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Abstract

Accurate and robust registration of multiple three-
dimensional (3D) views is crucial for creating digital 3D
models of real-world scenes. In this paper, we present a
framework for evaluating the quality of model hypotheses
during the registration phase. We use maximum likelihood
estimation to learn a probabilistic model of registration
success. This method provides a principled way to com-
bine multiple measures of registration accuracy. Also, we
describe a stochastic algorithm for robustly searching the
large space of possible models for the best model hypoth-
esis. This new approach can detect situations in which no
solution exists, outputting a set of model parts if a single
model using all the views cannot be found. We show re-
sults for a large collection of automatically modeled scenes
and demonstrate that our algorithm works independently of
scene size and the type of range sensor. This work is part of
a system we have developed to automate the 3D modeling
process for a set of 3D views obtained from unknown sensor
viewpoints.

1 Introduction

Modeling-from-reality is the process of creating digital
three-dimensional (3D) models of real-world scenes from
3D views as obtained, for example, from range sensors or
stereo camera systems [9][12][2][1][15]. Such sensors typi-
cally capture the 3D structure of a scene from a single view-
point, so multiple views must be combined to obtain a com-
plete model. Accurate and robust automatic registration of
multiple 3D views is crucial in our goal of automating the
modeling-from-reality process. Formally, we want to solve
the following problem: Given an unordered set of overlap-
ping 3D views of a static scene, recover the original sensor
poses', thereby aligning the data in a common coordinate

!"The original sensor poses can be determined only up to a rigid body
transform. In practice, we express the poses with respect to an arbitrarily
selected input view.

system. We call this problem multi-view surface matching
because it can viewed as an extension of pair-wise surface
matching to more than two views [8]. We do not assume
any prior knowledge of the sensor viewpoints or even which
views contain overlapping scene regions. Furthermore, the
views are unordered, meaning that consecutive views are
not necessarily close together spatially. Multi-view surface
matching is analogous to assembling a 3D jigsaw puzzle.
The views are the puzzle pieces, and the problem is to cor-
rectly assemble the pieces without even knowing what the
puzzle is supposed to look like.

In [8], we introduced the multi-view surface matching
problem, developed a framework for solving the problem,
and demonstrated a system that used the framework to au-
tomate the modeling from reality process. In this paper,
we build upon that work, adding two significant contribu-
tions. First, we develop a framework for evaluating the
quality of model hypotheses and pair-wise matches. We
use maximum likelihood estimation to learn a probabilistic
model of registration success. This method offers several
advantages over traditional registration metrics, including
superior discriminability and a principled way to combine
multiple, disparate measures of registration accuracy. Sec-
ond, we develop a stochastic algorithm to robustly search
the large space of possible models for the best model hy-
pothesis. This new approach is more expressive than our
previous method. It can detect situations in which no single
model using all the views exists, outputting a set of correct
model parts rather than an incorrect single-part solution.
Additionally, we describe quantitative evaluation methods
for validating our algorithms and show results for a large
set of automatically modeled scenes. We also demonstrate
that our algorithm works independently of the scene size
and type of range sensor.

1.1 Previous work

Except for [8], existing modeling from reality systems
are not automated or are automated under restrictive condi-



Figure 1. Top: Input views for the squirrel test object
(odd-numbered views from a set of 18 views). Bottom:
Automatically modeled object using the 9 input views
(left) and using all 18 views and adding texture mapping
(right).

tions. Such systems register the input views either through
calibrated pose measurement (e.g., the scene is rotated on
a turn-table) or manual registration. Manual registration
can be partially automated by using a surface matching en-
gine to register user-specified view pairs with no initial rel-
ative pose estimate and then manually verifying the results
[10][1]. If the view ordering is known and the motion be-
tween views is sufficiently small, registration algorithms
that rely on local search may be used instead [14][16].

These methods have significant limitations. Pose mea-
surement systems limit the scale of scenes that can be mod-
eled; a full-scale building exterior cannot be modeled with
a turn-table system. Manual registration is tedious for mod-
els with large numbers of views, which limits the scalability
and commercial viability of modeling from reality. Our sys-
tem eliminates these restrictions, allowing fully automated
3D modeling of scenes at a variety of scales without special-
purpose hardware.

1.2 Overview of approach

Our automatic modeling from reality system takes as in-
put a set of N views (V;,¢ € 1...N) and outputs a re-
constructed model of the original scene, or a set of model
parts if a single model using all the views cannot be found
(figure 1). The surface S; for view V; is represented as

a triangular surface mesh in the sensor’s local coordinate
frame. Our multi-view surface matching algorithm regis-
ters the views, producing a model hypothesis that partitions
the input views into one or more sets (parts) and outputting
the absolute poses for the views within each part. We use
Neugebauer’s multi-view registration algorithm to simulta-
neously register the views of each part in the output hy-
pothesis [13], and we use Curless’ VRIP system to perform
surface reconstruction on each registered part [5].

Our multi-view surface matching algorithm begins by
registering all pairs of views using a pair-wise surface
matching algorithm. Pair-wise surface matching aligns two
surfaces when the relative pose between them is unknown.
We use a modified version of Johnson’s algorithm for this
purpose [11][10]. The matches produced by surface match-
ing are improved using a pair-wise registration algorithm.
Pair-wise registration aligns two surfaces assuming a good
initial estimate of the relative pose is known (e.g., the iter-
ative closest point (ICP) algorithm and more recent varia-
tions [3][6]). We use Neugebauer’s multi-view registration
algorithm for pair-wise registration [13]. Hereafter, we as-
sume that pair-wise surface matching incorporates pair-wise
registration as a final step.

If a pair of views contains overlapping scene regions,
pair-wise surface matching often finds the correct relative
pose, but it may fail for a number of data-dependent reasons
(e.g., not enough overlap or insufficient complexity of the
surfaces). Even if the views do not overlap, surface match-
ing may find one or more plausible, but incorrect, matches.
Multi-view surface matching would be greatly simplified if
we could determine with certainty which pair-wise matches
were correct. However, this cannot be accomplished just by
looking at pairs of views. Two views could have zero reg-
istration error but still be an incorrect match, and the mis-
take may be detectable only indirectly through a sequence
of other matches. To solve this problem, we must exam-
ine a network of views. We call such a network a model
graph, and it contains a node for each input view. We insert
the matches from pair-wise surface matching as edges into
a model graph G r (LR stands for local registration). If we
can find a connected sub-graph of Gy that contains only
“correct” matches, it is straightforward to convert the rela-
tive poses associated with the matches into absolute poses
for each view. Unfortunately, such a connected sub-graph
may not exist within Grr. This could happen if one of
the input views is corrupted or if some subset of the input
views does not overlap sufficiently with any of the remain-
ing views (e.g., front views and back views of an object,
but no side views). Our algorithm handles these situations
gracefully by searching the space of all sub-graphs of GLr
for the best model (according to our model quality measure)
rather than only searching for connected sub-graphs.

We have therefore reduced the multi-view surface match-



Figure 2. Left: An example model graph. Gpgr for
the views in Figure 1. Matches are labeled as correct
(thick/blue lines) or incorrect (thin/red lines) for illustra-
tion. Right: An example model hypothesis with three
parts. Hidden edges (dashed lines) indicate divisions be-
tween parts, which are connected by visible edges (solid
lines).

ing problem to two fundamental questions: 1) What con-
stitutes a “good” model? and 2) How do we robustly and
efficiently search for the best model in an extremely large
hypothesis space? We answer the first question in section 2,
learning a probabilistic model of pair-wise registration qual-
ity (@) from training data. We use this local quality mea-
sure to define a global quality measure (() ) for entire mod-
els. In section 3, we answer the second question, using an
iterative edge swapping algorithm to maximize Q. But
first, we must cover some background definitions.

Overlap — A point p overlaps surface S if three condi-
tions hold: 1) the closest point distance Dcp (Dcp(p, S) =
mingeg ||p — gl|) is less than a threshold ¢p; 2) the point g
on S closest to p is an interior (non-boundary) point of S
and 3) the angle between the surface normals at p and q is
less than a threshold tg. The region R on surface S; that
overlaps surface \S; is called the overlapping region of S;.

Model graph — A model graph is an attributed undi-
rected graph G = (N, E, A, B) that encodes the topologi-
cal relationship between overlapping views (figure 2, left).
G contains a node N; for each input view V;. The attributes
A; for node N; consist of the absolute pose T; for view V;.
The attributes B; ; for edge F; ; include the relative pose,
T; j, between V; and Vj, and the registration quality @1, for
the view pair. An edge F;; in G indicates that S, trans-
formed by 7 ;, overlaps S; (i.e., they have a non-null over-
lapping region). The relative pose between two connected,
non-adjacent, views V; and V; can be computed by com-
posing the relative poses along any path from N; to IV; in
G.

Model hypothesis — A model hypothesis is a model
graph that is a spanning tree of G'Lg with an additional
edge attribute called visibility (figure 2, right). If an edge
is hidden (visibility = false), it separates the model into two

parts at that point. Visible edges connect the views within
each part. This hypothesis representation covers the space
of all acyclic sub-graphs of Grr. Restricting our represen-
tation to be acyclic simplifies our algorithm without elimi-
nating any correct solutions. This is because we implicitly
re-establish omitted correct matches when computing the
global quality of a hypothesis.

2 [Evaluating model quality

Given a model hypothesis H, we want to define a func-
tion Qg (H) such that the hypothesis that maximizes Qg
corresponds to the correct solution to the multi-view surface
matching problem. First, we look at the simpler problem
of computing the local quality (Q1,) of a pair of registered
views.

2.1 Maximum likelihood local quality model

The concept of local quality is related to the verification
process present in most 3D object recognition systems. At
some point, such a system must decide whether the hypoth-
esized match is “good enough.” Typically, this is done by
thresholding some statistic of the data or of features derived
from the data. The question is what statistic/features should
be used and how to set the threshold. The answers depend
on the sensor and the scene characteristics. For example,
two surfaces that are ten centimeters apart might indicate a
good registration for terrain observed from twenty meters
away but not for a desktop object seen from one meter.

Rather than relying on fixed, user-defined thresholds,
which tend to be brittle, we explicitly model the behavior
of the system for a given sensor and scene type, using su-
pervised learning to determine a statistical model of local
quality from training data. The benefit of this approach is
that we do not need detailed knowledge of the sensor or
even of the surface matching and pair-wise registration al-
gorithms. Although we present this method in the context of
multi-view surface matching, the idea has broad applicabil-
ity. For example, a 3D recognition algorithm could employ
an analogous model of registration quality to reduce its false
positive rate.

We have derived several local quality measures that dif-
fer in the details but share the same high-level framework
based on statistical pattern recognition [4]. For now, we as-
sume that the pair of views under consideration is the result
of pair-wise surface matching. Our approach is to estimate
the probability that a match is correct based on a vector of
features derived from the registered surfaces. We denote
the event that the match is correct by M T, the event that it
is incorrect by M~ and the vector of derived features by
@. With this terminology, P(M ™ |z) is the posterior prob-
ability of a correct match given the observed features, and
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Figure 3. The joint distribution for F'oy and Doy (left) and the marginal distributions for Foy (center) and Doy (right) for a
set of 443 matches (153 correct and 290 incorrect) obtained by exhaustive pair-wise surface matching on three real objects
using the Minolta Vivid 700 range sensor. The PDFs for the maximum likelihood class models are shown overlaid.

P(M~|x) is that of an incorrect match. We define the qual-
ity of a match between views V; and V;; with relative pose
T; ; to be the log odds ratio of the posterior probabilities:

P(M™*
Qu(Vi, V;, T j) = log (%>

o (P(Mﬂw)) o <P<w|M+>P<M+>> 0
P(M~|z) Pa[M~)P(M~)

Thus, @1, is an unthresholded Bayes classifier for matches.

We estimate the distributions P(x|M ™) and P(x|M ™)
and the prior probabilities P(M ™) and P(M ™) from la-
beled training data. The priors are estimated directly from
the frequency of M ™ and M~ in the data. We model the
conditional distributions using parametric density estima-
tion, first choosing a parametric form for the distributions
and then computing the maximum likelihood parameters.
We model our features using a Gamma distribution, which
has a flexibly-shaped PDF that encompasses the exponential
distribution and can approximate a Gaussian. Our motiva-
tion for using parametric methods is primarily the compact-
ness of the representation. Non-parametric methods, such
as kernel density estimation, could be used instead.

Associated with @Qr, is a Bayesian classifier C1,, which
is a thresholded version of Qr, (decide M ™ if Qp, > ),
else decide M ~). We use Cf, to remove the worst matches
from GLr, conservatively choosing the threshold A\ based
on training data to avoid removing any correct matches.

2.2 The overlap local quality measure

Using this framework, we have derived several local
quality measures. We illustrate the concept with the overlap
local quality measure; additional quality measures are de-
scribed in [7]. The overlap quality measure is based on two
features: overlap fraction and overlap distance. Intuitively,
surfaces that overlap significantly and are close wherever
they overlap should have high quality.

Overlap fraction, Foy, is the maximum proportion of
each surface that lies in the overlapping region. Let R; be
the overlapping region of surface S; with T; ;5; and R;
be the overlapping region of T} ;S; with S;. The overlap
fraction is

2

Fou — max (A(Rz') A(Rj)> 7

A(Si) " A(S))

where A(S) denotes the surface area of S. Using the max-
imum ensures that if one surface is a subset of the other,
Fov will be 1, which coincides with our intended meaning
of overlap fraction. Overlap distance, Doy, is the RMS dis-
tance between a set of closest point pairs in the overlapping
region. This is essentially the same error measure used in
the ICP algorithm [3].

To compute Foy and Doy, we first sample K points,
Pik, from S; and an additional K points, p;x, from S;.
We then determine whether each sample point overlaps the
other surface using the overlap definition (section 1.2). Let
w1, be the overlap indicator variable for the points p;; and
likewise w i, for the points p;i. Let N; and IN; be the num-
ber of overlapping points from p;; and pj; respectively
(ie., N; = Zszl wir and N; = Zszl ujx). Then equa-
tion 2 is approximated by

3

N; N;
FO\/%IH&X< J>

K K

If we define diy = wixDcp(Tjipix,S;) and djp =
ujxkDcp(T; jpjk, Si), then the overlap distance can be
computed by

K
2 (5 + &)
Ni + N;

“

Doy =

If Fov is zero or if there are insufficient overlapping sample
points to reliably compute Doy, we leave Qr, undefined.



Finally, we estimate the joint distributions
P(Dov, Foy|M*) and P(Dov,Foy|M™). We as-
sume that Foy and Doy are conditionally independent
given the class label M and factor the joint distributions
(figure 3). Substituting into equation 1, we obtain the
overlap local quality measure:

_ P(Dov|MT)P(Fov|MT)P(MT)
QL = log - - — &)
P(Dov|M~)P(Fov|M~)P(M~)

With this probabilistic formulation, it is easy to combine
several independent features into a single quality measure,
since the probabilities are just multiplied. Moreover, dis-
parate features with different units — such as color or texture
similarity — can also be integrated using this framework.

2.3 From local quality to global quality

Now that we have a method for computing local quality
for a pair of views, we can extend this method to handle
an entire model, G. Assuming the edges in G arise from
surface matching and that the local quality measures of the
matches are independent, we could define model quality as
the sum of the local quality measures. However, this ignores
the information encoded in non-adjacent views. Instead, we
compute global quality by summing the local quality mea-
sured between all connected views:

Qa(@ = > QuViV;,Tiy) 6)

(4,5)EVe

where V. the set of connected (not necessarily adjacent)
view pairs in G. When computing ()¢ for a model hypoth-
esis, the hidden edges are first deleted (i.e., quality is com-
puted on a part by part basis).

Unfortunately, the statistical model that we learned for
computing Q, for pair-wise matches does not apply to the
computation of (Jg, since we compute local quality be-
tween non-adjacent views, and the distributions of the fea-
ture values used in the computation change as a function of
path length. For example, accumulating registration error
will cause Dgy for correct matches to increase with longer
path lengths. To solve this problem, we learn a separate
statistical model for each path length (I = 2...L). In this
case, we generate random paths of a given length from G1r
of the training models. The model for path length L is used
to compute the quality for any path longer than L. The
prior probabilities P(M ™) and P(M ™) can no longer be
estimated from data, since the multi-view surface matching
algorithm actively chooses which matches to include in the
model hypothesis. Therefore, we assume uniform priors.

3 Searching for the optimal model

Now that we have a measure of model quality, we turn
our attention to the problem of finding the model hypothe-

27) final state
(Qa = 89.2)

4) rejected swap
(Qc = —22.4)

Figure 4. The first four iterations of the iterative edge
swapping algorithm for the squirrel test object illustrate
the swapping and flipping operations. The final hypoth-
esis (bottom right) corresponds to the model shown in
Fig. 1.

sis that maximizes Q. Even for a small number of views,
combinatorics prevent us from exhaustively searching the
acyclic sub-graphs of Grr. Instead, we use an iterative
stochastic algorithm that repeatedly applies edge update op-
erations to a model hypothesis. In its simplest form, the
algorithm performs randomized hill-climbing, but the @1,
values for the edges can be used to guide the update steps.
Finally, we show how the algorithm can incorporate simu-
lated annealing to avoid being trapped in local minima.
The algorithm begins with a hypothesis randomly cho-
sen from the spanning trees of Gr with the visibility of all
edges set to false (figure 4). This corresponds to a model
with N parts. Alternatively, we can use one of the iterative
addition algorithms described in [8] to generate an initial
hypothesis that may be quite close to the correct solution.
The algorithm then iterates until termination (maximum it-



Figure 5. G1,r for the angel3 test object (top left). The
hypothesis found by our algorithm (top right) correctly
consists of two parts — front views and the back (bottom).

eration count is reached or a given number of iterations
passes without updating the hypothesis). In each iteration, a
new hypothesis H’ is proposed based on the current hypoth-
esis H and is evaluated using Q. If the quality improves,
the proposed hypothesis is accepted (H < H').

H' is generated from H by applying one of two types of
update operations: an edge flip or an edge swap (figure 4).
An edge flip involves choosing an edge from H and tog-
gling its visibility state. Changing an edge from hidden to
visible joins two model parts, while changing from visible
to hidden splits a model part into two. For an edge swap,
H' is generated by choosing an edge from H, removing it,
and then inserting an edge, with visibility set to true, cho-
sen from the edges of Gy that re-establish the spanning
tree property.

We could generate proposed hypotheses entirely at ran-
dom, but the local registration quality of the matches can be
used to guide the algorithm. Intuitively, for edge flip opera-
tions, we want to make low-quality edges hidden and make
high-quality edges visible. Likewise, for edge swap opera-
tions, we want to replace low-quality edges (visible or hid-
den) with high-quality ones. We use the following weight-
ing scheme: First, an update operation (flip or swap) is cho-
sen at random. For edge flips, we then choose randomly be-
tween flipping an edge from visible to hidden or vice versa.
This gives us a set of viable edges and their corresponding
local quality values. When flipping an edge from hidden to
visible, we want to bias the selection towards higher qual-
ity edges while ensuring that even the lowest quality edges
are selected with reasonable frequency. We therefore com-
pute weights for the viable edges by adding an offset to the
quality values such that the largest weight is a constant C

larger than the smallest one. The target edge is then chosen
by sampling from this weighted distribution. Conversely,
when flipping an edge from visible to invisible, the low-
quality edges should receive higher weights. In this case,
we negate the quality values and use a different offset to
obtain a factor of C' spread in the weight values. The same
scheme is used for edge swaps. The latter weighting method
is used to pick a low quality edge from H for removal, and
the former weighting method is used to pick a high-quality
edge from Gy that re-establishes the spanning tree prop-
erty. Figure 4 shows several iterations of this algorithm for
the squirrel test data. Figure 5 shows an example where
the algorithm correctly determines that the best hypothesis
from G is a model with two parts.

Even with stochastic updates, the edge swapping algo-
rithm can be susceptible to local minima. One strategy
for avoiding local minima in high-dimensional optimization
problems is to use simulated annealing. Our algorithm is
easily extended to incorporate simulated annealing. With
simulated annealing, an update may be accepted even if
the Qg decreases. The probability of accepting such a hy-
pothesis is a function of the size of the change in quality
(AQ = Qc(H') — Qa(H)) as well as “temperature” pa-
rameter 7T":

if AQ >0, accept H’ 7
else, accept H' with prob. ¢2@/T

An initially large 7" enables frequent quality-lowering up-
dates, which can allow the algorithm to pass through local
minima to alternate modes of Q. T is reduced over time
according to a “cooling schedule.” As T' — 0, quality-
lowering updates are increasingly unlikely, and the algo-
rithm reduces to hill-climbing.

4 Experiments
4.1 Local and global quality measures

Our first experiment shows that the overlap local quality
measure provides improved discriminating power over the
traditional registration error metric, RMS overlap distance
(Dov). We computed Qr, and Doy for the 436 matches
from pair-wise registration of three test objects using the Q1,
model shown in figure 3 (which was learned from different
objects). We then classify the matches by thresholding the
two measures and record the performance as an ROC curve,
which shows the trade-off between false positives and true
positives as the threshold is varied (figure 6). The results
show that our local quality measure outperforms the RMS
overlap distance metric.

We also performed an experiment to verify that our
global quality measure is actually minimized by the correct
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Figure 6. ROC curve comparison of the Bayesian clas-
sifier versus RMS distance, the most common conven-
tional registration error measure.

solution. To test this, we computed ()¢ for 1000 random
model hypotheses from each of several test scenes, compar-
ing against the Q¢ for the ground truth solution. We also
verified that hypotheses containing several correct model
parts did not produce a ()¢ higher than that of the ground
truth single-part solution by repeating the above experiment
using only correct matches from the corresponding G1.i.

4.2 Performance on a large set of test models

We tested our algorithm on a set of 18 real objects and 18
synthetic ones. For each real object, 15 to 20 views were ob-
tained with the Vivid 700 scanner using the hand-held mod-
eling technique described in [8]. For each synthetic object,
32 synthetic range images were created from viewpoints
that tessellate a sphere surrounding the object. The range
images were corrupted with Gaussian noise (0 = 1mm) to
simulate worst case operation of the sensor.

We use two metrics for evaluating the correctness of the
multi-view surface matching output and the reconstructed
models. The first metric, maximum correspondence error
(Enc), measures the maximum displacement of any point
on a surface S; from its ground truth position [17]. This
approach is better than reporting rotation and translation er-
rors. We make F\1c scale independent by normalizing it by
the size of the S; (i.e., the diagonal length of the bounding
box of S;). Using Fyic, we can define the term “correct
match,” which is used in classifying training data and for
labeling model graphs for illustration. We define a match
to be correct iff Eyc < 0.05 for both surfaces. Since our
ultimate goal is to create geometrically accurate 3D models,
we define a second error metric, the maximum reconstruc-
tion error (Fyr), which is the Hausdorff distance between
the reconstructed surface and the original surface (i.e., the
maximum distance between any point on the reconstructed
surface and its closest point on the original surface).

We say a model hypothesis is correct if every match in
the hypothesis is correct and if it contains the minimum

gnome
27 views, 0.37m, Vivid

happy Buddha
32 views, 0.2m, synthetic

lab enterprise

15 views, 3.3m, Vivid 32 views, 0.2m, synthetic

Figure 7. Example modeled scenes with number of views,
scene size, and sensor used. Bottom right: The algo-
rithm failed due to symmetry in the scene.

number of parts possible for the given G, partially cor-
rect if it contains only correct matches but the number of
parts is not minimal, and incorrect if it contains any incor-
rect matches. For the 36 test objects, our algorithm con-
structed 32 (89%) correct models , 1 (3%) partially correct
model, and 3 incorrect models (8%). Figure 7 shows one of
the failures. Gy,r for 6 of the test models did not contain
a single-part solution, and our algorithm found the correct
multi-part model in 4 (67%) of these cases. Table 1 shows
statistics for several of the test objects. Our algorithm failed
only on CAD modeled objects that were highly symmetric
(e.g., the saucer section of the enterprise). Some of these
failures can be overcome with more sophisticated quality
measures [7], but clearly an explicit treatment of symmetry
could be beneficial.

Finally, we verified that our algorithm works across dif-
ferent sensors and scene sizes. We have automatically con-
structed models using three different real sensors — the
Minolta Vivid 700, the Zoller and Frohlich (Z+F) LARA
25200, and a stereo camera system, and we have modeled
scenes varying in size from 200mm to 200m (figure 7).



object views | iters (time) | Evc Euvr
gnome 27 69 (106) n/a n/a
squirrel 18 48 (87) n/a n/a
angell 17 45 (34) n/a n/a
Buddha 32 61 (194) 0.04% | 0.30%
teeth 32 61 (215) 0.037% | 0.20%
enterprise | 32 n/a 109% 10%

Table 1. Statistics for a representative sample of real (top)
and synthetic (bottom) test scenes. lters is the number
of iterations before the correct solution was found, with
time in seconds. F\c and E)\r are normalized by the
size of the scene, which is 200mm.

5 Summary and future work

We have answered the two questions set forth in the in-
troduction: “what is a good model?”” and “how do we search
for the best model?” For the first question, we developed
a probabilistic framework for computing the registration
quality of a pair of views. This framework is quite general
and can be applied beyond the specific 3D modeling appli-
cation described here. We also showed how the local quality
measure can be extended to evaluate the quality of an entire
model. For the second question, we presented a stochastic
algorithm which searches the hypothesis space using simple
edge update operations on a model graph and showed how
the basic algorithm can be improved using edge weighting
and simulated annealing.

In the future, we plan to focus on three issues: view se-
lection, sequential algorithms, and symmetry. While the
strategy of performing exhaustive pair-wise surface match-
ing on the input views is reasonable for small scenes (= 50
views or less), the operation is O(N?). To scale to larger
scenes, we propose to selectively register view pairs, ex-
ploiting information inherent in each view to sort the views
based on the likelihood of a successful match or to partition
them into groups that are likely to match with each other.
We will study the case where some information, such as ap-
proximate sensor position, is known in advance. Secondly,
we plan to explore the real-time modeling scenario in which
views arrive one at a time, rather than as a batch. Finally, we
want to analyze the effects of symmetry in 3D modeling. If
we can explicitly incorporate the concept of symmetry into
our algorithm, we may be able to overcome the errors that it
currently makes, possibly outputting a set of solutions based
on the scene’s symmetry group.
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