
Mean-shift Blob Tracking through Scale Space�
*** Submitted to CVPR 2003 ***

Robert T. Collins
Carnegie Mellon University

Abstract

The mean-shift algorithm is an efficient technique for track-
ing 2D blobs through an image. Although the scale of the
mean-shift kernel is a crucial parameter, there is presently
no clean mechanism for choosing this scale or updating it
while tracking blobs that are changing in size. In this pa-
per, we adapt Lindeberg’s theory of feature scale selection
based on local maxima of differential scale-space filters to
the problem of selecting kernel scale for mean-shift blob
tracking. We show that a difference of Gaussian (DOG)
mean-shift kernel enables efficient tracking of blobs through
scale space. Using this kernel requires generalizing the
mean-shift algorithm to handle images that contain nega-
tive sample weights.

1. Introduction
The mean-shift algorithm is a nonparametric statistical
method for seeking the nearest mode of a point sample dis-
tribution [3, 6]. The algorithm has recently been adopted as
an efficient technique for appearance-based blob tracking
[1, 4]. In the blob tracking scenario, sample points are reg-
ularly distributed along the image pixel grid, with a pixel’s
valuew(a) being thesample weightof the point at that lo-
cation. This sample weight is typically chosen such that
pixels on the foreground blob have high weight, and pixels
in the background have low weight. The mean-shift algo-
rithm specifies how to combine the sample weightsw(a) in
a local neightborhood with a set of kernel weightsK(a) to
produce an offset that tracks the centroid of the blob in the
image (Figure 1).

The problem we address in this paper is selecting the
scale of the mean-shift kernel, which directly determines
the size of the window within which sample weights are ex-
amined. This size should of course be proportional to the
expected image area of the blob being tracked. Although
kernel scale is a crucial parameter for the mean-shift algo-
rithm, there is currently no sound mechanism for choosing
this scale within the framework. In this paper we present
a simple and elegant solution for scale selection and adap-
tation within the mean-shift framework. We show how to

�This work supported in part by ONR N00014-00-1-0915.

Figure 1: Two-dimensional blob tracking by applying the
mean-shift algorithm to an image where pixel values repre-
sent likelihood of being on the tracked object. The mean-
shift algorithm is a non-parametric method for climbing to
the nearest mode of this likelihood image.

combine a well-developed theory of feature scale selection
due to Lindeberg with the mean-shift algorithm, resulting in
a method that represents and tracks blobs as the modes of a
differential function in scale space.

In this paper we do not specify how the sample weight
imagew(a) is produced. Typically, weights are determined
using a color-based object appearance model. In [1] a his-
togram of skin color in HSV color space is used to de-
termine the likelihood of skin occuring at each pixel, us-
ing histogram backprojection to replace each pixel with the
frequency (probability) associated with that HSV value in
the skin color histogram. In [4] the appearance model is a
distribution of colors represented by a histogramm, which
is compared with a histogram of colorsd observed within
the current mean-shift window. The sample weight at each
pixel with color i is then set to

p
mi=di, a value related to

the Bhattacharyya coefficient of histogram similarity. The
mean-shift tracking paradigm applies equally well to sam-
ple weight images computed using other features besides
color, such as texture similarity, background subtraction re-
sults, or the output of intensity template correlation.

In Section 2 we review the mean-shift algorithm and its
relationship to non-parametric mode seeking. We also dis-
cuss how to generalize the algorithm to handle images with

negative sample weights. In Section 3 we review Linde-
berg’s theory of feature scale selection. This theory repre-
sents image features of different scales by local maxima of
a differential operator in scale-space. Section 4 combines
the two methods to show how mean-shift tracking of a blob
that changes in scale can be performed by tracking the blob
feature’s mode through scale space. The paper closes by
showing some experimental results.

2. Mean-shift and Its Limitations
The heart of the mean-shift algorithm is computation of an
offset from location vectorx to a new locationx0 = x+∆x,
according to the mean-shift vector

∆x =
∑aK(a�x)w(a)a

∑aK(a�x)w(a)
�x=

∑a K(a�x)w(a)(a�x)

∑aK(a�x)w(a)
(1)

whereK is a suitable kernel function and the summations
are performed over a local window of pixelsa around the
current locationx. A “suitable” kernelK is one that can
be written in terms of aprofile functionk such thatK(y) =
k(kyk2) and profilek is nonnegative, nonincreasing, piece-
wise continuous, and

R ∞
0 k(r)dr < ∞ [Cheng].

An important theoretical property of the mean-shift al-
gorithm is that the local mean-shift offset∆x computed at
positionx using kernelK points opposite to the gradient di-
rection of the convolution surface

C(x) =∑
a

H(a�x)w(a) (2)

computed with a kernelH, which is called theshadowof
kernelK. This property makes the mean-shift procedure
an efficient iterative method for gradient ascent to a local
mode of the convolution surface without having to compute
the full convolution.

KernelsK and shadow kernelsH must satisfy the rela-
tionship

h0(r) =�ck(r) (3)

whereh andk are the respective profiles ofH andK, r =
ka�xk2, andc> 0 is some constant [3]. Equation 3 guaran-
tees that the mean-shift vector∆x computed from equation 1
points in the opposite direction to the gradient∇C(x) of the
surface in equation 2 for allx. For example, consider the
Gaussian shadow kernelH(x) = expf�ka� xk2 =(2σ2)g,
which has profileh(r) = expf�r=(2σ2)g. Sinceh0(r) =
� 1

2σ2 expf�r=(2σ2)g we find from equation 3 thatk(r) =

expf�r=(2σ2)g, and thus the associated kernel isK(x) =
expf�ka� xk2 =(2σ2)g, showing that the Gaussian kernel
is its own shadow. Another popular kernel-shadow pair
is the flat kernelfK(x) = 1;kxk < 1g and its associated
shadowfH(x) = 1�kxk2;kxk< 1g.

Note that the mean-shift vector computed by equation 1
is invariant to scaling of the sample weightsw(a) by a pos-
itive constantc, that is, if eachw(a) is replaced bycw(a)
for c> 0. Note that the mean-shift vector isnot invariant to
a constant offsetw(a)+c. However, all mean-shift kernels
explored to date are symmetric about the origin, such that
K(x) = K(�x), in which case

∆x =
∑K(a�x)(w(a)+c)(a�x)

∑K(a�x)(w(a)+c)
(4)

=
∑K(a�x)w(a)(a�x)+c∑K(a�x)(a�x)

∑K(a�x)(w(a)+c)
(5)

=
∑K(a�x)w(a)(a�x)

∑K(a�x)(w(a)+c)
(6)

showing that the direction of the mean-shift vector is in-
variant, and just the step size changes. In particular, the
algorithm still converges to the same mode.

2.1 Mean-shift and negative weights

One limitation of the classic mean-shift algorithm is that the
sample weightsw(a) have to be nonnegative. Indeed, em-
pirical observation of mean-shift performance in the pres-
ence of negative sample weights shows that the method
breaks down, with the algorithm sometimes seeming to con-
verge to almost anythingexceptthe blob being tracked. To
explain this behavior, consider what happens whenc in
equation 6 is a negative number. Although the direction of
the mean-shift offset (numerator) is still valid, ifc is larger
than some of the valuesw(a), the step size (denominator)
can become negative, and the algorithm takes a stepaway
from the mode. Once this begins to happen, the algorithm
quickly diverges.

Why might we want to use negative sample weights?
When comparing similarity of a model color histogramm
with data histogramd, an intuitive alternative to

p
mi=di

would be the log likelihood value log(mi=di), which is neg-
ative whendi > mi . Accumulating log likelihood values
with a flat kernel would then amount to computing the KL-
divergence between the histogramsmandd, that is

∑
a

log
mi

di
= n

n

∑
i=1

di log
mi

di
:

A second reason for wanting to use negative values is that
we might try to make the mean-shift vector invariant to both
scale AND offset of the sample weightsw(a). We can easily
do this by subtracting the sample meanw from the values
w(a) within the kernel window, thereby performing mean-
shift on the offset-normalized imagew(a)�w. A third rea-
son for allowing negative weights is that we might want to
use mean-shift kernels that have negative weights. This last
point is explored in Section 4.

2

Before changing the mean-shift algorithm to handle neg-
ative sample weights, we must first determine in what way
negative weights make sense. If we interpret the mean shift
quantity (Eq 1) as a sample center of mass, then a nega-
tive mass at any point doesn’t make any sense. Instead,
we should interpret a point’s weight as a vote for the di-
rection and magnitude of the mean shift offset vector to-
wards or away from that point. For a single pointp, a posi-
tive weightw specifies that the offset vector at neighboring
points should be directed towardsp, with a magnitudew.
If instead we have a negative weightw, the offset vector at
neighboring points is now directed away fromp, but with
magnitudejwj. The mean-shift equation can be interpreted
as forming the superposition of all these point-wise offset
votes to produce an overall average offset vector.

We now see how to modify the mean-shift equation (1)
to make sense for negative weights. The numerator of
that equation votes for both the magnitude and direction
of point-wise offset vectors, so the negative weights should
stay. However, the denominator normalizes by the overall
total magnitude of the votes, and therefore we must sum
only the magnitude (the absolute value) of each term. The
modified equation is

∆x =
∑aK(a�x)w(a)(a�x)

∑a jK(a�x)w(a)j
(7)

With this modification, mean-shift remains well-behaved on
images that contain negative pixel values.

2.2 Mean-shift and scale selection

Kernel scale is a crucial parameter to the performance of the
mean-shift algorithm. If the kernel size is chosen too large,
the tracking window will contain many background pixels
as well as the foreground object pixels. This is a problem
when a data histogram collected within the window is com-
pared to a model histogram describing the appearance of
the foreground object, since the data histogram is then “di-
luted” with noisy background pixels. A window size that is
too large can also cause the tracker to become more easily
distracted by background clutter. Finally, a kernel window
that is too large may cause convergence to an areabetween
multiple modes, rather than converging to just one of the
modes (see Figure 2, left).

Choosing a kernel size that is too small is equally prob-
lematic. Kernels that are too small can “roam” around on a
likelihood plateau around the mode, leading to poor object
localization (Figure 2, right). This is particularly a problem
if the mean-shift tracking results are being used to point
an active pan/tilt camera. In this case, even when the ob-
ject is not moving, the pan/tilt head will randomly jump
around as the mean-shift window moves around the like-
lihood plateau.

Figure 2: Mean-shift kernels that are too big (left) include
background clutter as well as the foreground object pixels,
and can also fail by encompassing multiple modes. Kernels
that are too small (right) can “roam” around on a likelihood
plateau around the mode, leading to poor object localiza-
tion.

The is no natural mechanism within the mean-shift
framework for choosing the kernel scale or adapting it over
time. [1] uses moments of the sample weight image to com-
pute blob scale and orientation. This is only appropriate if
there is a single foreground object in the scene. [4] suggests
repeating the mean-shift algorithm at each iteration using
window sizes of plus or minus 10 percent of the current size,
and evaluating which scale is best using the Bhattacharyya
coefficient. We have experimented with this approach and
found it lacking. In particular, the approach does keep the
window from growing too large, but unfortunately does not
stop the window from shrinking too small. Looking at the
right hand side of Figure 2, we see that in a uniformly col-
ored region, any location of a window that is too small will
yield the same value of the Bhattacharyya coefficient, as
will shrinking the window even more. In short, this method
has no “expansionary force” to keep the window size “in-
flated”.

3. Scale Space Blobs

In this section we consider a method for automatically
choosing an appropriate scale for blob tracking. The work
of Lindeberg provides an elegant theory for selecting the
best scale for describing features in an image [8, 2]. A
multi-scale image description is formed (at least concep-
tually) by convolving the image with Gaussian filters of in-
creasing spatial variance to form ascale-spacerepresenta-
tion with two spatial dimensions and a third dimension rep-
resenting scale or resolution. Lindeberg then proposes to
detect image features as points in scale-space where various
differential operators achieve a local maxima with respect to
both space and scale. This approach has been shown to pro-
duce feature descriptions that are well-localized both spa-
tially and at an appropriate level of resolution.

For blob-like features, the differential operator used is
the Laplacian, which when applied over Gaussian scale-
space leads to a multi-resolution image description based
on convolution with Laplacian-of-Gaussian (LOG) filters at

3

varying scales. The 2D LOG filter at scaleσ has the form

LOG(x;σ) =
2σ2�kxk2

2πσ6 e
�kxk2

2σ2 (8)

Let the convolution of imagef (x) with a LOG operator of
scaleσ be denoted asL(x;σ) = ∑aLOG(a� x;σ) f (a) :
Then blob features at various scales can be detected as
points(x0;σ0) that are local maxima both spatially and in
scale, i.e.

(∇x L)(x0;σ0) = 0 and (δσ L)(x0;σ0) = 0 : (9)

Let image f (x) contain a blob with scaleσ, centered at
x0, so thatL(x0;σ) is a local maximum in the scale space
representation off . Consider a new imageg(y) = f (y=s)
that is just a spatially scaled version off . We would then
expectL(sx0;sσ) to be a local maxima in the scale space
representation ofg, which it is. However, the magnitudes of
the two filter responses are different, which makes it hard
to compare feature decriptions across different scales. As-
suming without loss of generality that the blob is centered at
zero, and performing a change of variablesy= sxonL(0;σ)
we find that

L(0;σ) = ∑
x

2σ2�kxk2

2πσ6 e
�kxk2

2σ2 f (x) (10)

= ∑
y

2σ2�ky=sk2

2πσ6 e
�ky=sk2

2σ2 f (y=s) j
1
s2 j (11)

= s2∑
y

2(sσ)2�kyk2

2π(sσ)6
e
�kyk2

2(sσ)2 g(y) (12)

= s2L(0;sσ) (13)

where thej1=s2j term at the end of Eq. 11 is the Jaco-
bian of the transformationx= y=s, which must be included
since the summation is actually a discrete approximation
to a convolution integral. In general, Lindeberg shows that
L(x;σ) = s2L(sx;sσ), and defines a new normalized oper-
ator σ2LOG(x;σ) whose magnitude stays invariant across
changes of image feature scale [8].

In the present work, we propose to replace the LOG scale
space with one based on Difference-of-Gaussian (DOG) fil-
ters. It is well-known that the LOG filter can be well-
approximated with a difference of two centered Gaussians
G(x;0;σ1)�G(x;0;σ2) with scales related byσ2=σ1 = 1:6
[7]. The DOG filter that approximates the LOG filter at
scaleσ thus has the form

DOG(x;σ) =
1

2πσ2=1:6
e

�kxk2

2σ2=1:6 �
1

2πσ2(1:6)
e

�kxk2

2σ2(1:6) (14)

One reason to prefer the DOG approximation over LOG
is that there exist fast techniques for generating Gaussian
convolution pyramids. We prefer the DOG operator in the

present context because it is more clearly related to the
mean-shift algorithm using a Gaussian kernel, a connection
that will be explored in the next section.

It is interesting to note that the magnitude of the DOG
operator is already invariant across scales, thus the operator
does not have to be normalized by scale parameterσ2, as the
LOG filter does. That is, if the convolution of imagef (x)
with a DOG operator is written asD(x;σ) = ∑aDOG(a�
x;σ) f (a) ; then performing a change of variables procedure
as above shows thatD(x;σ) =D(sx;sσ), so we do not have
to normalize the DOG operator to achieve invariance across
scales.

Why does the LOG filter have to be normalized to give
an invariant response across scales, while its approximation,
the DOG filter, does not? The DOG operator does not ap-
proximate the LOG in the traditional sense ofDOG(x) �
LOG(x). Rather, the two functions are approximately equal
up to a scale factor, such thatDOG(x)=LOG(x)� constant.
Specifically, by considering the values of the two functions
at the originx= 0, it is easy to see that

DOG(x;σ) � 0:4875σ2 LOG(x;σ) :

The extraσ2 factor is what makes the DOG operator invari-
ant across scales. This precise manner in which the DOG
operator “approximates” the LOG operator seems not to be
widely discussed. The two are typically presented in the
context of locating zero crossings, where the scale factor
does not matter.

4. Mean-shift in Scale Space
We adapt feature scale selection theory to create a mech-
anism for adapting mean-shift kernel size while tracking
blobs through changes in scale. Intuitively, we will track a
blob’s location and scale by using the mean-shift algorithm
to track the local maximum (Eq 9) that represents the blob
feature in the scale space generated by the DOG operator.

Define a 3D shadow kernelH(x;σ) with two spatial di-
mensionsx and one scale dimensionσ. At any given scale
σ0, the 2D marginal kernelH(x;σ = σ0) will be a spatial
filter DOG(x;σ0). The set of DOG filters at multiple scales
form a scale-space filter bank, which is convolved with a
sample weight image where each pixel is proportional to
the likelihood that it belongs to the object being tracked.
See Figure 3. The results of the DOG filters at multiple
scales are then convolved with an Epanichikov shadow ker-
nel in the scale dimension. The result is a 3D scale space
representation in which modes represent blobs at different
spatial positions and scales. We want to design a mean-shift
filter to track modes through this scale space representation.

More formally, define a set of kernel scales around the
current scaleσ0 as

fσs= σ0 �bs; for �n� s� ng (15)

4

Figure 3: Shadow kernel for mode-seeking in scale space.
This 3D kernel takes the form of a filter bank of centered
DOG spatial kernels at different scales, convolved with a
1D Epanichnikov kernel across the scale dimension.

whereb> 1 specifies the base of a logarithmic coordinate
scale andn limits the range of scales to explore around the
current scaleσ0. We typically chooseb= 1:1 andn= 2.
The shadow kernel in the scale dimension is the Epanich-
nikov kernel

Hs(s) = 1� (s=n)2 (16)

A filter bank of spatial shadow kernels is also defined, one
for each scaleσs. Each is defined as a DOG kernel around
the current object locationx0

Hx(x;s) = DOG(diag(1=w;1=h)(x�x0);σs) : (17)

The scale factorsw andh are introduced to allow elliptical
spatial kernels (the DOG operator is circular). Finally, the
3D scale space is generated from a sample weight image
w(x) as

E(x;s) =∑
s

Hs(s)∑
x

Hx(x;s)w(x) (18)

We now wish to design a mean-shift procedure that finds
local modes in the scale space defined by the 3D convolu-
tion of Eq. 18. We simplify by considering two interleaved
mean-shift procedures, one spatial and one in scale, that it-
erate to find scale space modes. To find the mean-shift ker-
nelsKs andKx in image space that correspond to shadow
kernelsHs andHx in scale space, we use the kernel-shadow
relationship constraint of Eq. 3.

4.1 Spatial kernel

First, we treat the current scaleσ0 as constant, and consider
the spatial shadow kernelHx(x;s). Since the DOG operator
is a linear combination of Gaussians, and since the Gaussian
kernel is its own shadow, we should expect the mean-shift
kernelKx(x;s) to also be a linear combination of Gaussians.
Indeed, after applying Eq. 3 with respect tor = (x� x0)2

we find that

Kx(x;s) = G(x;x0;σ1)=σ2
1�G(x;x0;σ2)=σ2

2 (19)

with σ1 = σs=1:6 andσ2 = 1:6σs. This kernel is also a
DOG kernel, but not one that approximates a Laplacian – it
has a more pronounced peak and a shallower negative basin
around the peak. The mean-shift kernel corresponding to
E(x;s) in Eq 18, for fixedσ0 is therefore

KE(x) =∑
s

Hs(s)Kx(x;s) : (20)

This is a linear combination of filter bank responses, with
the highest weight at the current scaleσ0, and weights drop-
ping off as the scale of the filter increases or decreases.

One snag is that eachKx(x;s) is a non-convex kernel that
contains negative weights, and it therefore violates the as-
sumptions that are typically placed on mean-shift kernels.
The practical difficulty of this is that during computation
of the mean-shift offset (Eq 1), some pixel values will be
multiplied by negative kernel weights. However, we have
already dealt with this problem in Section 2, where we con-
sidered the related problem of negative sample weights. The
solution is the same: during computation of the mean-shift
offset vector, we divide by the sum of the absolute values of
all weight terms, instead of just the sum of the terms. With
this modification, which was shown in Eq. 7, mean-shift
with theKx(x;s) kernel is well-behaved.

4.2 Scale kernel

Now consider holding the locationx0 fixed, and looking
for the best scaleσs. The mean-shift kernel correspond-
ing to the Epanichnikov shadow in the scale dimension
will be a flat kernel. This kernel is applied to the values
∑x Hx(x;s)w(x), for the range of scales�n� s� n. Intu-
itively what is happening is that, for a given spatial loca-
tion x0, a filter bank of DOG operators is applied at varying
scales, centered on that location, and then mean-shift is per-
formed on the 1D array of results to locate the scale mode.

4.3 Algorithm summary

To summarize, we use two interleaved mean-shift proce-
dures to track modes in scale space, which represent the
spatial location and scale of blobs in an image. The algo-
rithm proceeds as follows
1. Input is a sample weight imagew(a) and an estimate
of the blob’s current scale space location, represented by
(x0;σ0), a parameter vector that combines both spatial and
scale terms.
2. Hold σ0 fixed, and perform a spatial mean-shift proce-
dure using the equation

∆x =
∑sHs(s)∑aKx(a�x0;s)w(a)(a�x0)

∑sHs(s)∑a jKx(a�x0;s)w(a)j
(21)

where�n� s� n defines a range of scalesσs as in Eq 15.

5

3. Letx0 now represent the value that the spatial mean-shift
procedure in step 2 converges to. Holdingx0 fixed, perform
a mean-shift procedure using the equation

s0 =
∑s∑x Hx(x;s)w(x)s

∑s∑x Hx(x;s)w(x)
: (22)

This procedure is iterated until convergence. Set the new
value ofσ0 to σ0�bs0 .
4. Iterate by interleaving steps 2 and 3 until bothks0k< εs

andk∆xk< εx.

5. Experiments
Figure 4 will help to better understand the motivation be-
hind the scale selection approach presented in this paper.
The top of Figure 4 shows three blobs (squares) of different
sizes. The bottom of Figure 4 shows one slice through the
3D scale space generated by convolution with the DOG-
Epanichnikov filter bank defined in the previous section.
The modes in this scale space clearly localize each of the
blobs both spatially, and in the scale dimension, as expected
from the feature scale selection theory of Lindeberg. In the
present work, we have designed an interleaved mean-shift
procedure that is capable of finding/tracking these modes,
without having to explicitly generate this scale space.

Figure 4: Intuitive illustration of scale space modes. Top: three
blobs (squares) of different sizes. Bottom: scale space generated
by the DOG-Epanichnikov filter bank defined in this paper. Each
blob is well localized both spatially and in the scale dimension by
a mode in this scale space.

Figure 5 shows blob tracking results on a real image se-
quence of a person walking around a test trajectory. The

sequence comes from a database of gait test sequences col-
lected at NIST as part of the DARPA Human Identification
program. An image rectangle is selected by hand in the first
frame, and a color histogrammi is acquired to model the
color distribution within this rectangle. Sample weight im-
ages are generated with respect to a data histogramdi of
colors within the current tracking window, with each pixel
of color i being set to

p
mi=di. This is the same method

used in [4], who show that these weights are related to max-
imizing the similarity of histogramsdi andmi as measured
by the Bhattacharyya coefficient.

Sample frames of the tracking results from three dif-
ferent algorithms are presented. Figure 5A shows track-
ing results from the classic mean-shift algorithm without
any changes of scale. The person is successfully tracked
throughout the sequence, but the fixed scale of the track-
ing kernel provides poor localization of the centroid of the
person as their size increases near the end of the sequence.

Figure 5B shows tracking results when the scale is
adapted using the approach suggested in [4]. At each itera-
tion, the mean-shift algorithm is run three times, once with
the current scale, and once with window sizes of plus or mi-
nus 10 percent of the current size. For each, the color distri-
bution observed within the mean-shift window after conver-
gence is compared to the model color distribution using the
Bhattacharyya coefficient, and the window size yielding the
most similar distribution is chosen as the new current scale.
We see that the window quickly shrinks too much, a com-
mon failure of this scale selection approach. At roughly a
third of the way through the sequence, the tracking is lost.

Finally, Figure 5C shows the results of our kernel size
selection method, described in the last section. The per-
son is consistently tracked, both in image location AND in
scale. Note in particular the correct adaptation of kernel
scale as the person’s size rapidly expands near the end of
the sequence.

6. Conclusion

We have solved the problem of choosing the correct scale
at which to track a blob using the mean-shift algorithm. We
start with Lindeberg’s theory of blob scale detection using
differential scale-space filters, and define an efficient mean-
shift procedure that tracks the modes in this scale space.
Each mode represents the spatial location and scale of an
image blob.

Conceptually, the scale space is generated by convolv-
ing a filter bank of spatial DOG filters with a sample weight
image. The results are then convolved with an Epanichikov
kernel in the scale dimension. Explicit generation of these
convolutions in order to find the modes would be very ex-
pensive. However, by exploiting the relationship between
shadow kernels and mean-shift kernels, we can derive “de-

6

(A)

(B)

(C)

Figure 5: Tracking examples. (A) Using a fixed-scale mean-shift kernel. The person is tracked through the sequence, but
localization is poor when the person’s size increases. (B) Using the plus or minus 10 percent scale adaptation method (see
text). The kernel soon shrinks too much, leading to tracking failure. (C) Using the scale-space mode-tracking method
presented in this paper. The person is tracked well, both spatially and in scale.

signer” mean-shift kernels that find the modes much more
efficiently. A two-stage mean-shift procedure is developed
that interleaves spatial and scale mode-seeking to track a
local mode in scale space. The result is stable and natural
selection of an appropriate kernel size for appearance-based
image blob tracking.

References

[1] Bradski, G.R., “Computer Vision Face Tracking for Use in a
Perceptual User Interface,”IEEE Workshop on Applications
of Computer Vision,Princeton, NJ, 1998, pp.214-219.

[2] Bretzner, L. and Lindeberg, T., “Qualitative Multiscale Fea-
ture Hierarchies for Object Tracking,”Journal of Visual
Communication and Image Representation,Vol 11(2), June
2000, pp.115-129.

[3] Cheng, Y., “Mean Shift, Mode Seeking, and Clustering,”
IEEE Trans. Pattern Analysis and Machine Intelligence,Vol
17(8), August 1995, pp.790-799.

[4] Comaniciu, D., Ramesh, V. and Meer, P., “Real-Time Track-
ing of Non-Rigid Objects using Mean Shift,”IEEE Com-
puter Vision and Pattern Recognition,Vol II, 2000, pp.142-
149.

[5] Comaniciu, D., Ramesh, V., Meer, P., “The Variable Band-
width Mean Shift and Data-Driven Scale Selection,”Inter-
national Conference on Computer Vision,Vol I, pp.438-445.

[6] Fukanaga, K. and Hostetler, L.D., “The Estimation of the
Gradient of a Density Function, with Applications in Pat-
tern Recognition,”IEEE Trans. Information Theory,Vol 21,
1975, pp.32-40.

[7] Hildreth, E.C., “The Detection of Intensity Changes by
Computer and Biological Vision Systems,”Computer Vi-
sion, Graphics and Image Processing,Vol 22(1), April
1983, pp.1-27.

[8] Lindeberg, T., “Feature Detection with Automatic Scale
Selection,” International Journal of Computer Vision,Vol
30(2), November 1998, pp.79-116.

7

