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Abstract

In this paper, we propose a novel shape representation we

call Directional Histogram Model (DHM). It captures the

shape variation of an object and is invariant to scaling and

rigid transforms. The DHM is computed by first extracting

a directional distribution of thickness histogram signatures,

which are translation invariant. We show how the extrac-

tion of the thickness histogram distribution can be accel-

erated using conventional graphics hardware. Orientation

invariance is achieved by computing the spherical harmonic

transform of this distribution. Extensive experiments show

that the DHM is capable of high discrimination power and

is robust to noise.

1 Introduction

Most of the early object recognition techniques are applied

on 2-D objects. Progress in 3-D object acquisition hardware

and techniques such as laser range finders and stereo has

led us to the need to compare and recognize 3-D objects.

Object comparison is the key technique in applications such

as shape similarity based 3-D objects retrieval, matching,

recognition and categorization [3, 8, 19]. This technology

will be key as 3-D models become more mainstream among

consumers.

In order to compare 3-D objects, an object representa-

tion is required. Typically, a 3-D object is represented by a

geometry model, appearance attributes, and optionally an-

notations. Geometry models include boundary and voxel

representations, CSG trees, point clouds, range images and

implicit functions. Appearance attributes include color, tex-

ture andBRDFs, which are of particular interest to the graph-

ics community. Object annotation includes other attributes

that can describe an object at a semantic level.

Annotations provide an efficient and effective way to re-

trieve objects from a 3-D database. For example, a carmodel

canbe easily retrievedusing the keyword“car”, if such an an-

notation is provided a priori. Unfortunately, automatic an-

notation is very difficult, as it requires some form of generic

3-D recognition that involves not just form but function as

well. In addition, manual labeling is very laborious if the
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database is huge.

Most approaches to compare 3-D objects rely on shape

comparison. However, the geometry model used for object

representation is usually developed for specific tasks such

as modeling, editing and rendering, and not necessarily for

comparison. Because there are many different types of ge-

ometry models, comparing them is difficult without some

form of conversion. In addition, these models are usually

not invariant to scaling or rigid transformations. As a result,

shape descriptors are usually extracted from the geometry

model to be used directly for comparison. Ideally, these

descriptors should be scale and rigid transform invariant,

capable of good discriminability, robust to noise, and inde-

pendent of specific geometric representations. Not many

current descriptors fit all these criteria.

In this paper, we propose a novel shape representation

we call the Directional HistogramModel (DHM). It is scale

and rigid transform invariant (which include invariance to

mirroring and origin-symmetric transforms), and based on

our extensive experiments, have good discriminability and

robustness to noise. The DHM is derived by first computing

a directional distribution of thickness histogram signatures,

which are translation invariant. The computation of the

thickness histogram signatures can be dramatically speeded

up using graphics acceleration. Orientation invariance is

achieved by computing the spherical harmonic transform of

this distribution.

The rest of this paper is organized as follows. After sum-

marizing related approaches in Section 2, we describe our

Directional Histogram Model in Section 3. We also derive a

matrix descriptor for the shape similarity comparison. Sec-

tion 4 analyzes the invariance properties in more detail. In

Section 5, we address the similarity problem between 3-D

objects using their matrix descriptors. In Section 6, we ad-

dress some sampling issues for the histogram generation,

and present some object comparison and retrieval results in

Section 7. We provide concluding remarks in Section 8.

2 RelatedWork

Previous work related to shape similarity can be found

mainly in three research areas: (1) object recognition and

classification, (2) surface matching and alignment, and (3)

3-D shape comparison and shape similarity based object re-
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Figure 1: Constructing the Directional Histogram Model:

(a) For each direction (θ, φ), a group of parallel rays are

used to sample the object “thickness” or extent, defined to

be the distance between the nearest and farthest intersection

points. (b) Histogram of thickness distribution.

trieval. The tasks of object recognition and classification

are to determine whether a shape is a known object and find

k representative objects in an object data set (see, for ex-

ample, [4, 18]). Many object recognition approaches are

view-based applied to 2-D objects.

The task of surface matching and alignment is to find

overlapping regions between two 3-D objects, typically used

for model reconstruction. Representive work include range-

based approaches [6, 2], ICP-based approaches [5, 21], the

spin-image [13, 14], geometric hashing [16], and structural

indexing [23].

3-D shape comparison is related to surface matching, but

focuses on comparing the object global shape, while sur-

face matching compares only part of the object. By build-

ing a map from the 3-D shape onto a sphere, some ap-

proaches [15, 12, 22] generate some spherical representa-

tion for the shapes, and then compare them by the spherical

representations. However, there are issues with occlusion,

and these representations require orientation alignment.

View-based approaches have also been used for 3-D ob-

ject recognition (e.g., [7]). However, such techniques tend

to require large databases andmemory footprints, and recog-

nition rates tend to be slow.

There is a movement towards placing more emphasis on

fast recognition rates, due to the potential of a 3-D search

engine. This requires shape representations that not only fast

to extract, but efficient to compare against other objects. Ex-

amples include multiresolutional Reeb graph (MRG) [11],

shape distribution [20], shape histogram [1], ray-based de-

scriptor [27, 26], groups of features [24], aspect graph [7],

parameterized statistics [19], and 3-D FFT based descrip-

tor [25].

The representation of MRG [11] provides a fully auto-

matic similarity estimation of 3-D shapes by matching the

topology. The topology information is analyzed based on

the integrated geodesic distance, so the topology matching

approach is pose invariant. However, the topology matching

process is difficult to accelerate, which will be problem for

large databases.

The shape distribution [20] is a very simple description

for 3-D shape, which has advantages in 3-D object retrieval

since it is easy to compute and efficient to compare. Osada

et al. proposed the use of the D2 shape distribution [20],

which is a histogram of distance between points on the shape

surface. The directional histogram model presented in this

paper generate histograms for all directions, and can be re-

garded as an extension to the D2 shape distribution.

Ankerst et al. [1] and Vranic et al. [27] proposed the

use of feature vectors based on spherical harmonic analysis.

While these are similar to our matrix descriptor, their spher-

ical functions are sensitive to the shape centroid, which may

change as a result of shape outliers or noise.

3 Directional HistogramModel

In this section, we introduce the Directional Histogram

Model (DHM) for 3-D shapes. The DHM has the appro-

priate invariant properties and is expressive enough for 3-D

shape similarity estimation.

To construct the DHM, we first choose a distribution of

sampling directions. For each sampling direction, we com-

pute a histogram of object extent or thickness using parallel

rays. This procedure is illustrated in Figure 1. For each

ray, the thickness is defined as the distance between the

nearest and farthest points of intersection with the object

surface. The DHM can be represented by a 3-D function

H(θ, φ, µ) : [0, π] × [0, 2π] × [0, 1] �−→ R, where θ, φ are

the angular parameters for direction. For each (θ, φ), the
direction vector is (cosφ sin θ, sinφ sin θ, cos θ), and

Hθ,φ(µ) ≡ H(θ, φ, µ)

is the thickness distribution of the object viewed from the

direction (θ, φ). Note that each thickness histogram is nor-

malized with respect to the thickest value to ensure scale

invariance. In our implementation, the sampling directions

are computed as { (θi, φj) | θi = (i + 0.5) π
Ns
, φj =

(i + 0.5) 2π
Ns

), 0 ≤ i, j < Ns }, where Ns ∈ Z+ is called

the sampling rate.

The computation of the thickness histogram can be eas-

ily accelerated using commercially-available graphics hard-

ware. For a given sampling direction, we render the front of

the object, read its depth values, and repeat for the back of

the object. The thickness is the difference between the front

and back depth values.

For each sampling direction, the thickness distribution is

represented using a histogram model. In our implementa-

tion, the thickness values µ is uniformly quantized into M
integer values. M = 64 works well in our experiments. We
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also normalize the the histogram such that

∫
|Hθ,φ(µ)|2dµ = 1, i.e.,

M−1∑
k=0

|Hθ,φ(
k

M
)|2 = 1.

(1)

Properties 4 (Section 4) and 5 (Section 5) both rely on this

normalization process.

Since twoopposing sampling directions produce the same

thickness values, the DHM is symmetric about the origin,

i.e.,

Hk(θ, φ) = Hk(−θ + π, φ+ π). (2)

We refer to this property as being origin-symmetric.

Based on the model construction process, it is clear that

the DHM is invariant to translation and scaling. However,

at this point, it is orientation dependent.

To remove the dependence on orientation, we introduce

a new additional component of the DHM we call the ma-

trix descriptor. Thus, the DHM can now be regarded as

M spherical functions Hk(θ, φ) defined on a unit sphere:

Hk(θ, φ) ≡ H(θ, φ, k
M

). Using spherical harmonic analy-

sis, we have:

Hk(θ, φ) =
∞∑
l=0

l∑
m=−l

hklmYlm(θ, φ),

where Ylm(θ, φ) is the spherical harmonic and hklm = <
Hk(θ, φ), Ylm(θ, φ) >. A useful property of Ylm(θ, φ) is

Ylm(θ + α, φ + β) =
∑l

m′=−l D
l
mm′(α)eimβYlm′(θ, φ),

where the coefficients satisfy:
∑l

m′=−l |Dl
mm′(α)|2 = 1.

Since
∑L

l=0
∑l

m=−l hklmYlm(θ, φ) converges to

Hk(θ, φ) as L → ∞, we can assume that Hk(θ, φ) is band
width limited for simplicity. Assuming that the bandwidth

of Hk(θ, φ) is less than N , we have

Hk(θ, φ) =
N∑

l=0

l∑
m=−l

hklmYlm(θ, φ). (4)

Basedon the spherical harmonic coefficients hklm, we define

the matrix descriptor M as M = (alk)M×N , where

alk =

√√√√ l∑
m=−l

|hklm|2. (5)

By the above definition, alk represents the energy sum of

Hk(θ, φ) at the band of l. Therefore, the matrix descriptor

gives the energy distribution of DHM over each (discrete)

thickness value and each band index.

4 Invariance Properties

In this section, we analyze the matrix descriptor and show

some of its invariance properties. For the purposes of this

analysis, the matrix descriptor is considered to be separate

from the DHM, even though by our definition, the matrix

descriptor is part of the DHM.

Property 1 The matrix descriptor M of a 3-D object is

invariant to rotation, translation, and scaling.

Since the DHM is invariant to translation and scaling, the

matrix descriptor is invariant to translation and scaling.

Suppose the object is rotated by (α, β). The DHM of the

rotated object is then H′(θ, φ, µ) = H(θ + α,φ + β, µ).
Therefore,

h′
klm = < H′

k(θ + α, φ+ β), Ylm(·) >

= <

N∑
s=0

s∑
t=−s

hkstYst(θ + α, φ+ β), Ylm(·) >

= <
N∑

s=0

s∑
t=−s

hkst

s∑
r=−s

Ds
tr(α)eitβYsr(·), Ylm(·) >

=
N∑

s=0

s∑
t=−s

s∑
r=−s

hkstD
s
tr(α)eitβ < Ysr(·), Ylm(·) >

=
l∑

t=−l

hkltD
l
tm(α)eitβ ,

where “·” denotes θ, φ. Using the orthogonality property of

eitβ , we have

|h′
klm|2 =

l∑
t=−l

|hklt|2|Dl
tm(α)|2

l∑
m=−l

|h′
klm|2 =

l∑
m=−l

l∑
t=−l

|hklt|2|Dl
tm(α)|2

=
l∑

t=−l

|hklt|2
l∑

m=−l

|Dl
tm(α)|2

=
l∑

t=−l

|hklt|2 =
l∑

m=−l

|hklm|2.

Since a′
lk = alk and M = M′, the matrix descriptor is thus

rotation invariant.

Let Mi be the matrix descriptor derived from a DHM

Hi, i = 0, 1. If M0 = M1, then H0 and H1 are equivalent

DHMs, denoted by

H0 ∼ H1.

Property 2 The matrix descriptor M of a 3-D object is

invariant to origin-symmetric transform and mirror trans-

form.

Since the DHM of a 3-D object is origin-symmetric,

H(θ, φ, µ) = H(−θ + π, φ+ π, µ). Then

H(θ, φ, µ) ∼ H(−θ + π, φ+ π, µ),
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i.e., thematrix descriptorM is invariant to origin-symmetric

transform.

To show the invariance to mirror transform, we can as-

sume themirror is theX−Y planewithout loss of generality

according to Property 1. Let H′(θ, φ, µ) be the DHM of the

mirrored object. Then

H′(θ, φ, µ) = H(−θ + π, φ, µ)
∼ H(−θ + π, φ+ π, µ) = H(θ, φ, µ).

Therefore, the matrix descriptor is invariant to mirroring.

Property 3 Let M = (alk)M×N be a matrix descriptor.

Then

alk = 0, if l is odd. (6)

If l is odd, then Ylm(−θ+π, φ+π) = −Ylm(θ, φ). Since
Hk(θ, φ) = Hk(−θ + π, φ+ π), we have

hklm = <Hk(θ, φ), Ylm(θ, φ)>
= <Hk(−θ + π, φ+ π),−Ylm(−θ + π, φ+ π)>
= −hklm.

Therefore hklm = 0, and alk =
√∑l

m=−l |hklm|2 = 0.

Property 4 The squared sum of the matrix descriptor ele-

ments is 1.

N−1∑
l=0

M−1∑
k=0

a2
lk =

M−1∑
k=0

N−1∑
l=0

l∑
m=−l

||hklm||2

=
M−1∑
k=0

∮
s

||Hk(θ, φ)||2ds =
∮

s

M−1∑
k=0

||Hk(θ, φ)||2ds

=
∮

s

M−1∑
k=0

||Hθ,φ(
k

M
)||2ds =

∮
s

ds = 1,

where s denote the unit sphere, and
∮

s
ds = 1 is assumed in

the spherical harmonic analysis.

5 Shape Similarity

Let O1, O2 be two 3-D objects. The similarity between

O1 and O2 can be measured using the norm of their matrix

descriptors’ difference M(O1) − M(O2):

d(O1, O2) = ||M(O1) − M(O2)||.

Thematrix normwe take in this paper is theLp norm, with

p = 2. Let vl be the l-th row vector in a shape matrix. Note

that the vl represents the energy of the directional histogram

model at l-th frequency, it can be weighted when calculating

the object distance. When using the Lp norm, the weighted

form of distance function can be represented as

dp(O1, O2) = (
M∑
l=0

ωl||v1l − v2l||p)1/p, (7)

where vjl is the l-th row vector in the shape matrix of object

Oj , ωl > 0 are the weights, and || · || is the Lp norm of

a vector. By adjusting the weights, we can emphasize the

importance of objects at some frequency for special purpose

when evaluating the shape similarity. In our experiments,

we chose p = 2 and all weights ωl = 1. With this choice,

the following property on the d2 distance function holds.

Property 5 The d2 distance between any two objects is be-

tween 0 and
√

2.
Since the elements in the matrix descriptor are all

positive, we have d2
2(O1, O2) =

∑
l,k (a1lk − a2lk)2 <∑

l,k (a2
1lk + a2

2lk). Then d2
2(O1, O2) < 2, according to

Property 4. Therefore d2(O1, O2) <
√

2. In Table 2, the

maximum distance value is about 1.

2-D Shape SimilarityThe directional histogram model and

matrix descriptor can be adapted for 2-D objects. For a 2-

D object, the DHM is a 2-D function H(φ, µ) : [0, 2π] ×
[0, 1] �−→ R, with φ being the orientation angle. For each

φ, Hφ(µ) ≡ H(φ, µ) gives the thickness distribution of the

object viewed from the direction φ. By applying Fourier

transform to the 2-D directional histogram model, we have:

Hk(φ) = H(φ, k
M

) =
∑∞

l=0 hkle
−iφ. The matrix descrip-

tor for the 2-D object is M = (alk)M×N , alk =
√|hkl|2.

It can be shown in a similar way that the 2-D object’s matrix

descriptor is also invariant to translation, scaling, rotation,

origin-symmetric and mirroring. As before, alk = 0 if l is
odd. The squared sum of all the matrix descriptor elements

is 1. Based on the 2-D matrix descriptor, the distance func-

tion dp is also well-defined for 2-D object, and ranges from

0 to
√

2.

6 Sampling Issues

In this section, we address the sampling issues for the DHM.

Computational Cost: First, we examine the computational

cost to generate the DHM. We use a squared window to

render the object in the hardware accelerated approach, and

letNw be the window size (i.e., window width). Recall that

Ns is the number of angles θ and φ (i.e., sampling rate). For

each direction θi, φj , the object is rendered twice, and the

depth buffer is read twice as well.

Fortunately, only half of all the sampling directions is

needed, since opposing directions produce the same thick-

ness histograms as shown by Property 2. As a result, the

bulk of time cost is T = N2
s (Tb(Nw) + Tr(Nw)), where
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Tb(Nw) is the time cost to read the depth buffer values from

a Nw × Nw window and Tr(Nw) is the render time in the

same window. Usually, Tr(Nw) is roughly proportional to

the object’s face numberNf , i.e.,Tr(Nw) ≈ λNw
Nf , where

λNw is a constant. Therefore, T ≈ N2
s (Tb(Nw)+λNwNf ).

This is verified by the performance results shown in Figure 2.

(a)
8 16 32 64 128 256

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

execution time (s) / Ns2

sampling rate 

(b)
16 64 128 256 512

0

200

400

600

800

1000

1200

1400
execution time (s) 

window size 

Figure 2: Performance of DHM generation. Many ob-

jects are used for testing, each of which corresponds to a

curve. For curves from bottom to top, the vertex number

of the corresponding object ranges uniformly from 5,000 to

100,000. (a) Execution time vs. sample rate at window size

Nw = 128. (b) Execution time vs. window size at sampling

rate Ns = 64. The curves in (a) and (b) show that the ex-

ecution time is approximately proportional to the squared

sampling rate and the window size. This performance is

tested on PIII 667 MHZ PC with 512 MB memory and a

3D commercial graphics card, and the time is measured in

seconds.

Window Size: For a given sampling direction, the number

of intersecting rays used to sample the object thickness dis-

tribution is proportional to the squared window size N2
w. It

is reasonable to expect that a higher ray density should pro-

duce more accurate thickness distribution. If the ray density

is too coarse, the resulting thickness distribution and the final

(a) (b) (c)

Figure 3: Three (out of nine) dragons used in Figure 4.

matrix descriptor will be strongly dependent on the location

of the object as it is being sampled.

We examined the relationship between the error of the

matrix descriptor introduced by perturbing the object and

the window size Nw through extensive experimentation. In

our experiments, a 3-D dragon model is first simplified to

generate objectsof varying complexity. Figure 3 shows three

(out of nine) simplified models. We measure the complex-

ity of 3-D object by its average edge length (normalized

with respect to the diameter of the object bounding sphere).

For each window size Nw = 32, 64, 128, 256 and for each

dragon object, the matrix descriptor is computed 50 times,

each time with the model randomly perturbed. These matrix

descriptors were then compared with the reference matrix

descriptor computed without disturbing the model, and per-

turbation error is analyzed with the usual statistics of mean

and standard deviation. (The matrix is compared using the

L2 norm throughout this paper.)

The experiment results are summarized in Figure 4. Fig-

ure 4(a) shows that while the perturbation error is quite con-

stant over different object complexity, Figure 4(b) shows

an interesting trend of the perturbation error being roughly

proportional to the ray interval (i.e., inversely proportional

to the window size). While this shows that a larger win-

dow size is better, it would decrease the rendering speed and

depth buffer extraction. We found that Nw = 128 is a good

trade-off.

(a)
0.005 0.01 0.015 0.02 0.025

0.006

0.008

0.010

0.012

0.014

0.016

0.018

N
w

=256
N

w
=128

N
w

=64

N
w

=32

average edge length 

perturbation error

(b)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

0.006

0.008

0.010

0.012

0.014

0.016

0.018

ray interval 

perturbation error

Figure 4: Relationship between the matrix descriptor and

window size. (a) Perturbation error (with standard devia-

tion bars) vs. average edge length for different window sizes

(Nw), (b) Perturbation error vs. ray interval (1/Nw).

Directional Sampling Rate: For a typical object with 20K
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ball venus bunny horse bull

Figure 5: Five of the objects used in our experiments.

vertices in our database and a 128 × 128 window, we can

render the object and read the depth buffer at about 30 fps.

Therefore, the total time cost is about 1
30N

2
s seconds. In ad-

dition, we impose a strict limitation on the sampling rateNt

for efficiency. Recall that the bandwidth of Hk(θ, φ) is as-
sumed asN in Section 3, then at least 2N ×2N samples are

needed for Hk(θ, φ) according to spherical harmonic anal-

ysis [10]. However, in practice, the bandwidth of Hk(θ, φ)
is not necessarily limited. Using a finite number of samples

would then result in loss of information (power).

Because the power distribution of Hk(θ, φ) depends on
the object shape, the number of samples needed for arbitrary

objects remains unknown. We analyze this problem by per-

forming a lot of experiments. First, we calculate the matrix

descriptor MNs
for many objects (five of which are shown

in Figure 5) at different sampling ratesNs. For each object,

the quality of the approximation due to the sampling rate

is calculated by comparing them against M256 (here M256
is used as the ground truth M∞, which is not possible to

obtain in practice).

The results of this experiment (Figure 6(a)) show that the

approximation error drops very quickly as the sampling rate

is increased. A sampling rate at least Ns = 128 is needed

for a reasonable approximation. However, it will take about

8 minutes to generate the DHM for a typical object in our

database when Ns = 128. While this is not unreasonable, it

is impractical for time-critical applications such as for 3-D

search engines for web applications. As a result, we have to

compromise by reducing the sampling rate at the expense of

fidelity of representation.

In another set of experiments, we calculate distances be-

tween pairs of different objects under different sampling

rates (Ns = 8, 16, 32, 64, 128, 256). Basically, the larger

the distance, the better the discrimination power. Results in-

dicate that most of the distances increase monotonically as

Ns is increased. To enable comparisons between different

objects, we normalized the distance with respect to the dis-

tance at Ns = 256 for each object pair. the graph of the av-

erage (with standard deviation bars) is shown in Figure 6(b).

This graph clearly shows that the sampling rate Ns = 16 is

sufficient for shape similarity estimation, and increasing the

sampling rate to more than 16would produce only marginal

improvements in accuracy at the expense of speed. Note that

it takes about only 8 seconds when Ns = 16.
While the matrix descriptor of an object is theoretically

(a)
8 16 32 64 128

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45 bull

bunny
venus
horse

approximation error

sampling rate

(b)
8 16 32 64 128 256

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

sampling rate 

normalized distance

Figure 6: Results of experiments on sampling rate Ns. (a)

Approximation errors vs. sampling rate, (b) Normalized

distance vs. sampling rate.

invariant to rigid transform and scaling, it will change to

some degree when the object undergoes these transforma-

tions because of the finite N2
s directional sampling. In our

experiments, we found that the variances introduced by scal-

ing and translation are very small. The variances introduced

by rotation are somewhat larger, but they are not significant

with a sampling rate Ns ≥ 16, as shown in Table 1.

Ns = 16 10◦ 20◦ 30◦ 40◦ 50◦

ball 0.001 0.002 0.004 0.003 0.003

venus 0.002 0.015 0.013 0.013 0.013

bunny 0.002 0.003 0.004 0.005 0.007

horse 0.031 0.043 0.043 0.039 0.035

bull 0.007 0.006 0.012 0.019 0.018

Ns = 64 10◦ 20◦ 30◦ 40◦ 50◦

ball 0.001 0.001 0.002 0.001 0.001

venus 0.004 0.005 0.005 0.004 0.003

bunny 0.011 0.015 0.014 0.007 0.007

horse 0.016 0.021 0.021 0.013 0.013

bull 0.011 0.013 0.014 0.009 0.009

Table 1: Changes of matrix descriptor due to rotation. The

matrix descriptor of the rotated object is compared against

with that of the original object. Results under two sampling

rate are listed.

Object Simplification: Computational cost analysis shows

that the time cost is proportional the object complexity in

terms of face/vertex number. State-of-art simplification al-

gorithms (e.g., [9, 17]) are capable of simplifying large ob-

jects quickly (typically, in only a few seconds). Using an
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efficient model simplification algorithm before sampling the

thickness distributions would clearly be advantageous.

Generally, model simplification may introduce some er-

ror into thematrix descriptors. We call this error the simplifi-

cation error. How much of a simplification error depends on

the simplification level. To study this effect, we ran many

trials involving many objects, and summarized the results

in Figure 7. The simplified object is characterized by its

normalized average edge length with respect to the object

bounding sphere’s diameter. The results show that within

the range of simplification we used, only small simplifica-

tion errors (< 0.06) are obtained. Note that the most simpli-

fied versions of the “dinosaur”, “wolf”,“man” and “bunny”

models consist of only 1300, 1500, 982, 1556 vertices re-

spectively. In Figure 7, the window size for rendering is

Nw = 128. It is curious to note that the curves increases

more dramatically after average vertex distance of 0.0125
(shown by a vertical line in Figure 7), which corresponds to

about 1.5 times the ray interval.

0.005 0.01 0.015 0.02 0.025 0.03 0.035
0.00

0.01

0.02

0.03

0.04

0.05

wolf

dinosaur

man

bunny

average edge length 

simplification error

Figure 7: Error in the matrix descriptor introduced by sim-

plification. The simplification is characterized by the nor-

malized average edge length of the simplified model.

7 Object Comparison and Retrieval

For shape similarity comparison, we found that Ns =
16, Nw = 128 is a set of good sampling parameters in terms

of accuracy and efficiency, based on our experimental results

in Section 6. Using these sampling parameters, we obtain

typical shape comparison results shown Table 2. In Fig-

ure 8, we compare the shape similarity between interpolated

objects. It is interesting to note that as we morph the object

to another, the distance actually increases monotonically as

we expected.

Based on the shape similarity measurements in Section 5,

we build a simple example shape based 3-D object retrieval

prototype system. In this prototype, a sample shape is speci-

fied by the user, then the most k similar objects are retrieved

from a small 3-D database in a local machine. There are a

total of 500 different 3-D objects in our 3-D database.

In our prototype system, the matrix descriptors of all the

objects in the database are pre-computed and stored. The

0.000 0.353 0.780 1.029 1.049

0.353 0.000 0.525 0.831 0.846

0.780 0.525 0.000 0.434 0.449

1.0289 0.8311 0.4341 0.0000 0.352

1.049 0.846 0.449 0.352 0.000

Table 2: Object comparison. For each object, the nearest

distance value, except that to itself, is shown in bold.

(a) 0.00 (b) 0.085 (c) 0.112 (d) 0.189

(e) 0.321 (f) 0.419 (g) 0.570 (h) 0.781

Figure 8: Shape comparison between interpolated objects.

(a) The original object. (b)-(g) interpolated objects between

(a) and (h). The number under each object is the distance

to the original object (a).

sampling rate for the directions is Ns = 16. The average

time spent to compute one matrix descriptor is about 8 sec-

onds for each object. (The very dense models are simplified

first.) Some input and output examples of our prototype

system are shown in Figure 9. To further reduce the matrix

variance due to rotation at sampling rateNs = 16 as shown

in Table 1, a simple pre-orientation procedure was applied.

We used Principle Component Analysis (PCA) to compute

the major axis for automatic alignment.

8 Concluding Remarks

Wehave presented theDirectional HistogramModel (DHM)

to study the shape similarity problem of 3-D objects. This

novel representation is based on the thickness variationswith

different viewing directions. In each viewing direction, a

histogram model for the thickness distribution is built. We

also presented a new shape descriptor in matrix form which

we call matrix descriptor.

A major advantage of the matrix descriptor is its in-

variance to the transforms of scaling, translation, rota-

tion, origin-symmetric and mirroring. Just as important,

the matrix descriptor is easy and fast to compute using

commercially-available graphics hardware, stable against

noise, and expressive enough to distinguish between differ-

ent global shapes. The invariance properties of the matrix

descriptor makes it is highly suitable for shape similarity
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Figure 9: Examples of 3-D object retrieval. In each row, the

column “i” is the input sample object, the column “oj” is

the j-th most similar object retrieved.

measurement, and it produces reasonable shape comparison

results as experiments have shown.

There are two major limitations of the DHM: (1) it can

only describe rigid shapes, and (2) it only captures the global

shape. As a result of (1), non-rigid transformed versions of

the object are deemed different. As a result of (2), local

features cannot be represented and compared.

Future work include investigating means of extending the

current formulation to handle the DHM’s inability to handle

non-rigid shapes and local features. In addition, it would

be interesting to analytically predict how many directional

samples would be sufficient for any given 3-D object. We

are currently in the process of making our prototype system

into a full-fledged, practical 3-D search engine. All the user-

related issues would need to be addressed.
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