at random, estimate a collection
of polynomials passing through those points, determine
their degree of support among the other points, and then
choose the set of polynomials giving a large degree of
support. This method is expected to be effective when
MnðDÞ is small. An open problem is how to combine
GPCA with methods from robust statistics in order to
improve the robustness of GPCA to outliers.

4 EXTENSIONS TO THE BASIC GPCA ALGORITHM

In this section, we discuss some extensions of GPCA that
deal with practical situations such as low-dimensional
subspaces of a high-dimensional space and unknown
number of subspaces.

4.1 Projection and Minimum Representation

When the dimension of the ambient space D is large, the
complexity of GPCA becomes prohibitive because MnðDÞ is
of the order nD. However, in most practical situations, we
are interested in modeling the data as a union of subspaces
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2. Recall that we can only compute a basis for the null space of VVVV nðDÞ,
and that linear combinations of factorizable polynomials are not necessarily
factorizable. For example, x21 þ x1x2 and x22 � x1x2 are both factorizable, but
their sum x21 þ x22 is not.



of relatively small dimensions fdi 	 Dg. In such cases, it
seems rather redundant to use IRD to represent such a low-
dimensional linear structure. One way of reducing the
dimensionality is to linearly project the data onto a lower-
dimensional (sub)space. An example is shown in Fig. 3,
where two lines L1 and L2 in IR3 are projected onto a
plane P. In this case, segmenting the two lines in the three-
dimensional space IR3 is equivalent to segmenting the two
projected lines l1 and l2 in the plane P.

Ingeneral,wewilldistinguishbetweentwodifferentkinds
of linear “projections.” The first kind corresponds to the case
in which the span of all the subspaces is a proper subspace of
the ambient space, i.e., spanð[ni¼1SiÞ � IRD. In this case, one
may simply apply the classic PCA algorithm to the original
data to eliminate the redundant dimensions. The secondkind
corresponds to the case in which the largest dimension of the
subspaces, denoted by dmax, is strictly less thanD� 1. When
dmax is known, one may choose a ðdmax þ 1Þ-dimensional
subspace P such that, by projecting onto this subspace:

�P : xxxx 2 IRD 7! xxxx0 ¼ �PðxxxxÞ 2 P;

the dimension of each original subspace Si is preserved,3

and the number of subspaces is preserved,4 as stated in the
following theorem:

Theorem 5 (Segmentation-Preserving Projections). If a set of
vectors fxxxxjg lie in n subspaces of dimensions fdigni¼1 in IRD and
if �P is a linear projection into a subspace P of dimension D0,
then the points f�PðxxxxjÞg lie in n0 � n linear subspaces of P of
dimensions fd0i � digni¼1. Furthermore, ifD > D0 > dmax, then
there is an open and dense set of projections that preserve the
number and dimensions of the subspaces, i.e.,n0 ¼ n and d0i ¼ di
for i ¼ 1; . . . ; n.

Thanks to Theorem 5, if we are given a data set XXXX drawn
from a union of low-dimensional subspaces of a high-
dimensional space, we can cluster the data set by first
projecting XXXX onto a generic subspace of dimension D0 ¼
dmax þ 1 and then applying GPCA to the projected sub-
spaces, as illustrated with the following sequence of steps:

XXXX�!�P XXXX0 �!GPCA [ni¼1 �PðSiÞ�!
��1P [ni¼1 Si:

However, even though we have shown that the set of
ðdmax þ 1Þ-dimensional subspaces P � IRD that preserve the

number and dimensions of the subspaces is an open and
dense set, it remains unclear what a “good” choice for P is,
especiallywhen there is noise in thedata. Inpractice, onemay
simply select a few random projections and choose the one
that results in the smallest fitting error. Another alternative is
to apply classic PCA to project onto a ðdmax þ 1Þ-dimensional
affine subspace. The reader may refer to [1] for alternative
ways of choosing a projection.

4.2 Identifying an Unknown Number of Subspaces
of Unknown Dimensions

The solution to the subspace segmentationproblemproposed
in Section 3 assumes prior knowledge of the number of
subspacesn. In practice, however, the number of subspaces n
maynot be knownbeforehand, hence,we cannot estimate the
polynomials representing the subspaces directly.

For the sake of simplicity, let us first consider the
problem of determining the number of subspaces from a
generic data set lying in a union of n different hyperplanes
Si ¼ fxxxx : bbbbTi xxxx ¼ 0g. From Section 3, we know that in this
case there is a unique polynomial of degree n that vanishes
in Z ¼ [ni¼1Si, namely, pnðxxxxÞ ¼ ðbbbbT1 xxxxÞ � � � ðbbbbTnxxxxÞ ¼ ccccTn �nðxxxxÞ
and that its coefficient vector ccccn lives in the left null space
of the embedded data matrix VVVV nðDÞ defined in (9), hence,
rankðVVVV nÞ ¼MnðDÞ � 1. Clearly, there cannot be a polyno-
mial of degree i < n that vanishes in Z; otherwise, the data
would lie in a union of i < n hyperplanes. This implies that
VVVV iðDÞmust be full rank for all i < n. In addition, notice that
there is more than one polynomial of degree i > n that
vanishes on Z, namely, any multiple of pn, hence,
rankðVVVV iðDÞÞ < MiðDÞ � 1 if i > n. Therefore, the number
of hyperplanes can be determined as the minimum degree
such that the embedded data matrix drops rank, i.e.,

n ¼ minfi : rankðVVVV iðDÞÞ < MiðDÞg: ð26Þ

Consider now the case of data lying in subspaces of equal
dimension d1 ¼ d2 ¼ � � � dn ¼ d < D� 1. For example, con-
sider a set of pointsXXXX ¼ fxxxxig lying in two lines in IR3, say,

S1 ¼ fxxxx : x2 ¼ x3 ¼ 0g and S2 ¼ fxxxx : x1 ¼ x3 ¼ 0g: ð27Þ

Ifwe construct thematrix of embeddeddata points VVVV nðDÞ for
n ¼ 1, we obtain rankðVVVV 1ð3ÞÞ ¼ 2 < 3 because all the points
lie also in the plane x3 ¼ 0. Therefore, we cannot determine
the number of subspaces as in (26) because we would obtain
n ¼ 1, which is not correct. In order to determine the correct
number of subspaces, recall from Section 4.1 that a linear
projection onto a generic ðdþ 1Þ-dimensional subspace P
preserves the number and dimensions of the subspaces.
Therefore, if we project the data onto P, then the projected
data lies in a union ofnhyperplanes of IRdþ1. By applying (26)
to the projected data, we can obtain the number of subspaces
from the embedded (projected) data matrix VVVV iðdþ 1Þ as

n ¼ minfi : rankðVVVV iðdþ 1ÞÞ < Miðdþ 1Þg: ð28Þ

Of course, in order to apply this projection, we need to
know the common dimension d of all the subspaces. Clearly,
ifwe project onto a subspace of dimension ‘þ 1 < dþ 1, then
the number and dimension of the subspaces are no longer
preserved. In fact, the projected data points lie in one
subspace of dimension ‘þ 1, and VVVV ið‘þ 1Þ is of full rank for
all i (as long asMiðDÞ < N). Therefore, we can determine the
dimension of the subspaces as the minimum integer ‘ such
that there is a degree i for which VVVV ið‘þ 1Þ drops rank, that is,
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Fig. 3. A linear projection of two one-dimensional subspaces L1;L2 in
IR3 onto a two-dimensional plane P preserves the membership of each
sample and the dimension of the lines.

3. This requires that P be transversal to each S?i , i.e., spanfP; S?i g ¼ IRD

for every i ¼ 1; . . . ; n. Since n is finite, this transversality condition can be
easily satisfied. Furthermore, the set of positions for P which violate the
transversality condition is only a zero-measure closed set [9].

4. This requires that all �PðSiÞ be transversal to each other in P, which is
guaranteed if we require P to be transversal to S?i \ S?j for i; j ¼ 1; ::; n. All
Ps which violate this condition form again only a zero-measure set.



d ¼ minf‘ : 9 i � 1 such rankðVVVV ið‘þ 1ÞÞ < Mið‘þ 1Þg: ð29Þ

In summary, when the subspaces are of equal dimension d,
both the number of subspaces n and their common
dimension d can be retrieved from (28) and (29) and the
subspace segmentation problem can be subsequently solved
by first projecting the data onto a ðdþ 1Þ-dimensional
subspace and then applying GPCA (Algorithm 1) to the
projected data points.

Remark 8. In the presence of noise, one may not be able to
estimate d and n from (29) and (28), respectively, because
the matrix VVVV ið‘þ 1Þ may be of full rank for all i and ‘.
Similarly to Remark 2, one can use model selection
techniques to determine the rank of VVVV ið‘Þ. However, in
practice this requires searching for up to possibly ðD� 1Þ
values ford and dN=ðD� 1Þevalues forn.Onemay refer to
[11] for a more detailed discussion on selecting the best
multiple-subspace model from noisy data, using model-
selection criteria such as MML, MDL, AIC, and BIC.

Unfortunately, the situation is not so simple for sub-
spaces of different dimensions. For instance, imagine that in
addition to the two lines S1 and S2 we are also given data
points on a plane S3 ¼ fxxxx : x1 þ x2 ¼ 0g, so that the overall
configuration is similar to that shown in Fig. 4. In this case,
we have rankðVVVV 1ð3ÞÞ ¼ 3 6< 3, rankðVVVV 2ð3ÞÞ ¼ 5 < 6, and
rankðVVVV 3ð3ÞÞ ¼ 6 < 10. Therefore, if we try to determine the
number of subspaces as the degree of the embedding for
which the embedded data matrix drops rank we would
obtain n ¼ 2, which is incorrect again. The reason for this is
clear: We can fit the data either with one polynomial of
degree n ¼ 2, which corresponds to the plane S3 and the
plane P spanned by the two lines, or with four polynomials
of degree n ¼ 3, which vanish precisely on the two lines S1,
S2, and the plane S3.

To resolve thedifficulty insimultaneouslydetermining the
number and dimension of the subspaces, notice that the
algebraic set Z ¼ [nj¼1Sj can be decomposed into irreducible
subsets Sjs—an irreducible algebraic set is also called a
variety—and that the decomposition of Z into fSjgnj¼1 is
always unique [8]. Therefore, as long as we are able to
correctly determine from the given sample points the under-
lying algebraic set Z or the associated radical ideal IðZÞ,5 in
principle, the number of subspaces n and their dimensions
fdjgnj¼1 can always be uniquely determined in a purely
algebraic fashion. InFig. 4, for instance, the first interpretation
(2 linesand1plane)wouldbe the right oneand the secondone
(two planes) would be incorrect because the two lines, which
span one of the planes, are not an irreducible algebraic set.

Having established that the problem of subspace segmen-
tation is equivalent to decomposing the algebraic ideal

associated with the subspaces, we are left with deriving a
computable scheme to achieve the goal of decomposing
algebraic sets into varieties. To this end, notice that the set of
all homogeneous polynomials that vanish inZ can be graded
by degree as

IðZÞ ¼ Im � Imþ1 � � � � � In � � � � ; ð30Þ
where m � n is the degree of the polynomial of minimum
degree that fits all the data points. For each degree i � m, we
can evaluate the derivatives of the polynomials in I i at points
in subspace Sj and denote the collection of derivatives as

Di;j¼: span f[xxxx2Sj
frf jxxxx; 8f 2 I igg; j ¼ 1; 2; . . . ; n: ð31Þ

Obviously, we have the following relationship:

Di;j � Diþ1;j � S?j ; 8i � m: ð32Þ

Therefore, for each degree i � m, we may compute a union
of up to n subspaces,

Zi¼: D?i;1 [D?i;2 [ � � � [D?i;n � Z; ð33Þ

which contains the original n subspaces. Therefore, we can
further partition Zi to obtain the original subspaces. More
specifically, in order to segment an unknown number of
subspacesofunknownandpossiblydifferentdimensions,we
can first search for the minimum degree i and dimension ‘
such that VVVV ið‘þ 1Þ drops rank. In our example in Fig. 4, we
obtain i ¼ 2 and ‘ ¼ 2. By applying GPCA to the data set
projected onto an ð‘þ 1Þ-dimensional space, we partition the
data into up to n subspaces Zi which contain the original
n subspaces. In our example, we partition the data into two
planes P and S3. Once these subspaces have been estimated,
we can reapply the same process to each reducible subspace.
In our example, theplanePwill be separated into two linesS1

and S2, while the plane S3 will remain unchanged. This
recursive process stopswhen every subspace obtained canno
longer be separated into lower-dimensional subspaces, or
whenaprespecifiedmaximumnumber of subspacesnmax has
been reached.

We summarize the above derivation with the recursive
GPCA algorithm (Algorithm 2).

Algorithm 2 Recursive GPCA Algorithm
n ¼ 1;
repeat
build a data matrix VVVV nðDÞ¼: ½�nðxxxx1Þ; . . . ; �nðxxxxNÞ�
2 IRMnðDÞ�N via the Veronese map �n of degree n;
if rankðVVVV nðDÞÞ < MnðDÞ then

compute the basis fccccn‘g of the left null space of VVVV nðDÞ;
obtain polynomials fpn‘ðxxxxÞ¼: ccccTn‘�nðxxxxÞg;
Y ¼ ;;
for j ¼ 1 : n do
select a point xxxxj from XXXX nY (similar to Algorithm 1);
obtain the subspace S?j spanned by the derivatives
spanfDpn‘ðxxxxjÞg; find the subset of points XXXXj � XXXX
that belong to the subspace Sj; Y Y [XXXXj;
Recursive-GPCA(XXXXj); (with Sj now as the
ambient space)

end for
n nmax;

else
n nþ 1;

end if
until n � nmax.
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Fig. 4. A set of samples that can be interpreted as coming either from
two lines and one plane or from two planes.

5. The ideal of an algebraic set Z is the set of all polynomials that vanish in
Z. An ideal I is called radical if f 2 I whenever ffffs 2 I for some integer s.



5 EXPERIMENTAL RESULTS AND APPLICATIONS IN

COMPUTER VISION

In this section, we first evaluate the performance of GPCA
on synthetically generated data by comparing and combin-
ing it with the following approaches:

1. Polynomial Factorization Algorithm (PFA). This algo-
rithm is only applicable to the case of hyperplanes.
It computes the normal vectors fbbbbigni¼1 to the
n hyperplanes by factorizing the homogeneous
polynomial pnðxxxxÞ ¼ ðbbbbT1 xxxxÞðbbbbT2 xxxxÞ � � � ðbbbbTnxxxxÞ into a pro-
duct of linear factors. See [24] for further details.

2. K-subspaces. Given an initial estimate for the subspace
bases, this algorithmalternates between clustering the
data points using the distance residual to the different
subspaces and computing a basis for each subspace
using standard PCA. See [10] for further details.

3. Expectation Maximization (EM). This algorithm as-
sumes that the data is corrupted with zero-mean
Gaussian noise in the directions orthogonal to the
subspace. Given an initial estimate for the subspace
bases, EM alternates between clustering the data
points (E-step) and computing a basis for each
subspace (M-step) by maximizing the log-likelihood
of the corresponding probabilistic model. See [19] for
further details.

We then apply GPCA to various problems in computer
vision such as face clustering under varying illumination,
temporal video segmentation, two-view segmentation of
linear motions, and multiview segmentation of rigid-body
motions. However, it is not our intention to convince the
reader that the proposed GPCA algorithm offers an optimal
solution to each of these problems. In fact, one can easily
obtain better segmentation results by using algorithms/
systems specially designed for each of these tasks.Wemerely
wish to point out that GPCA provides an effective tool to
automatically detect themultiple-subspace structure present
in these data sets in a noniterative fashion and that it
provides a good initial estimate for any iterative algorithm.

5.1 Experiments on Synthetic Data

The experimental setup consists of choosing n ¼ 2; 3; 4
collections of N ¼ 200n points in randomly chosen planes
in IR3. Zero-mean Gaussian noise with s.t.d. � from 0 percent

to 5 percent along the subspace normals is added to the
sample points. We run 1,000 trials for each noise level. For
each trial, the error between the true (unit) normal vectors
fbbbbigni¼1 and their estimates fb̂bbbbbbbigni¼1 is computed as the mean
angle between the normal vectors:

error¼: 1

n

Xn
i¼1

acos bbbbTi b̂bbbbbbbi

� �
ðdegreesÞ: ð34Þ

Fig. 5a plots themean error as a function of noise forn ¼ 4.
Similar results were obtained for n ¼ 2; 3, though with
smaller errors. Notice that the estimates of GPCA with the
choice of � ¼ 0:02 (see Remark 6) have an error that is only
about 50 percent the error of the PFA. This is because GPCA
deals automatically with noisy data by choosing the points
fyyyyigni¼1 in an optimal fashion. The choice of � was not
important (results were similar for � 2 ½0:001; 0:1�). Notice
also that both the K-subspaces and EM algorithms have a
nonzero error in the noiseless case, showing that they
frequently converge to a local minimum when a single
randomly chosen initialization is used.When initializedwith
GPCA, both the K-subspaces and EM algorithms reduce the
error to approximately 35-50 percent with respect to random
initialization. The best performance is achieved by using
GPCA to initialize the K-subspaces and EM algorithms.

Fig. 5b plots the estimation error of GPCA as a function
of the number of subspaces n, for different levels of noise.
As expected, the error increases rapidly as a function of n
because GPCA needs a minimum of Oðn2Þ data points to
linearly estimate the polynomials (see Section 4.1).
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Fig. 5. Error versus noise for data lying on two-dimensional subspaces of IR3. (a) Error versus noise for n ¼ 4. A comparison of PFA, GPCA
(� ¼ 0:02), K-subspaces and EM randomly initialized, K-subspaces and EM initialized with GPCA, and EM initialized with K-subspaces initialized with
GPCA for n ¼ 4 subspaces. (b) Error versus noise for n ¼ 1; . . . ; 4. GPCA for n ¼ 1; . . . ; 4 subspaces.

TABLE 1
Mean Computing Time and Mean Number of Iterations for

Various Subspace Segmentation Algorithms



Table 1 shows the mean computing time and the mean
number of iterations for a MATLAB implementation of each
one of the algorithms over 1,000 trials. Among the algebraic
algorithms, the fastest one is PFAwhich directly factors pnðxxxxÞ
given ccccn. The extra cost of GPCA relative to the PFA is to
compute thederivativesDpnðxxxxÞ forallxxxx 2 XXXX andtodivide the
polynomials.Overall, GPCAgives about half the error of PFA
in about twice as much time. Notice also that GPCA reduces
the number of iterations of K-subspaces and EM to approxi-
mately 1/3 and 1/2, respectively. The computing times for
K-subspacesandEMarealsoreducedincluding theextra time
spent on initialization with GPCA or GPCA + K-subspaces.

5.2 Face Clustering under Varying Illumination

Given a collection of unlabeled images fIj 2 IRDgNj¼1 of
n different faces taken under varying illumination, wewould
like to cluster the imagescorresponding to the faceof the same
person. For aLambertian object, it has been shown that the set
of all images taken under all lighting conditions forms a cone
in the image space,which can bewell approximated by a low-
dimensional subspace [10]. Therefore, we can cluster the
collection of images by estimating a basis for eachoneof those
subspaces, because images of different faces will lie in
different subspaces. Since, in practice, the number of pixels
D is large comparedwith the dimension of the subspaces, we
first apply PCA to project the images onto IRD0 with D0 	 D
(see Section 4.1). More specifically, we compute the SVD of
the data I1 I2 � � � IN½ �D�N¼ U�V T and consider a matrix X 2
IRD0�N consisting of the first D0 columns of V T . We obtain a

new set of data points in IRD0 from each one of the columns of
X. We use homogeneous coordinates fxxxxj 2 IRD0þ1gNj¼1 so that
eachprojected subspacegoes through theorigin.We consider
a subset of the Yale Face Database B consisting of N ¼ 64n
frontal views of n ¼ 3 faces (subjects 5, 8, and 10) under 64
varying lighting conditions. For computational efficiency,we
downsampled each image to D ¼ 30� 40 pixels. Then, we
projected the data onto the firstD0 ¼ 3principal components,
as shown in Fig. 6. We applied GPCA to the data in
homogeneous coordinates and fitted three linear subspaces
of dimensions 3, 2, and 2. GPCA obtained a perfect
segmentation as shown in Fig. 6b.

5.3 Temporal Segmentation of Video Sequences

Consider a news video sequence in which the camera is
switching among a small number of scenes. For instance,
the host could be interviewing a guest and the camera may
be switching between the host, the guest, and both of them,
as shown in Fig. 7a. Given the frames fIj 2 IRDgNj¼1, we
would like to cluster them according to the different scenes.
We assume that all the frames corresponding to the same
scene live in a low-dimensional subspace of IRD and that
different scenes correspond to different subspaces. As in the
case of face clustering, we may segment the video sequence
into different scenes by applying GPCA to the image data
projected onto the first few principal components. Fig. 7b
shows the segmentation results for two video sequences. In
both cases, a perfect segmentation is obtained.
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Fig. 6. Clustering a subset of the Yale Face Database B consisting of 64 frontal views under varying lighting conditions for subjects 2, 5, and 8.
(a) Image data projected onto the three principal components. (b) Clustering results given by GPCA.

Fig. 7. Clustering frames of video sequences into groups of scenes using GPCA. (a) Thirty frames of a TV show clustered into three groups:
interviewer, interviewee, and both of them. (b) Sixty frames of a sequence from Iraq clustered into three groups: rear of a car with a burning wheel, a
burned car with people, and a burning car.



5.4 Segmentation of Linearly Moving Objects

In this section, we apply GPCA to the problem of

segmenting the 3D motion of multiple objects undergoing

a purely translational motion. We refer the reader to [25],

[26], where for the case of arbitrary rotation and translation

via the segmentation of a mixture of fundamental matrices.

We assume that the scene can be modeled as a mixture of

purely translational motion models, fTigni¼1, where Ti 2 IR3

represents the translation of object i relative to the camera

between the two consecutive frames. Given the images xxxx1

and xxxx2 of a point in object i in the first and second frame,

respectively, the rays xxxx1, xxxx2 and Ti are coplanar. Therefore

xxxx1, xxxx2 and Ti must satisfy the well-known epipolar

constraint for linear motions

xxxxT2 ðTi � xxxx1Þ ¼ 0: ð35Þ

In the case of an uncalibrated camera, the epipolar

constraint reads xxxxT
2 ðeeeei � xxxx1Þ ¼ 0, where eeeei 2 IR3 is known as

the epipole and is linearly related to the translation vector

Ti 2 IR3. Since the epipolar constraint can be conveniently

rewritten as

eeeeTi ðxxxx2 � xxxx1Þ ¼ 0; ð36Þ

where eeeei 2 IR3 represents the epipole associated with the

ith motion, i ¼ 1; . . . ; n, if we define the epipolar line ‘‘‘‘ ¼
ðxxxx2 � xxxx1Þ 2 IR3 as a data point, then we have that eeeeTi ‘‘‘‘ ¼ 0.

Therefore, the segmentation of a set of images fðxxxxj
1; xxxx

j
2ÞgNj¼1

of a collection of N points in 3D undergoing n distinct linear

motions eeee1; . . . ; eeeen 2 IR3, can be interpreted as a subspace

segmentation problem with d ¼ 2 and D ¼ 3, where the

epipoles feeeeigni¼1 are the normal to the planes and the epipolar

lines f‘‘‘‘jgNj¼1 are the data points. One can use (26) and

Algorithm 1 to determine the number of motions n and the

epipoles ei, respectively.

Fig. 8a shows the first frame of a 320� 240 video sequence

containing a truck and a car undergoing two 3D translational

motions. We applied GPCA with D ¼ 3, and � ¼ 0:02 to the

epipolar lines obtained from a total of N ¼ 92 features, 44 in

the truck and 48 in the car. The algorithm obtained a perfect

segmentation of the features, as shown in Fig. 8b, and

estimated the epipoles with an error of 5.9 degrees for the

truck and 1.7 degrees for the car.

We also tested the performance of GPCA on synthetic

point correspondences corrupted with zero-mean Gaussian

noise with s.t.d. between 0 and 1 pixels for an image size of

500� 500 pixels. For comparison purposes, we also imple-

mented the PFA and the EM algorithm for segmenting

hyperplanes in IR3. Figs. 8c and 8d show the performance of

all the algorithms as a function of the level of noise for n ¼ 2

moving objects. The performance measures are the mean

error between the estimated and the true epipoles (in

degrees) and the mean percentage of correctly segmented

feature points using 1,000 trials for each level of noise. Notice

that GPCA gives an error of less than 1.3 degrees and a

classification performance of over 96 percent. Thus, GPCA

gives approximately 1/3 the error of PFA and improves the

classification performance by about 2 percent. Notice also

that EM with the normal vectors initialized at random (EM)

yields a nonzero error in the noise free case, because it

frequently converges to a local minimum. In fact, our
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Fig. 8. Segmenting 3D translational motions by segmenting planes in IR3. (a) First frame of a real sequence with two moving objects with 92 feature

points superimposed. (b) Segmentation of the 92 feature points into two motions. (c) Error in translation and (d) percentage of correct classification of

GPCA, PFA, and EM as a function of noise in the image features for n ¼ 2motions. (e) Error in translation and (f) percentage of correct classification

of GPCA as a function of the number of motions.



algorithm outperforms EM. However, if we use GPCA to

initialize EM (GPCA + EM), the performance of both

algorithms improves, showing that our algorithm can be

effectively used to initialize iterative approaches to motion

segmentation. Furthermore, the number of iterations of

GPCA + EM is approximately 50 percent with respect to

EM randomly initialized; hence, there is also a gain in

computing time. Figs. 8e and 8f show the performance of

GPCA as a function of the number of moving objects for

different levels of noise. As expected, the performance

deteriorates as the number of moving objects increases,

though the translation error is still below 8 degrees and the

percentage of correct classification is over 78 percent.

5.5 Three-Dimensional Motion Segmentation from
Multiple Affine Views

Let fxxxxfp 2 IR2gp¼1;...;Nf¼1;...;F be a collection of F images of

N 3D points fXXXXp 2 IR3gNj¼1 taken by a moving affine

camera. Under the affine camera model, which gener-

alizes orthographic, weak perspective, and paraperspec-

tive projection, the images satisfy the equation

xxxxfp ¼ AfXXXXp; ð37Þ

where Af 2 IR2�4 is the affine camera matrix for frame f ,
which depends on the position and orientation of the
camera as well as the internal calibration parameters.
Therefore, if we stack all the image measurements into a
2F �N matrix W , we obtain

W ¼MST

xxxx11 � � � xxxx1N

..

. ..
.

xxxxF1 � � � xxxxFN

2
664

3
775
2F�N

¼
A1

..

.

AF

2
664

3
775
2F�4

XXXX1 � � � XXXXN½ �4�N:

ð38Þ

It follows from (38) that rankðWÞ � 4; hence, the 2D

trajectories of the image points across multiple frames,

that is, the columns of W , live in a subspace of IR2F of

dimension 2, 3, or 4 spanned by the columns of the

motion matrix M 2 IR2F�4.

Consider now the case in which the set of points fXXXXpgNp¼1
corresponds to n moving objects undergoing n different

motions. In this case, each moving object spans a different

d-dimensional subspace of IR2F , where d ¼ 2, 3, or 4. Solving

the motion segmentation problem is hence equivalent to

finding a basis for each one of such subspaces without

knowing which points belong to which subspace. Therefore,

we can apply GPCA to the image measurements projected

onto a subspace of IR2F of dimensionD ¼ dmax þ 1 ¼ 5. That

is, if W ¼ U�V T is the SVD of the data matrix, then we can

solve themotion segmentationproblembyapplyingGPCAto

the first five columns of V T .

We tested GPCA on two outdoor sequences taken by a

moving camera tracking a car moving in front of a parking

lot and a building (sequences A and B), and one indoor

sequence taken by a moving camera tracking a person

moving his head (sequence C), as shown in Fig. 9. The data

for these sequences are taken from [14] and consist of point

correspondences in multiple views, which are available at

http://www.suri.it.okayama-u.ac.jp/data.html. For all

sequences, the number of motions is correctly estimated

from (11) as n ¼ 2 for all values of � 2 ½2; 20� 10�7. Also,

GPCA gives a percentage of correct classification of

100.0 percent for all three sequences, as shown in Table 2.

The table also shows results reported in [14] from existing

multiframe algorithms for motion segmentation. The com-

parison is somewhat unfair, because our algorithm is purely

algebraic, while the others use iterative refinement to deal

with noise. Nevertheless, the only algorithm having a

comparable performance to ours is Kanatani’s multistage

optimization algorithm, which is based on solving a series of

EM-like iterative optimization problems, at the expense of a

significant increase in computation.

6 CONCLUSIONS AND OPEN ISSUES

We have proposed an algebro-geometric approach to sub-

space segmentation called Generalized Principal Component

Analysis (GPCA). Our approach is based on estimating a

collection of polynomials fromdata and then evaluating their

derivatives at a data point in order to obtain a basis for the

VIDAL ET AL.: GENERALIZED PRINCIPAL COMPONENT ANALYSIS (GPCA) 1957

Fig. 9. Segmenting the point correspondences of sequences A (left), B (center), and C (right) in [14] for each pair of consecutive frames by
segmenting subspaces in IR5. First row: first frame of the sequence with point correspondences superimposed. Second row: last frame of the
sequence with point correspondences superimposed.



subspace passing through that point. Our experiments

showed that GPCA gives about half of the error with respect

to existing algebraic algorithms based on polynomial

factorization, and significantly improves the performance of

iterative techniques such as K-subspaces and EM. We also

demonstrated the performance of GPCA on vision problems

such as face clustering and video/motion segmentation.
At present, GPCA works well when the number and the

dimensions of the subspaces are small, but the performance
deteriorates as the number of subspaces increases. This is
because GPCA starts by estimating a collection of polyno-
mials in a linear fashion, thus neglecting the nonlinear
constraints among the coefficients of those polynomials, the
so-called Brill’s equations [6]. Another open issue has to do
with the estimation of the number of subspaces n and their
dimensions fdigni¼1 by harnessing additional algebraic prop-
erties of the vanishing ideals of subspace arrangements (e.g.,
the Hilbert function of the ideals). Throughout the paper, we
hinted at a connection between GPCA and Kernel Methods,
e.g., the Veronese map gives an embedding that satisfies the
modeling assumptions of KPCA (see Remark 1). Further
connections between GPCA and KPCA are worthwhile
investigating. Finally, the current GPCA algorithm does not
assume the existence of outliers in the given sample data,
though one can potentially incorporate statistical methods
such as influence theory and random sampling consensus to
improve its robustness.Wewill investigate these problems in
future research.
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