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Abstract

Local feature methods suitable for image feature based ob-
Jject recognition and for the estimation of motion and struc-
ture are composed of two steps, namely the ‘where’ and
‘what’ steps. The ‘where’ step (e.g., interest point detec-
tor) must select image points that are robustly localizable
under common image deformations and whose neighbor-
hoods are relatively informative. The ‘what’ step (e.g., lo-
cal feature extractor) then provides a representation of the
image neighborhood that is semi-invariant to image defor-
mations, but distinctive enough to provide model identifi-
cation. We present a quantitative evaluation of both the
‘where’ and the ‘what’ steps for three recent local feature
methods: a) phase-based local features [2], b) differential
invariants [14], and c) the scale invariant feature transform
(SIFT) [9]. Moreover, in order to make the phase-based ap-
proach more comparable to the other two approaches, we
also introduce a new form of multi-scale interest point de-
tector to be used for its ‘where’ step. The results show that
the phase-based local features lead to better performance
than the other two approaches when dealing with common
illumination changes, 2D rotation, and sub-pixel transla-
tion. On the other hand, the phase-based local features are
somewhat more sensitive to scale and large shear changes
than the other two methods. Finally, we demonstrate the vi-
ability of the phase-based local feature in a simple object
recognition system.

1 Introduction

Local feature matching methods for view-based object
recognition and structure and motion estimation have re-
ceived a great deal of attention lately. The extraction of
local features is performed in two steps: a) a ‘where’ step
involving an interest point detector, and b) a ‘what’ step
consisting of a local feature extractor. The interest point de-
tector must select image locations that contain a high degree
of information content, while being robust to common im-
age deformations. The local feature extractor must provide
a representation of such image neighborhoods that is semi-
invariant to typical image deformations, yet highly distinc-
tive to afford identity information.

We are particularly interested in methods that match ro-
bustly detectable, highly informative and relatively sparse
features. Rao and Ballard [12] explore the use of such lo-
cal features for recognizing human faces by using princi-
pal component analysis (PCA) to reduce the dimensional-
ity of localized natural image patches at multiple scales.
In [11], Nelson presented a technique to automatically ex-
tract a geometric description of an object by detecting semi-
invariants at localized points. A new concept was presented
by Schmid and Mohr [14], where the authors use a set
of differential invariants extracted from interest points. In
[9] Lowe presents a novel method based on local scale-
invariant features detected at interest points. Shoukoufan-
deh et al. [16] present a multi-scale view-based represen-
tation for 3D objects such that the local characteristic scale
is used to build a graph that serves to measure similarity
between test image and model. In [13] the features are
based on receptive field histograms, which are robust to
scale, translation, 2D rotation, minor occlusions, and com-
mon brightness changes. Recently, some authors have pro-
posed affine invariant local features [1, 8], where the re-
gion around an interest point is iteratively transformed to
an affine invariant space. A brief overview of feature based
methods for structure and motion estimation is provided in
[17], where the authors advocate that local features should
be used for image matching relations/camera geometry ini-
tialization and then followed by dense reconstruction meth-
ods

Even though there is an extensive literature in the area,
there has been a lack of quantitative comparison of the re-
cent approaches suggested for local features. In [15], a
quantitative comparison of interest point detectors in terms
of robustness to image deformations and distinctiveness
takes place, but there is no comparison of different local
feature extractors. The discriminance of interest points is
also explored in [6]. Here, we propose a quantitative evalu-
ation of the 2 steps (i.e., the ‘where’ and ‘what’ steps) sepa-
rately, and we investigate the performance of the following
three recent approaches: a) phase-based local features [2],
b) differential invariants [14], and c) scale invariant feature
transform (SIFT) [9]. Moreover, we propose a new form of
multi-scale interest point detector to be used in the ‘where’
step of the phase-based local features in order to make the



approach robust to scale changes and, thus, more compara-
ble to the other two approaches. The experiments conducted
in this work also investigate the use of brightness renormal-
ization for the local differential invariants, as in [13], in or-
der to reduce the brightness sensitivity of the differential
invariant approach and provide a fairer comparison.

Our results show that the phase-based local features per-
form better than the other two approaches when dealing
with common illumination changes, 2D rotation, and sub-
pixel translation. For scale and large shear changes, both
SIFT and the differential invariant features lead to better
results than ours. Finally, a simple system that performs
object recognition is provided to demonstrate the general
viability of the phase-based approach.

2 Image Deformations Studied

The image deformations considered here are: a) two types
of global brightness changes, b) non-uniform local bright-
ness variations, ¢) additive noise, d) scale changes, ) 2D
rotation, f) shear and g) sub-pixel translation. The non-
uniform global brightness changes are implemented by
adding a constant to the brightness value, taking into ac-
count the gamma correction non-linearity:

T4 (7) = 255 % [max (o, (%)V + kﬂ oW

where v = 2.2, and k € [—.5,.5] controls the changes in
brightness. The resulting image is linearly mapped to val-
ues between 0 and 255, and then quantized. The uniform
brightness change is simply based on the division of gray
values by a constant ¢ € [1, 3].

For the non-uniform local brightness variations, a high-
light at a specific location of the image is simulated by
adding a Gaussian blob as follows: I, (%) = I(Z) + 255
G(% — Zp;0), where o0 = 10, ¥, is a specific position
in the image, and G(%;0) = exp (—2?/(20?)). Again,
the resulting image is mapped to values between 0 and
255, and then quantized. For noise deformations, we sim-
ply add Gaussian noise with varying standard deviation
(o0 = 255 % [1073,107"]), followed by normalization and
quantization, as above.

The geometric deformations are 2D rotations (from
—90° to +90° in intervals of 15°), uniform scale changes
(with expansion factors in the range [0.25,1]), shear in
the horizontal direction (so that a vertical line is perturbed
by £26°), and sub-pixel translation (in the range [0,1])
pixel. The geometrically deformed images are quantized
to [0, 255] without normalization.

3 Where: The Interest Points

An interest point detector must select highly informative
image locations that are robustly localizable given common

image deformations. Here we extend the Harris corner de-
tector (see [7]) which is known to be robust common illumi-
nation changes and rotation, but it is also known to be sen-
sitive to scale changes. Therefore, we must seek a way to
make the Harris corner detector robust to scale changes. We
use an approach similar to the one suggested in [3], in which
we check local spatial information to determine whether the
current scale is appropriate.

The Harris corner detector is based on a matrix that av-
erages the products of the first derivatives of the signal in a
window, which is built as follows:

2
2 12 leyy @)

2
C(%) = expf%* [I 7, 7'
@ y

with o, > 2.0, and * is the convolution operation. Here
I.(%) = Gy (%, 0.) * I(Z), where G, is the xz-derivative of
a Gaussian with mean # and standard deviation 0. = 0}, /2,
and similarly for I,,. The eigenvalues of this matrix, y; (Z)
and u(¥), represent edge strength, so a corner is an image
location at which py (%) > p2(%) > t, with ¢ as a threshold.

Here, the function described in [7] is substituted by

c+ (1/2) (1 (@) + 12(@)
where ¢ = 1 is set based on the histogram of T'(%) of var-
ious types of images, and 7" € [0,1]. The initial set of
interest points is defined as In(1y,, 0.) = {Z;|T(Z;) > 0.5},
where Z; is a point in image [,.

In order to filter the initial set of interest points computed
by the Harris corner detector, we utilize the procedure de-
scribed in [4], where the quadrature pair filters specified in
[5] are used, tuned to a specific orientation € and scale o,
(as mentioned before 0. = o, /2). More specifically, let
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R(Z,0.,0) = (Gy + iH,y) x I(Z), “)
where G2(Z, 0., 6) is the second directional derivative of
a Gaussian, Hy (¥, 0.,0) is the approximation of Hilbert
transform of (G5, and o. is the standard deviation of the
Gaussian kernel used to derive G4 and H, !. The complex
polar representation of (4) can be written as R(%,0.,0) =
p(Z, 0.,0)ei?#:00) where p(Z,0.,0) is the local ampli-
tude information and ¢(Z, 0., 8) is the local phase informa-
tion. The complex valued filter (G2 +iH>) is bandpass with
peak frequency response at w, = 27/(3.9180.), which cor-
responds to a wavelength of A. = 3.918¢,.. Below we use
o. and A, interchangeably to refer to the local scale.

The local frequency of the response R is defined as the
spatial derivative of the phase signal [4]. In particular,

Im[R*(%,0.,0)R,(Z,0.,0

IThese responses for all orientations # can be computed from just seven
basis images at each scale, which can be computed using a total of 14 1D
convolutions.




where R* (%, 0., 0) is the complex conjugate of R(Z, o, §).
Similarly, we can compute ¢, (Z,0,, ), and the local fre-
quency at the maximum energy orientation 65, (computed
as described in [5]) is

w(,r_’:AC) = ||(¢”E(f/)‘CagM)aqsy(f:AC/gM))”/ (6)

where ||.|| denotes Euclidean norm. This gives a local wave-
length of
AME,A) =21 /w(Z, Ae). @)

Using equations (5-7), we can compute the local wave-
length A(Z, A.) of each &; € In(I,o0.). Finally, the
mean wavelength at interest points at the scale ., namely
Am(Ae), is then defined as the average of all observed wave-
lengths A(Z;, \.), for which A(Z;, \;) € [A./2,2)\.], where
Z; ranges over a large collection of interest points.

We are particularly interested in interest points that are
stable in terms of local phase information. Following [4]
these points can be identified as those whose local fre-
quency is sufficiently close to the filter tuning. That is, we
filter the initial set In(1, o) as follows

I} (1) = {7‘"’|7‘"’ € In(Iy, 0.),and

Al o]}

A(TZ,AC) € \/§
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where A\, = 3.9180, as above.

3.1 Comparison of Interest Points

Here we study the stability of multi-scale interest points
with respect to the deformations described in section 2. We
denote the deformed test image by I 4, where {I; };%% is a
database of images, and d denotes the deformation applied
to I to form Iy q. Thus the set of interest points of de-
formed test image INM is In?d (fk,d), where we use Ay = 8.
The closest transformed scale for the undeformed test im-
age I}, is then defined as

Ad
M‘}7 )

where A, = {4,4,/(2),8,8/(2),16,161/(2), 32}, and
the expansion factor (d) € [0.25, 1] for scale changes, and

otherwise x(d) = 1. Finally, the spatial warp for the defor-
mation d is denoted by

Ae = argminy e, {|Ac —

Fj = M(d)F; + b(d), (10)

where Z; are the original image coordinates and ; the de-
formed image coordinates.

In order to assess the interest point detector performance,
two measures are computed, namely the precision and recall
rates. The precision rate measures the probability that an

interest point detected in a deformed test image I, k,d 1S actu-
ally an interest point in the corresponding database image,
I;.. That is

TP(d)

Prate (d) = m:

(11)
where
TP(d) = ‘{(i’j,d, k) | %5 € In} (I} 4) and
az; € In?“ (Ik) s.t.

—

|| M (d)Z; + b(d) — Z;|| < €},

FP(d) = {(F,d.k) | 7 € In}* (Tj.a) and
—-3%; € In?“ (Ik) S.t.

|M(d); +b(d) - Fl| < €},

where [, fork = 1,...,100 ranges over the image database
and € = 2.0 pixels. On the other hand, the recall rate mea-
sures the probability of finding an interest point in a de-
formed image I k,d» given that it is detected in the corre-
sponding database image [}, . That is,

_ TP@)
Ryate(d) = TP(d) + EN(d)’ (12)
where
FN(d) = [{(#,d,k) | 7 € In}*(1) and
—3%; € In }‘ (Ir.a4) s.
|| M(d); + b(d )—%H <€}

Using P,q¢e and R4t , We provide a comparison in Fig.
1 between our interest point detector (solid curves) and the
ones described in [10] (Harris-Laplacian, dotted curve), and
in [9] (difference-of-Gaussian, dashed curve). The Harris-
Laplacian is based on the interest points detected using the
Harris corner detector at several scales and the scale selec-
tion is done using local maxima of the normalized Lapla-
cian in image and scale spaces. On the other hand, the
difference-of-Gaussian uses difference of images convolved
with the Gaussian filter at neighboring scales and local max-
ima and minima in image and scale spaces are selected as
interest points. Another important observation is that we re-
spect the image space sampling originally described in the
papers [10] (no subsampling in coarser scales) and [9] (sub-
sampling = |A./4]). Our interest point detector also uses
subsampling = |A./4|. In general, our detector performs
better than the other two considered in terms of common il-
lumination changes, 2D rotation, and sub-pixel translation
while giving comparable results for large shear changes.

We note that the frequency of interest point detection at
A. = 8 (i.e., number of interest points detected divided



by the number of original pixels in the image) on the de-
formed images was rather different, namely our detector se-
lected 1.48% of the image points as interest points, while
the Harris-Laplacian detected 0.20%, and the difference-of-
Gaussian detected 0.20%. A significant observation here is
that we do not apply non-maximum suppression on the fil-
tered interest point map In}‘“ (I1), so we are likely to have
small clusters of interest points which may provide a bias in
our favor in terms of the precision and recall curves. How-
ever, this is not a problem as long as we still have high pre-
cision and recall rates, and the regions detected are still dis-
tinctive (see section 4). The tradeoff is a highly populated
database of features that will demand a more efficient search
scheme and a larger amount of memory space.

4 What: The Local Features

Ideally, suitable local features must extract a representation
for local image data with the following two properties: a)
be complex enough to provide strong information about a
specific location of an image; and b) be relatively stable
to changes in the object configuration, so that small trans-
formations do not significantly affect the identification pro-
cess. In this section we consider the problem of finding
good candidates for such local features.

4.1 Phase and Amplitude Information

We use the phase-based local feature (described in detail in
[2]), which is a complex representation of local image data
that is obtained through the use of the quadrature pair filters
described in section 3. In order to make the system robust
to brightness changes, any sufficiently large amplitude is
saturated according to

—p(#,0,0)2
ﬁ('f:(Lg) =1l-e v ’ (13)
where 0, = 1.0. Therefore, whenever the local amplitude
is high enough, the saturated amplitude is roughly constant.

4.2 Local Image Description

Since a single pixel does not provide a distinctive response
we consider several sample points, say {F; , }}/_,, taken
from a region around each interest point, #;. We use the
sampling pattern depicted in Fig. 2, with the center point
Z;,1 denoting the specific interest point Z; (the reasons for
selecting this particular sampling pattern are discussed fur-
ther below). It is worth seeing that the fixed radius is in
terms of the subsampling grid for the scale at which the fea-
ture is being evaluated. In terms of the original image pix-
els, this radius increases proportionally to the scale o, (i.e.
image subsampling = | \./4]). At each spatial sample point
Z; m the filters are steered to NV equally spaced orientations,
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Figure 1: Comparison between the scale robust interest
point detector described above (solid line), and the in-
terest point detectors Harris-Laplacian (dotted curve) and
difference-of-Gaussian (dashed curve).
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. S 180°
On(Z) = 9M(-77i)+(”*1)T:

forn=1,...,N. (14)
Here 0, (Z;) is the main orientation of the pixel computed
as described in [5], except we use the sign of the imaginary
response of the filter steered to this orientation to resolve a
particular direction (i.e. mod 360°) from this orientation.
Notice that this main orientation 6,(#;) determines both
the orientations that the filters are steered to and the posi-
tions of the sample points along the circle centered on the
interest point Z; (see Fig. 2).

The feature vector F(Z;) at scale o, has individual com-
ponents specified by the saturated complex filter responses.
We use Rinm = A Zim, Oc, Gn(i’i))ei‘f’(fiv”l7”6*9"(51')) to
denote the filter response evaluated at &; ,,, and steered to
orientation 6,,(%;), forn = 1,...,N,andm = 1,..., M.
Together these responses form the /N M -dimensional com-
plex feature vector F (Z;). An empirical study was used to
select the following feature vector configuration: a) number
of sample points, M = 9; b) number of steering directions,
N = 4; ¢) radius of the circle, I = 3. This configuration
was found to provide a reasonable tradeoff between expres-
siveness and stability.

4.3 Phase Correlation

The similarity between local features is computed using
phase correlation since this is known to provide some sta-
bility to typical image deformations such as brightness
changes and near identity image warps [4]. The similar-
ity measure for our feature vector is the normalized phase
correlation

— — ‘an RlnmR;nm‘
S(E(#), F(i;)) = - —,  (15)
1+ Zn,m ‘Rznm‘ R]’nm‘
where R;nm is the complex conjugate of R;,,,,, (see section

4.2). The reason for adding the 1 in the denominator above
is to provide a low-amplitude cut-off for the normalization.
This results in similarity values S(F'(Z;), F(Z;)) € [0, 1].

4.4 Scale and Rotation Semi-Invariant Fea-
ture Vectors

While the feature vector F'(#;) described above is semi-
invariant to common illumination changes, image transla-
tions and rotations, it is only locally robust to scale changes
[2]. In order to achieve semi-invariance to scale changes,
we consider sampling the scale specific features at a dis-
crete set of scales, say A, as defined in section 3.1. That
is, to form a feature database we compute the feature vec-
tors {ﬁ(:ﬁ})ﬁ:’z € In’]}"(lk)}, for each model image Ij.

Given a feature vector from a test image, we search the en-
tire database for similar features, irrespective of the specific
scales at which they were observed in the test and model im-
ages. The specific scales of matching features then provides
some information about the relative scales of the target in
the test and the database images.

4.5 Alternative Local Features

Here we are evaluating two things: a) the feature robustness
in terms of image deformation, and b) whether the interest
points selected by the ‘where’ step provides highly informa-
tive image locations, as encoded by local features. In order
to assess the effectiveness of the multi-scale phase-based lo-
cal features, a comparison with the feature vectors used in
[14] and in [9] is provided below.

The differential invariant [14] characterizes the neigh-
borhood of an interest point by a set of its derivatives which
is theoretically proven to be invariant to rotation. SIFT fea-
tures [9] are based on image gradient histogramming pro-
cessed at several orientations.

A normalized version of the differential invariant fea-
ture vector [14] is used due to its high sensitivity to com-
mon illumination changes of the unnormalized version [2].
Two types of normalization were applied, namely: a) en-
ergy normalization, as described in [13]; and b) dividing
the local jets by the norm of the Gaussian filtered image
N(Z) = G(¥,0.) * I(¥). Therefore, the normalization is
achieved by dividing every term L, (%) = (0.)"G (%, 0.) *
I(¥) by N(&), where u € [0, 3] is the differentiation or-
der. We report the results for only the latter normaliza-
tion since it provided the best results. After this normal-
ization, the first component of the feature vector is just
L(Z) = L(&)/N(&) = 1. This component is uninforma-
tive, and is therefore deleted. An important remark is that,
for the differential invariant features, we only consider the
case where no subsampling is applied at coarser scales; as
opposed to the phase-based and SIFT features where sub-
sampling = |\./4]. Moreover, we found it important to
add Gaussian noise during the training phase of the differ-
ential invariants (i.e. in the computation of the covariance
matrix for the Mahalanobis distance) in order to reduce its
sensitivity to noise.

Another critical consideration is the dimensionality of
each local feature vector, which is an issue that directly
affects the database search process. The phase-based lo-
cal feature has 36 dimensions in the complex domain, but
the saturated amplitude could be compressed to a few bits.
The differential invariant feature vector [14] has 8 dimen-
sions, and the SIFT local feature [9] has 160 dimensions.
We expect the search time for larger dimensional features
to be higher. Finally, the interest point detector described in
[10] is used for the differential invariants; the SIFT features
were extracted using the interest point detector in [9]; while
the phase-based local features were extracted from interest



points detected as explained in section 3.

4.6 Comparison of Local Features

The comparison tests utilize the database of 100 test images
along with one model image database consisting of 12 im-
ages. None of the test images were included in database.

For the experiments below, we build a database of ran-
dom features extracted from interest points detected in each
of the 12 images at the scales A = {4, 8,16}, and we have,
on average, 1000 features stored in the database, which are
used in the false positive rate calculation. For the true pos-
itive rate, we compute the multi-scale features over all the
undeformed test images I, 1 < k < 100, providing the
feature database {F(i;)|Z; € In?" (1)}, with A, as in (9).
For each test image k and each image deformation d (as de-
scribed in section 2) we obtain a deformed test image, say
I k,d. From this deformed image I &,4 We compute the set of
features {F(?J)\?J € In?d (Ir.4)}, with Ay = 8.

Given the 8 types of image deformations studied, the
comparison is based on the Receiver Operating Characteris-
tics (ROC) curves where the detection rate vs false positive
rate is computed for each of the local feature types. In or-
der to define these rates, let #; be an interest point in an
undeformed test image. Suppose #¢ = M (d)Z; + b(d) de-
notes the transformed position of this interest point in the
deformed test image, according to the spatial deformation
d. The detection rate (DT) is then defined as

_ SM(d)

DT(d) = W (16)

where

SM(d) = |{(Zi,d, k) | & € In}*(I}) and
35 € Inp? (Ip.a) st |3 — T < e
and S(F(&,), F(&;)) > T}\

and

IM(d) = ({(#,d, k) | # € In}*(I}) and 3&; € In} (Ij.q)

st.]|Z; - &l < ¢}

Here € was fixed at 2.0 pixels, while 7 was varied to gener-
ate the ROC curves. Similarly, given a feature vector F (%)
in the deformed test image, a false positive is defined by the
presence of a similar feature vector F (%) in the database
(ie. S(F(Z;), F (%)) > 7). The false positive rate (FP) is
defined to be the number of these false positives divided by
the product of the number of deformed test image features
evaluated and the number of features in the database.

In Fig. 3 we show the detection rate for thresholds T at
which the false positive rate is held fixed at 0.01. Note that
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Figure 3: All image deformations with a false positive rate
fixed at 0.01 and computing the detection rate for varying
amount of change. Here, the phase-based, differential in-
variant and SIFT features are represented by the solid, dot-
ted and dashed lines, respectively. The vertical axis rep-
resents detection rate and the horizontal axis shows the
amount of variation



Boy’s left eye

Figure 4: Top left image: segment of the image selected by
the user to define the “boy’s left eye” model. Other images:
recognizing the model over a sequence of 100 images (only
5 are shown). The light points inside the distorted rectan-
gles represent the interest points used for the best similarity
match.

the phase-based feature (solid line) gives more robust and
more distinctive results than the differential feature (dot-
ted line) and SIFT (dashed line) in terms of illumination
changes, 2D rotation and sub-pixel translation; while for
scale and large shear changes, we observe that the other two
methods produce better results than the phase-based feature.
In order to observe a comparable result for scale change, the
phase-based local feature would need to use a denser sam-
pling in scale space.

We also conducted the same experiments, but omitted the
graphs, holding the false positive rate fixed at 0.001. The
comparison results are similar, but the phase-based features
show a higher sensitivity to scale changes. Also, the differ-
ential invariants produced a significantly worse result than
the one displayed in Fig. 3. This is likely due to its lower
dimensionality (8 dimensions) compared to the other meth-
ods.

5 Object Recognition System

In order to demonstrate the general viability of the phase-
based local feature and its robustness under real image de-
formations, a simple object recognition system was imple-
mented. The system can be divided into the learning and
recognition subsystems. The learning subsystem accepts an
input image and requests the user to select a region from that

Tetley box

Figure 5: Top left image: segment of the image selected
by the user to define the “tetley box” model. Remaining
images: the light points inside the rectangles represent the
interest points used for the best similarity match.

image (see top left image of Fig. 4), and to give an identity
ID to it. The features, extracted from the multi-scale in-
terest points inside the region, are computed at 7 different
scales (see A, in section 4.4). Along with each feature vec-
tor, we store the model identity /D, the wavelength A that
the filter was tuned to when it was extracted, and the main
orientation 6, .

The recognition subsystem receives a test image, the
wavelength to use as the filter tuning (default wavelength
is 8), and the object to look for within that image. The first
step is to find the nearest neighbor F (;), using phase corre-
lation described in (15), in the model database for each local
feature F'(Z;) at an interest point Z; detected in the test im-
age. Next, using random sampling and robust M-estimation
from the matches where S(F'(Z;), F(fj)) > 7 (here we
consider 7 = 0.6), we compute the similarity transform
which is locally optimal with respect to an error measure
that takes into account the phase correlation and the Eu-
clidean distance between matched points.

The system returns only the best possible match in terms
of this error measure. It is worth mentioning that the system
is not doing any tracking of the features whatsoever. Instead
it is only trying to find the given model in every frame sep-
arately. The point here is to test both the ‘where’ (i.e., the
interest point detector) and the ‘what’ (i.e., the local fea-
ture extractor) steps together when dealing with real image
deformations.



Baking soda box

Figure 6: Top left image: user selected “baking soda box”
model. Sequence: searching the model over a series of clut-
tered images containing the model at different poses and
partially occluded. The light points inside the distorted rect-
angles represent the interest points used for the best similar-
ity match.

The first test consists of a sequence of 100 images where
we are looking for the boy’s left eye (see Fig. 4), and even
though the sequence presents 3D rotation, lighting vari-
ations, scale changes, and non-rigid transformations, this
simple object recognition system was able to correctly find
the model in almost 60% of the images. The second test
consists of a rotating object (see Fig. 5), and we obtained
100% true positive rate. Finally, the last test comprises 16
different images where we try to find a baking soda box
(see top left image of Fig. 6). The first set of four images
(second row of Fig. 6 shows 2 out of those 4 images) has
the box at the same position, but with clutter (varying back-
ground); we obtain 100% true positive rate. The second set
presents the same box with a small rotation in depth (third
row of Fig. 6), scale change, and with clutter and occlusion;
we still obtain 100% true positive rate. A larger rotation in
depth in the third set of four images (Fig. 6, top right), and
we obtained 50% true positive rate, and 50% false positive
rate. Finally, the last set does not show the front part of the
box, and we got 100% for the true negative rate.

6 Conclusions

We have presented a quantitative comparison between three
approaches suggested for local features . We investigate the
‘where’ step (i.e., the interest point detector), and the ‘what’
step (i.e., the local feature extractor) separately. Further-
more, the phase-based local feature in [2] uses a new form
of multi-scale interest point detector in its ‘where’ step so

that we have a fair comparison between this approach and
others based on local differential invariants [14] and SIFT
[9]. The differential invariant feature is modified to make
it robust to illumination changes due to its sensitiveness to
those types of deformations [2]. The comparison shows that
the phase-based local feature performs better than the dif-
ferential invariant and SIFT features in terms of common il-
lumination changes, 2D rotation, and sub-pixel translation.
For scale and large shear changes we see that both SIFT and
the differential invariants produce better results. However it
is relevant to say that the robustness of the phase-based fea-
ture to scale changes can be improved by using a denser
sampling in the scale space. Finally, the viability of the
phase-based approach is demonstrated in a simple object
recognition system.
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