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Abstract Early applications of linear (affine) models often adopted

a linear invariance (affine invariance) principle [19], in
It is now common practice in machine vision to define the which two images were considered equivalent if one im-
variability in an object’'s appearance in a factored mara®r, age could be linearly (affinely) transformed into the other.
a combination of shape and texture transformations. In thisRecently, it has been more common to assign a cost to
context, we present simpleand practical method for es-  such transformations, with a higher cost assigned to “farge
timating non-parametric probability densities over a grou transformations. This has led to a large literature on how
of linear shape deformations. Samples drawn from such ato assign the appropriate cost of such transformations, and
distribution do not lie in a Euclidean space, and standardhow to derive a useful notion of distance between two im-
kernel density estimates may perform poorly. While vari- ages that satisfies some invariance properties [6, 7, 16].
able kernel estimators may mitigate this problem to some  From a statistical perspective, a natural approach to mod-
extent, the geometry of the underlying configuration space eling the distortions or shape change in images is to define a
ultimately demands a kernel which accommaodates its groupprobability density over shape changes for a particular ob-
structure. In this perspective, we propose a sulitaivari- ject or set of objects. In this paper, we present a simple,
ant estimator on the linear group of non-singular matrices computationally tractable density estimator for linear im
with positive determinant. We illustrate this approach by age transformations. While our estimator is not the first pro-
modeling image transformations in digit recognition prob- posed for such sets of transformations (see, e.g., [10,i14])
lems, and present results showing the superiority of our es-offers both the advantage of respecting the underlgiogp
timator to comparable Euclidean estimators in this domain. structureof the data (to be made precise below), and a sim-

plicity that makes it of practical interest.

1. Introduction

. o o 1.1. Estimation and transformation groups
It is now common practice In machine vision to model ap-

pearance variability in a factored manner as a combinationlt is not uncommon in engineering and machine learning
of shape and texture variability [22, 4, 14]. A wide variety problems for data to have a natural group structure. Per-
of shape models have been proposed, ranging from rigidhaps the best known example is in the independent compo-
transformations to arbitrary diffeomorphisms. For many nents analysis (ICA) problem, where the transformatioh tha
applications, linear models of deformatiohave provided — mixes a set of sound sources is unknown and is modeled as
a good trade-off between flexibility and tractability (both an element of the general linear group @[R), the set of
computational and statistical). They also represent aglexc real non-singulan x n matrices. Gradient based searching
lent approximation to true perspective projection in a wide in this space of matrices can be done more efficiently by
range of realistic vision scenarios. Finally, they can bedus taking advantage of the group structure [1]. This method
in combination in a local manner when greater flexibility is of attacking the ICA problem has the additional appeal that
desired. the algorithm exhibitauniform performancei.e. the solu-
- ' _ ' tion does not depend upon the mixing matrix [3].

Corg;itzeéggga?é’:‘(;,rriﬁcgﬁc‘)"r"’aN'!V?ITs:’SLg Jg;h”'ca' Staff at Siemens 5 renander, who gives a very general approach to proba-

1By augmenting linear deformation models with arbitrary tratishs, p”ity theory on groups in [5], has _recemly proposed taking
we obtainaffinemodels. into account the group structure in problems of parameter




estimation [8]. A few authors have also lookedlahsityes- nel density estimator “out of the box” to estimate a density

timation on group structures [12, 10] (in particular theigso  over transformation matrices by treating each matrix as an
SQ(n) of n x n rotation matrices), and studied the conver- element of a four-dimensional vector space. In the limit of

gence of Fourier series density estimators from a theailetic an infinite number of samples, this estimator will converge

perspective. Our approach differs from the previous ones into the true probability density.

that we focus here on an easily computable and hence prac- However, the asymptotic convergence of a density esti-
tical estimator. mator does not imply it will work well for practical density

In this paper, we introduce the notion of awvariant  estimation. In particular, since the distribution of mees
kerne| and we use such a kernel to produce a probability tends to be more concentrated (in a Euclidean sense) for ma-
density from a set of examples, which we refer to asnan  trices with determinant less than one, and less concedtrate
variant kernel density estimatéThe invariance is defined  for matrices with determinant greater than one, one might
with respect to group structure which holds for the data. try a variable kernel estimator (as described in [13, 2]) to
We apply our new estimator to the problem of estimating a improve the rate of convergence. While such adaptive den-
probability density over image transformations in the con- sty estimates may converge more rapidly to the true distri-
text of a factored image model. That is, given a set of image bution in many cases, they have more parameters and thus
transforms drawn from a fixed but unknown distribution, we may have relatively high variance. This is particularly: rel
wish to estimate a density over the transforms. evant when we have a limited amount of data. We propose

We proceed as follows. In Section 2, we review kernel an alternative: to develop better non-parametric estiraato
density estimation. In Section 3, we define the notion of in- in |ow data scenarios by taking advantage of the intrinsic

variant kernels, and suggest reasons one might want to tak@roperties of the set of transformation matrices.
into account the natural group structure of the set of lin-

ear shape deformations. In Section 4, we introduce our in-

variant kernel for the general linear group, and in Section 5 3, Group structure and invariance

discuss properties of thHavariant density estimatobased

upon this kernel. In Section 6, we present preliminary ex- Traditionally in kernel density estimators, kernels anecfu
perimental results comparing our estimator to a tradiliona tions of the difference between the coordinates of two jgoint

Gaussian kernel estimator. xandy; in a Euclidean space. As aresult, the kernels are in-
. . . variant to translation. However, not all probability deres
2. Kernel Density Estimation are well modeled by such “Euclidean” KDE's. In particular,

if there is a specific group structure and geometry in a set of
data, for example if samples have been drawn from a set of
transformation matrices, then other types of estimators ma

be more appropriate.
A 1 N1 X — X pprop
f(XX1,X2, .., XN) = N z EK (_hx.> ,

=

use a set of examplgxy, xo, ..., xn } drawn from a random
variableX (possibly multi-dimensional), a kernel function = Consider a more general kernel function
K and a bandwidth paramethy to estimate a probability
distribution forX. These estimators play a central role in K(t;a) = f(D(t,a))
statistics and machine learning. Perhaps most importantly
such estimators allow the modeling of the complex distribu-
tions arising from r?at“ra' data sources .SUCh as Images an andK(t;a) takes on a value as a function of how differéent
sounds with a relatively small computational burden. is froma. More formally, some functiol(t, a) determines
Rosenblatt [21] and Parzen [17] described such estima- ' ' :

tors and showed general conditions under which the wouldthe difference (not necessarily a vector difference) betwe
9 y t anda, and the kerneK is some function of this difference.

converge to the true distribution as the sample size grows i ) i
and the kernel bandwidth shrinks. In this paper, our goal q fl_:ordabgroqu, we consider group differencdunction
efined by

is to model distributions over linear image transformagion
which can be conveniently represented as two by two matri- Dg(t,a) = tloa,
ces with positive determinahtlt is tempting to use a ker-

So-called kernel probability density estimators (KDE),
the form

3.1. Invariant kernels

gvherea is a parameter that defines the “center” of the kernel

. 1 .
2A straight-forward extension of the ideas in this papenalibe mod- whereo is the groqp operator, ar’.[d I.S t.he g_roup Inverse
eling of “reflecting” linear transformations, i.e. two by tweatrices with of t. The group difference function is invariant to the ap-

negative determinants. plication of a fixed group element to both arguments. That



is, letter. Thus, one may consider the writing of a set of hand-
written 2’s as a random process, that among other things,

De(bot,boa) = [bot]*oboa produces samples of a random transform variable.
= tlobloboa Consider for a moment the image of a two shown as
— tloa “Image A’ in Figure 1. We may choose to represent

this image as the transformation of some other image in
a canonical form, such as Model 1 of Figure 1. Then,
the representation of Image A could take the form of a
pair, (digit,transform) = (2,T%), where the digit identi-
fies the base type of the image (a two), ei'rﬁgis the 2x2
K(t;a) = K(bot;boa). matrix (with positive determinant) which, when applied to
Model 1 will produce Image A. However, we could just as
Any kernel which is a function of the group difference will well choose Model 2 as the canonical form of the charac-
satisfy this property automatically, since it is satisfigdte ter “2”, in which case the representation of Image A would
group difference. For example, the common unit variance be (digit,transforn) = (2,T,§), indicating that a different

Dg(t,a).

Predictably, we define a (lefthvariant kernel function
with respect to a grou®, as one that satisfies

one-dimensional Gaussian kernel transform, which depends upon the Model 2, is needed to
1 . ) produce Image A. The key point here is that the transforma-
K(t;a) = ——e 2(1-3 tion is not an inherent part of a single image, but is defined
vem only relative to the digit model.
is invariant with respect to the gro@= R when the group Now suppose we want to define a difference between a
operator is “+”, since transform associated with Image A and a transform associ-
ated with Image B. We make the following demand of our
K(b+tbtra) = ie—%(b+t—(b+a))2 difference operator for transformations: that the differe
’ V2n between the transformations for two charactergisariant
B 1 Clt-ap? to the choice of model. More generally, Brepresent the
- E transformation from Model 1 to Model 2. Our requirement
— K(ta). on the difference operator can be written as
D(TATs) = D(TATH)

Here, the group difference is simply vector (or in this case,
scalar) subtraction. Since the kernel is a function of this = D(S-TxS Th), (1)
difference, it is invariant with respect to the group of san
lations in one dimension.

Certain applications, however, may suggest a notion o
difference other than the vector difference which charac-
terizes Euclidean spaces [5]. In particular, when points in
a space are combined not through addition, but with some
other operator, it is frequently advantageous to use this op

erator in the definition of the difference between points. If _ _ ) L
we consider the set of reab22 non-singular matrices with ~ '€lative transforms is tantamount to choosing an “origin”,
i.e. an identity element, for the group of transformations.

positive determinant (denoted G[2,R) in the following) ' ] ’ !
ohen Eg. 1 can be viewed as invariance to the choice of

which can be used to rotate, shear, or scale images, we' '~ . :
notice that its elements are naturally combined via matrix ©1igin for the set of transformation coordinates. Thus, any
function of the group difference operator is in this sense

multiplication. But the question remains, what property is X R
it that demands that we treat these matrices as elements of°°rdinate freerintrinsic. - _ _
GL*(2,R) rather than 4-vectors in a Euclidean space? To " inally, a simple numerical example may clarify the in-
answer this question, we must look at the specific applica—tu't"’e desire for a non-Euclidean difference. The masice
tion of our estimator, the analysis of handwritten digits. { 10 0 ] d{ 707 707 ]

where “” denotes the matrix multiplication (it will be omit-
¢ted in the following). It is easy to see that adopting matrix
multiplication as the group operator, and the (non-negativ
determinant) matrices as the group elements, satisfies this
demand. Thus, the invariance of the difference operater nat
urally suggests the group structure for this type of data.
We point out that choosing a model with which to define

0 10 -7.07 707
3.2. A Random Transform Process

When people write digits and letters, there is natural vari-
ability in the pose of each letter. The pose varies both withi

and across writers. One can think of the pose of each letter 01 O 0.0707 00707
as a transformation away from some canonical pose for that { 0 01 ] d{ —0.0707 00707} )

have a Euclidean difference with much greater magnitude
than the matrices



Image A Image B Model 1 Model 2

2 2 2 2

Figure 1: The transforms associated with an image of a ctarlmage A or Image B) is a function not only of the image
itself, but of the model to which it is compared (Model 1 or Mb@). By requiring that the difference between two image
transforms be invariant to the choice of model, we natutialiyose a specific group structure on the set of transformstio

despite the fact that each pair of matrices “differs” onlygby A under transformation of these values By Since our
rotation of 45 degrees. The linear group difference fumctio goal is to use the kernel asprobability lawto describe the
does not suffer from this property. probability of events, we must also have, for an event
Since the linear group difference function for non- that
singular 2x2 matrices is invariant to the application of a 1 . s
group operation any kernel based upon this difference will Prob(E) = / Ze wl1ITANEgyy
also be invariant. We now discuss such a kernel. Tee C
_ / Lo FlogT )R g,
4. Invariant kernels for GL™(2,R) TeBE C
= Prob(B-E),
We propose the following invariant kernel function for
GL*(2,R): under some measuge
To achieve this, we must define the kernel function as a
density not relative to the measure obtained from the stan-
dard volume elementT = [ j<»dT; j, but relative to an
invariant measure on GL(2,R).
An invariant measure exists on any locally compact

K(T:A) = %eﬁﬁulogwflxxwa

whereh is a kernel bandwidth paramet€rjs a normaliza-
tion constant that depends upon the bandwidth, logiga group, such that GL(n,R), and is called the Haar measure

trix logarithm, and|| - || is the Frobenius norm, the square [18]. In our case, itis directly derived from a (left) invanit
roo_t of the sum of t.he products.of the mqtrlx comppnents by volume element. ts expression in termsddfis given by
their complex conjugates. This kernel is a function of the

natural group differenc& —*A between two matrices and 1 dqT

A. Improving on the kernel discussed in [15], it is also sym- T|n™

metric. That isK(T;A) = K(A;T). Furthermore, combin- _

ing invariance and symmetry, we haiéT;1) = K(T-%;1), where| - | denotes the determinant ©f We refer the reader

wherel is the identity matrix. A discussion of the matrix t0 [18] for a complete discussion of invariant measures on
logarithm and a derivation of these properties are found in 9"OUps.

the appendix. Such a condition requires that
By construction, the kernel function is invariant since: 1 1 a2 1
/ ZemllaTIE S gT =1 ()
K(BT:BA) — Lo HlioaeT) Bm)? TeoLt(2k) C Tl
C1: At this point, we make a significant assumption, which is
—  Zeg wmlllog(T1B1BA)| that our kernel is integrable under the given invariant mea-
(]? sure. Assuming this property holds (which did not pR)ye
— Ee—fﬁ,\\log(T*A)IIE we must have that
= K(T:A). c— o Alllog(T1A) 2 isz_
TEGL™(2R) IT|
Notice that the definition of such a kernel is not restricted ] ) _ )
to two by two matrices, and could be applied to Gh, R) Thus for a fixed bandwidtih, C is a constant, and is not
for arbitraryn. dependent upon where the kernel is centered. Finally, note

However, it is nOt_enOUQh_ that our kernel produce the — 3gy seems confirmed numerically by Monte-Carlo integratioreexp
same value for a point relative to the kernel parameter ments.



that while we define the invariance properties of our kernel align a test character with each model. In a second exper-
with respect to the invariant measure on'GR, R), we can iment, we modified a factored classifier discussed in previ-
give the kernel density with respect &3 as well, which ous work [15], using the new invariant estimator to build the

can be read directly from Eq. 2: transformation density. Finally, we did a simple compari-
son of likelihoods of a hold-out sample under the two types

Ke(T;A) = lefjlﬁHlog(T’lA)H,z: i ©) of density estimators. We stress that all of these tests are

C T2 designed to examine how well the transforms are modeled,

rather than to maximize performance of a digit classifier.
. . n Before describing the experiments, we discuss the source
5. A density estimator for GL™(2,R) of the random linear transformations being modeled.

Suppose now that we have a set of samflesT,,..., Ty
from a matrix random variable defined over G2, R). 6.1. Factored character models . _
Armed with our invariant kernel, we can form a density esti- In [14], we presented a factored model of handwritten dig-

mate using the set of samples in a style similar to the Parzerits. A quantity proportional to the posterior density of a
estimate: digit class given an image (with a uniform class prior) was

\ computed as
1
FUTL T2, To) = g 2 KU p(ell) ~ pLle)-p(Tlc), @

wherel is the “latent image” that results from aligning an

We also refer to this density estimator as invariant, since '
imagel to a model and” can be thought of as the transform

1 N that produced the observed imag&om the latent image.
f(BU;BT1,BTy,...,.BTN) = N ZK(BU: BTi) Figure 2 shows a set of handwritten zeroes (observed im-
1= ages) on the left. The result of aligning these images to
1N K(U-T each other is a set of latent images, shown on the right of
- N (U:Ti) the figure.

By aligning a set of images from a single class to each

other (we call thicongealing[14]), we implicitly define a

set of transforms (mapping the aligned latent images back

to the observed image). We can use these “training trans-
dforms“ to define a density. To classify a test image, we
align the image to each model (which in this case is a set
of congealing-aligned images) and maximize the likelihood
in (4).

= f(U;Tl,Tz,...,TN).

That is, premultiplication of the sampl&s used for estima-
tion and the test point being evaluated by any matrix in
GL™"(2,R) does not change the probability density assigne
to the point. Note again that this argument extends immedi-
ately ton by n matrices, making these results applicable to
general linear groups in arbitrary dimension.

This estimator looks common enough until one consid- . .
ers the extent of the kernels in a Euclidean space. Kemeld-2. The transformation-only classifier
centered around; with small determinant are “peaky” and  Since our goal in this work is not to classify digits, but to
have low variance (according to a Euclidean measure). Attest various models of transforms, we modified our classi-
the same time, kernels fdf; with large determinant are fier to completely ignore the latent image teim(4). The
spread out and have relatively high variance (again in a Eu-classifier thus worked as follows. For each test image, align
clidean sense). Finally, these kernels have very differentthat image as well as possible to each digit model. For each
shape in the sense that they are not translations or scalingdigit model, this results in some transfoiim Evaluate the
of each other in Euclidean space. However, they do havelikelihood of this transform under the transform density fo
the proper invariance properties. What remains is to seeeach class, and choose the class with the highest likelihood

whether they perform well in practice. To illustrate, consider a test character “6”. Suppose we
align this test character to the “9” model. The transform
6. Comparing density estimates which optimizes this alignment is a 180 degree rotation.

Under the data derived model of typical transformations for
We compared our density to a traditional kernel estima- “9"s, such a transformation is very unlikely, and hence, the
tor, using fixed spherical Gaussian kernels. We performedlikelihood that the test character is in fact a nine would be
three different types of experiments. In the first experimmen assigned a very small value. While this example is trivial
we built a hamstrung handwritten digit-classifier usamdy for either a traditional density estimator or the invariast
information about the linear transformations necessary totimator, the hypothesis is that a good transform densify est
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Figure 2. On the left are a set of handwritten zeroes. On fthiet ire the same characters after having been linearly
transformed (and shifted) to maximize a criterion of thédigrament. Such a “congealing” process produces a set afiate
images, and also, implicitly a sample of the random tramsforocess that characterizes the shape variability of teerobd
images. It is this process of linear shape variability, espnted as matrices, that we wish to characterize with aapiitly
density function.

mator will be more successful in making subtler distincsion model was taken from a single image of each digit class
of this type. (hence learning from one example). The model of trans-

For this experiment we used varying number of trans- forms, however, was developed by congealing (aligning)
forms to define the model transform density for each digit. handwritterlettersof the same class, and collecting the re-
We then tested on 100 examples of each digit. The classifi-sulting transforms. The assumption underlying this tech-
cation accuracy is shown in Figure 3. The dashed line rep-nique is that spatial variations such as rotations andrsgsili
resents the invariant estimator, and the solid line thedParz should have similiar statistics across character claddes.
estimator with Gaussian kernels. Note that both classifiersfinal performance of these classifiers is then substantially
did significantly better than random (10%) despite work- dependent upon the quality of the transformation model de-
ing with only information about the transform variable, but veloped from the set of transforms “borrowed” from the let-
the invariant density consistently outperformed the Gaus-ter classes. The purpose of this experiment was to see if
sian estimator. The bandwidth parameter of both classifiersclassification of digits could be improved by using the new
was chosen to maximize the accuracy for each data set sizetransformation density to produce a transform model.

In these experiments, the Gaussian kernel density pro-

Since the Gaussian kernel estimator eventually con-duced an accuracy of 88.2%, while the invariant estimator
verges to the true distribution (assuming it's smooth,)etc. improved this result to 89.3%. The new estimator also im-
we would expect it to do as well or possibly better than proved upon the previous estimator discussed in [15], that
the invariant estimate as the number of training examplesdid not take advantage of the properties of the matrix log-
goes to infinity, but with 1000 training examples per model arithm. This previous estimator achieved an accuracy of
density, the invariant estimator still has a clear advamtag 88.6%. While these differences are small, it should be
We again emphasize that the goal of this experiment is toremembered that we are probably approaching the perfor-
demonstrate the superiority of the transform density esti- mance limits of a single example classifier, so large gains
mator, not to break records for digit recognition. should not be expected.

6.3. Learning from one example 6.4. Maximum likelihood

In a second experiment, we applied the new estimator toFinally, we evaluated the density estimators by comput-
the problem of “learning from one example” as described ing the average log likelihood of a test sample under each
in [14]. In these experiments, a factored model of each density. Using 50 “training” examples to define each non-
digit, consisting of a latent image model and a transforma- parametric density, we maximized the likelihood of another
tion model was again developed. The crude latent image50 hold-out samples by optimizing the bandwidth parame-



a5 ‘ ‘ Appendix: Matrix logarithms

a0l The characteristics of our kerni€lfollow directly from the
properties of the function:
S35 d(A;B) = ||log(A~1B)||¢.
o
= In a very informal interpretation, the use of a matrix log-
§30’ - _ arithm can be seen as an attempt to “linearize” the structure
Equivariant estimator of the transformation group. We show below that the sym-
— Gaussian estimator . .
| metry ofd(A;B), and thuk(A;B), is a direct consequence
of this choice.
When it exists, we call logarithm of a matrk any so-
20 5 ) = 3 lution A of
10 10 10 10 A
Number of training samples =X

Any nonsingular matrixX (i.e. any matrix in GIn,R))
Figure 3: The figure shows the classification accuracy on has matr_lx Iogar_lthms (in general infinitely many). Note
that matrix logarithms are generally complex valued. For a

a digit recognition task usingnly information about the . 9 4 . ) .
transformation needed to align a test character to eacHigorous definition and complete discussion of this matrix
function, we refer to [11, 9].

model. The solid line gives the performance using a Parzen In thi K ider theri i | ith
estimate with Gaussian kernels, while the dotted line shows__ " this work, We consider t primary matrix logarithm
[11] evaluated using an implementation of the Schur de-

the improved performance resulting from the invariant-esti " : . o
matorp P g composition method described in [9] (the principal branch
' of the scalar complex logarithm is used). This matrix loga-
rithm satisfies some useful properties:

ter. We found that for these sample sizes, the likelihoods

log(l)=0
were consistently higher for the invariant density estonat a(t) ’
Typical values for average log likelihoods were aboiz 0 e log(AT) = (log(A)T,
for the Gaussian kernel density and abodatfbr the invari- .
ant estimator. For very small sample siziis< 10 for train- e log((A)™) = —(log(A)),
ing) we found that the Gaussian kernel estimator slightl 1y o X
9 IV e log((A1)") =log((A") 1) = ~(log(A))",

outperformed the invariant estimator. Since our bandwidth
optimizer was much more effective for the Gaussian den-, pare A AT A*
sity, we suspect this phenomenon could have been a resul i
of “overfitting” to the hold-out sét

— A" denote respectively the complex
Eonjugate, the matrix transpose and the Hermitian adjoint.
However, note that matrix logarithms do not share all the
properties of their scalar counterpart (for instance, wé wi
not have logAB) = log(A) + log(B) in general).

7. Summary Combining the properties of the Frobenius norm, the

group difference and the previous results, for AlB €
We have presented a probability density estimator that isG|*(n,R), we can check that(A; B) satisfies:

adapted to the structure of GIn,R). Since the basic ap- N

paratus depends only upon the generic properties of matrix ® (Positivenessji(A;B) > 0.

transformation groups, we believe the same ideas could ap- . _ n ] B
ply easily to larger or smaller sets of simple geometricgran ¢ gnxgganqe) G)'(\fnﬁx% (EI:A—(?I,BR) d(XA;XB) =
formations (affine, rotations, ...) in arbitrary dimenside (A;B), since(XA) - '

applied our estimator to a problem in pattern recognition o (Symmetry) d(A;B) = |[[log(A~1B)[[f =
and showed improved results relative to a traditional Rarze llog(B1A) Y|l = || — log(BIA)r =
estimator with Gaussian kernels. Note that a rigorous theo- I|log(B~1A) || = d(B;A).

retical study of the kernel properties, in particular warif

its integrability, remains to be done. Another interesting point is to consider the one-

dimensional case: GL(1,R) =]0,+[. The usual real

“4We shall repeat these experiments with distinct hold-outtastisets S(j‘alar |Ogarit_hm can be used, and@h) =V 2rth, the Eu-
as soon as possible. clidean density — Kg(a;b) corresponding td (a;b) (see




end of Section 4) reduces to the probability density loca
normaldistribution:

f ( ) 1 _ (Ioga—m)2
a) = e 202 ,
gay/2m

with m= log(b) ando? = h.

Acknowledgements

EGM would like to thank Adrian Corduneanu and Tommi
Jaakkola for helpful discussions related to this work.

References

[1] Amari, S. Natural gradient works efficiently in learningeu-
ral Comp., 10 pp.251-276. 1998.

[2] Breiman, L., Meisel, W. and Purcell, E. Variable kernel esti-

mates of multivariate densitie$echnometrics, 1%p. 135-

144.1977.

(3]

Cardoso, J. The invariant approach to source separation.

ceedings of the International Symposium on Nonlinear The-

ory and Applications, 1pp. 55-60. 1995.
[4]

puter Vision 1999.
(5]

Grenander, U. Probabilites on Algebraic Structures.
Almqvist and Wiksell, Stockholm and John Wiley and Sons,
New York. 1963.

[6] Grenander, UGeneral Pattern TheoryOxford Sciences Pub-
lications. 1993.

[7] Grenander, U. and Miller, M. I. Computational anatomy: an
emerging disciplineQuart. Appl. Math., 56 pp. 617-694.
1998.

[8] Grenander, U. and Miller, M. I. and Srivastava, A. Hilbert-
Schmidt lower bounds for estimators on matrix Lie groups
for ATR. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 20pp. 790-802. 1998.

[9] Golub, G. H. and Van Loan, C. Katrix ComputationsNorth
Oxford Academic. 2nd edition. 1986.

[10] Hendriks, H. Nonparametric estimation of a density on Rie-
mannian manifold using Fourier expansioifie Annals of
Statistics, 18pp. 832-849. 1990.

[11] Horn, R. A. and Johnson, C. Ropics in Matrix Analysis
Cambridge University Press. 1991.

[12] Kim, P. T. Deconvolution density estimation on SO(KRh-
nals of Statistics 26pp. 1083-1102, 1998.

[13] Loftsgaarden, D. O. and Quesenberry, C. P. A nonparamet-
ric estimate of a multivariate density functiofhe Annals of
Mathematical Statistics, 3@p. 1049-1051. 1965.

[14] Miller, E. G., Matsakis, N., Viola, P. A. Learning from one
example through shared densities on transfollBEE Con-
ference on Computer Vision and Pattern Recognit2900.

[15] Miller, E. G. Learning from one example in machine vision
by sharing probability densities. Ph.D. thesis. MIT. 2002.

[16] Miller, M. I. and Younes L. Group actions, homeomor-
phisms, and matching: a general framewdrkernational
Journal of Computer Vision, 4bp. 61-84. 2001.

[17] Parzen, E. On estimation of a probability density function
and modeAnnals of Mathematical Statistics, 3@8p. 1065-
1076. 1962.

[18] Santab, L. A. Integral Geometry and Geometric Probability.
Addison-Wesley, Reading, MA. 1976.

[19] Simard, P., LeCun, Y., and Denker, J. Efficient pattern recog
nition using a new transformation distande.Advances in
Neural Information Processing System$p. 51-58. 1993.

[20] Srivastava, A. and Klassen, E. Monte Carlo extrinsic esti-
mators of manifold-valued parametelfSEE Transactions on
Signal Processing, 5@p. 299-308. 2002.

Frey, B. and Jojic, N. Transformed component analysis: Joint 21] Rosenblatt, M. Remarks on some nonparametric estimates of
estimation of spatial transformations and image components.

In Proceedings of the IEEE International Conference of Com-

a density functionAnnals of Mathematical Statistics, 2.
832-837. 1956.

[22] Vetter, T., Jones, M., and Poggio, T. A bootstrapping algo-
rithm for learning linear models of object classBsoceed-
ings of the IEEE Conference on Computer Vision and Pattern
Recognitionpp. 40-46. 1997.



	University of Massachusetts Amherst
	From the SelectedWorks of Erik G Learned-Miller
	June, 2003

	Practical Non-parametric Density Estimation on a Transformation Group for Vision
	affine.dvi

