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Abstract

Explicit surfaces, such as triangulations or wireframe
models, have been extensively used to represent the de-
formable 3–D models that are used to fit 3–D point and
2–D silhouette data. The resulting approaches, however,
suffer from the fact that fitting typically involves finding the
facets that are closest to the 3–D data points or most likely
to be silhouette facets. This requires searching, which is
slow, and dealing with the non-differentiability of the dis-
tance function. By contrast, implicit surface representations
allow fitting without search, since one can simply evaluate
a differentiable field function at every data point. However,
implicit representations are not necessarily the most intu-
itive ones and users, such as graphics designers, tend to
prefer explicit models.

1. Introduction

Explicit surfaces, such as triangulations or wireframe
models, have been extensively used to represent the de-
formable 3–D models that are used to fit 3–D point and
2–D silhouette data. The resulting approaches, however,
suffer from the fact that fitting typically involves finding the
facets that are closest to the 3–D data points or most likely
to be silhouette facets. This requires searching, which is
slow, and dealing with the non-differentiability of the dis-
tance function—for example, when a point that was associ-
ated to one facet becomes attached to a different one—that
may hinder the minimization of the criterion being used.

By contrast, implicit surface representations allow fitting
without search, since one only needs to evaluate a differ-
entiable field function at every data point [20, 14]. How-
ever, implicit representations are not necessarily the most
intuitive ones, and graphics designers, tend to prefer ex-
plicit models. Furthermore, for some classes of algorithms
such as shape-from-shading methods, explicit representa-
tions seem better suited to the problem.�
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Figure 1. Turning the explicit surface into an
implicit shell. (a) Initial explicit mesh with
control points shown as squares. (b) Mesh
converted into implicit shell. (c) Deformed
mesh after displacement of the control
points. (d) The implicit shell follows the ex-
plicit surface.

In this paper, we propose to combine the strengths of
both approaches by:

1. transforming explicit surfaces into implicit shells,
which we call implicit mesh models, whose shape
closely approximates that of the original triangulations
as depicted by Figure 1(a,b).

2. deforming the implicit and the explicit surfaces in tan-
dem for fitting purposes as shown in Figure 1(c,d).
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Figure 2. Reconstruction from an uncalibrated video sequence. Top row: 3 of 6 images from a
short video sequence with overlaid silhouettes. Middle row: Disparity maps extracted from rectified
consecutive image pairs using max flow-based stereo, after automated registration. Bottom row:
Reconstructed and textured models obtained by using an explicit model for the head and an implicit
mesh model for the neck and shoulders.

To create the implicit shell, we circumscribe each facet with
a spherical volumetric primitive. We will show that, if the
triangulation is sufficiently well-behaved, the resulting shell
closely approximates the mesh.

To deform both representations simultaneously, we fol-
low the Free Form Deformation (FFD) paradigm that lets
us embed both kinds of models in a volume whose shape
can be changed by moving control points. In particu-
lar, we advocate the use of Dirichlet Free Form Defor-
mations (DFFDs) [12] because, unlike conventional FFDs,
they do not require the control points to lie on a regular
rectangular grid. This is achieved by replacing the standard
rectangular local coordinates by generalized natural neigh-
bor coordinates, also known as Sibson coordinates [18]. It
gives us the ability to place control points at arbitrary loca-
tions rather than on a regular lattice, and thus, much greater
flexibility. In practice, control points are taken to be on the
surface triangulation, with a denser distribution where the
surface curvature is high.

Our contribution is therefore an approach to surface fit-

ting that allows us to take an arbitrary explicit surface
model, for example one that has been obtained from the web
and was not designed with fitting in mind, turn it into an im-
plicit shell, and deform it to obtain an optimal least-square
fit to new experimental data using a few well-chosen con-
trol points. In Figure 2, we demonstrate the power of this
approach for upper-body modeling using stereo and silhou-
ette data. The model we use has a complex topology, but
that complexity has no impact on the quality of the fitting.

We first relate our techniques to existing ones. We then
introduce our approach to creating implicit shells and to de-
forming them using DFFDs. Finally, we demonstrate the
applicability of our framework.

2. Related Work

2.1. Explicit versus Implicit

Three-dimensional reconstruction of visible surfaces
continues to be an important goal of the computer vision



research community and many approaches relying on full
3–D explicit representations have been proposed, such as 3–
D surface meshes [4, 23], parameterized surfaces [19, 11],
local surfaces [6], and particle systems [21].

In parallel, there has also been sustained interest in the
vision community in the use of volumetric primitives [13,
10, 22] and implicit surface representations [5, 20, 15]. In
the computer graphics community, approaches to interpo-
lating explicit surfaces with implicit ones using radial ba-
sis functions (RBF) have been proposed [3, 24]. However,
the shape is controlled not only by the position of the RBF
centers but also by the RBF weights that have no geometric
interpretation, which makes this approach unsuitable for the
kind of optimization we contemplate here. This is why we
have developed a different approach to converting explicit
surfaces into implicit shells that guarantees that the implicit
shell’s shape deforms exactly in the same way as the explicit
surface.

Both approaches to 3–D modeling have their strengths
and weaknesses for the purpose of fitting noisy image-data.
Explicit surfaces are easy to deform and to render using
well known computer graphics techniques, but as discussed
earlier, are not ideal for fitting purposes. Implicit surfaces
are better suited for least-squares style fitting purposes be-
cause they can be used to define differentiable objective
functions [20, 14]. However, unless one uses either a sin-
gle geometric primitive or a set of such primitives attached
to some kind of skeleton, it is relatively difficult to control
their shape in an intuitively pleasing way. As a result users
such as graphics designers tend to prefer explicit models. It
is therefore important to be able to go back and forth be-
tween the two kinds or representations.

2.2. Deforming the Surfaces

Free Form Deformations (FFDs) are a well-known ap-
proach to deforming 3–D models, explicit or implicit, by
warping the space in which they exist [17]. However, a se-
rious restriction is that FFDs can be naturally applied only
to explicit surfaces and to parametric implicit surfaces such
as quadrics or superquadrics. There is no generally accepted
way to handle more complex implicit surfaces such as the
implicit shells we are dealing with in this paper. Another
popular and closely related way to deform implicit surfaces
is to twist, bend, and taper the space in which the model
lives by choosing a suitable warping function [1, 25, 2].
But, again, this only works for implicit surfaces with para-
metric descriptions.

Because the shape of the implicit shell depends only on
the shape of the explicit surface it is derived from, we can
use any Free Form Deformation technique. Here we advo-
cate the use of Dirichlet Free Form Deformations[12]. In
previous work [8], we showed that it is effective to fit ex-

plicit surfaces to noisy data. In this paper, we extend our
earlier approach so that it can handle both explicit and im-
plicit surfaces.

3. Implicit Mesh Models

To create an implicit surface model that can deform in
tandem with the explicit surface, we must address two prob-
lems:

1. Creating an implicit shell that closely approximates the
shape of the initial explicit mesh,

2. Controlling the object shape, in both its explicit and
implicit forms, using the same set of parameters.

Our approach is depicted by Figs. 1 and 3. We now discuss
its components.

3.1. From Explicit Surface to Implicit Shell

We first build an implicit shell whose shape approxi-
mates the initial explicit mesh as follows. We circumscribe
a spherical metaball primitive around each facet of the sur-
face triangulation in such a way that the sphere center lies
on the facet as shown in the upper row of Fig. 3. Ideally,
to get a smooth implicit surface, the explicit mesh should
have equally sized facets. In practice, the smaller the facets,
the smaller the spheres circumscribed around them, and the
closer the resulting implicit mesh approximates the initial
explicit mesh. We have therefore found experimentally that
subdividing the explicit mesh until all the facets are small
enough is sufficient to produce visually pleasing results.
The bottom row of Fig. 3 depicts the conversion of a simple
regular triangulation patch into an implicit mesh. Further-
more, as will be discussed below, the number of control pa-
rameters does not depend on the number of primitives and
there is no significant computational penalty in so doing.

3.2. Deforming Explicit Meshes

We have shown in earlier work that introducing DFFD
control points is an effective way to deform explicit
meshes [8]. These points can be distributed freely in space
and every surface triangulation point is influenced by cer-
tain subset of control points. The magnitudes of these in-
fluences, known as Sibson coordinates [18], are computed
before the optimization starts [12]. The displacement of
each surface triangulation point is the linear combination
of the displacements of the control points that influence
it. Let

�������	�	�	�
����
����
be the set of control points

and � be a subset influencing surface triangulation point� , ��� ��� ����� ����� , where  !�#" �	���	�$�&%(' . The elements



Figure 3. Converting an explicit surface into
an implicit mesh. Upper row: Single trian-
gular primitive on the left, converted to the
transparent spherical metaball primitive on
the right. Bottom row: Regular explicit sur-
face patch on the left, converted to the trans-
parent implicit mesh on the right

of � are the natural neighbors of � and their influence is
expressed by the Sibson coordinates ) � . Let the control
points from � be displaced from their initial positions by* ���+�  ,�#" ���	�	�	�
%(' . The new position of the surface trian-
gulation point becomes:

�.-0/21 � �(3
��45�7698 ) � * ���+�&���(
 � (1)

with : ��4�76;8 ) � �=< and ) �(> " .
3.3. Deforming Implicit Meshes

Our goal is to deform the implicit mesh in tandem with
the explicit meshes. Each spherical primitive being circum-
scribed around a facet so that its center lies on the facet,
both its center and its radius depend only on the facet ver-
tices. These locations, in turn, can be expressed as a func-
tion of the DFFD control points

�9?&@ �BA ? AC�
of Eq. 1. We can

therefore write the field function D that defines the implicit
shell as

D!EGF �
� � �	�H�I�&� ��J �=< � "�K -5 L 6 ��M EON
L
EOF J �QP

L J
(2)

where F is a point in
���

, M is one of the field functions
discussed below, N

L
is the Euclidean distance to the center

of primitive R , and
P L

is the radius of primitive and S is the
number of spherical metaballs. Note that, number of param-
eters is the number of control points and does not depend
on number of facets. We experimented with two different
potential field functions. The first one is piecewise polyno-
mial:

M E P��QP
L J �
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(3)
where

P
is the distance of point f to the center of the primi-

tive. The plot of this function in Fig 4 (a) shows that on the
sphere’s surface, the primitive potential field is 1, it grows
when approaching the center, and monotonically decreases
until it reaches " .
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Figure 4. Potential field functions. Top:
Piecewise potential field function. Bottom:
Exponential potential field function. In both
cases, the  parameter controls the size of the
zone of influence of the primitives and, thus,
the amount of smoothing.



The  parameter of Eq. 3 controls the zone of influ-
ence of the primitives. As  decreases, the zone’s size be-
comes larger and the resulting implicit surface grows both
smoother and larger, as shown on the top graph of Fig. 4.
On the contrary when  increases, the zone of influence be-
comes smaller and the implicit surface approximates more
closely the explicit mesh. This function is good from a com-
putational point of view, because the potential for a partic-
ular 3–D point can be calculated only from the subset of
primitives spheres in whose zone of influence it belongs.
However, for fitting purposes, this can cause problems when
the initial model is not close enough from the data that can
then end up being completely ignored.

Therefore, we use instead an exponential potential field
function:

M E P��
P
L J �hg	ikj9E2Kl \W0E P K P

L JQJ
(4)

It has properties similar to those of the polynomial func-
tion from Eq.3, except for the fact that its influence is infi-
nite. In this way, we eliminate the risk of ignoring impor-
tant 3–D points, at the cost of an increased computational
burden. As shown on the bottom graph in Fig. 4, the  pa-
rameter acts again as smoothing parameter. Given the fact
that this function decreases quickly, when the model is close
enough to the data, we can speed up the computation by
introducing an adaptive threshold m on the distance above
which the function does not need to be evaluated.

4. Fitting to Noisy Data

Figure 5. Generic model of the upper body
and corresponding control mesh. Left:
Complete model surface triangulation, with
rigid head as a mesh and deformable neck-
shoulders converted to the implicit surface.
Right: Complete control mesh

Our goal is to deform the implicit mesh so that it con-
forms to the image data which is made of 3–D points de-
rived from stereo and silhouette information. In standard

least-squares fashion, for each data-point F
L
, we write an

observation equation of the form

N.EOF
L �Bn J �#oqp	r	sGtBu /L 3wv L � <

b
R
b
S9oqp$r (5)

with weight xlsGt&u /L
, where y{z �.| is one of the possible types

of observations we use,
n

is a state vector that defines the
surface shape, N is the distance from the point to the surface,
and v

L
is the deviation from the model. In practice, we takeN.EOF

L �Bn J
to be the algebraic distance of F to the implicit sur-

face defined by the field function of D of Eq.2and we mini-
mize the weighted sum of the squares of the deviations. To
ensure that the minimization proceeds smoothly, the system
automatically computes the xlsGt&u /L

weights so that the differ-
ent kinds of observations have commensurate influence[8].

5. Parametrization and Regularization

In theory we could take the parameter vector
n

to be the
vector of all } � z , and ~ coordinates of the surface trian-
gulation. However, because the image data is very noisy,
we would have to impose very strong regularization con-
straints. This is why we chose to use the DFFD approach to
deforming the surface instead and introduce control trian-
gulations such as the one depicted by Fig. .5. Their vertices
are points located at characteristic places on the model and
serve as DFFD control points. This ability to place the con-
trol points at arbitrary locations is what sets DFFDs apart
from all other kinds of FFDs. The control triangulation
facets are used to introduce the regularization constraint
discussed below. In our scheme, we take the state vectorn

to be the vector of 3-D displacements of DFFD control
points[8].

Because there are both noise and gaps in the image data,
we still found it necessary to introduce a small regulariza-
tion term. Since, we expect the deformation between the
initial shape and the original one to be smooth, this can be
done by preventing deformations at neighboring vertices of
the control mesh to be too different. This is enforced by
introducing a deformation energy ��� that approximates the
sum of the square of the derivatives of displacements across
the control surface. By treating the control triangulation
facets as � 8 finite elements, we write

�l��� * s �0� * � 3 * s t � * t 3 * s ��� * � (6)

where � is a stiffness matrix and
* � � * t and

* � are the
vectors of the x, y and z coordinates of the control vertices’
displacements. The term we actually optimize becomes:

��� 5�7A L A -0�&��� x�sGt&u /
L v _L 3���� � �

where �.� is a small positive constant.
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Figure 6. Synthetic example. (a) Initial state – implicit mesh model in light-grey, outline of the surface
to fit shown as a white curve, stereo data shown as white dots. The thick white dot represents
silhouette data that is perpendicular to the image plane. (b) Fitting results using stereo alone (c)
Fitting using both stereo and silhouette data.

6. Stereo and Silhouette Observations

In this work, we concentrate on combining stereo and
silhouette data. Because the field-function D of Eq.2 is
both well-defined and differentiable, the observations and
their derivatives can be computed both simply and without
search.

3–D Point Observations Disparity maps are used to com-
pute clouds of noisy 3–D points such as those of Fig.2. Each
one is used to produce one observation of the kind described
by 5. Minimizing the corresponding residuals tends to force
the fitted surface to be as close as possible to these points.
Because of the long range effect of the exponential field
function in the error function D of Eq.2, the fitting succeeds
even when the model is not very close to the data. Also,
during least-squares optimization, an error measure that ap-
proaches zero instead of becoming even greater with grow-
ing distance has the effect of filtering outliers.

Silhouettes Observations A silhouette point in the image
defines a line of sight tangential to the surface. Let � be an
element of the state vector. For each value � , we define the
implicit surface:n EO� J ����F 
�� � � D!EOF � � J ��< � ".� (7)

Let FcEO� J be the point on the line of sight where it is tan-
gential to

n EO� J . By definition, it must satisfy the two con-
straints:

1. The point is on the surface, therefore D!EGFcEG� J � � J �< � " �

2. The normal to
n EG� J is perpendicular to the line of sight

at FcEO� J .
We integrate silhouette observations into our framework by
performing, before each minimization, a search along the
line of sight to find the point that has the lowest field value
and, therefore, satisfies the second constraint. It is then used
to add one of the observations described by 5to enforce the
first constraint.

7. Results

We first demonstrate our technique on a synthetic exam-
ple and, then, show its applicability to modeling and track-
ing people’s neck and shoulders.

Synthetic Example We created a synthetic example that
simulates a difficult situation in which one must combine
stereo and silhouette data to achieve a good result. In the
Fig. 6(a), the initial state is depicted. The implicit mesh
model is shown in light-grey. The outline of the synthetic
surface we want to fit appears as a white curved line. To
make the problem realistic, we assume that we have stereo
data, shown as white dots, only on the front side of the
patch, that is the one that faces the camera, and silhouette
data at the top is shown as the thick white dot, that repre-
sents the projection of the silhouette that is perpendicular to
the image plane. The Fig. 6(b) depicts the result of fitting
using stereo alone. Note that, the occluding contour of the
deformed surface does not match the expected silhouette,
again shown as a thick white dot. The Fig. 6(c) depicts the
result using both stereo and silhouette data. The occluding



contour of the fitted surface is now where it should be and
the top of the surface has moved appropriately. The back of
the shape is, of course, still inaccurate since there is neither
silhouette nor stereo data to constrain it.

Figure 7. Reconstructed shaded model with
overlaid silhouettes. Top row: Reconstructed
model using stereo alone viewed using the
same perspective as that of the original im-
ages from Figure 2 and with overlaid silhou-
ettes extracted from original images. Bottom
row: Equivalent results using both stereo and
silhouette data.

Neck and Shoulder Modeling Here we show a similar
behavior, but now using real stereo and silhouette data re-
constructed from an initially uncalibrated 6–frame video se-
quence in which the camera was moving around a static
subject. In the top row of Fig. 2, we show the first, mid-
dle and last frames of the sequence. We used snakes to ex-
tract the silhouettes shown as white lines. In the absence
of calibration information, we used a model-driven bundle-
adjustment technique [7] to compute the relative motion
and, thus, register the images. We then used a graph-cut
technique [16] to derive disparity maps from consecutive
image , such as those shown in the second column. Fi-
nally, in the third column we show reconstructed textured
model. Fig. 7 depicts reconstruction results of the neck
and shoulders obtained either by using stereo alone or by
using both stereo and silhouettes. In both cases, the head
was reconstructed separately using our earlier DFFD-based
method [8]. As in the synthetic example, it is only when
we combine both information sources that we get a model
that projects correctly in all the views. This shows that its

shape is geometrically correct even at places where the sur-
face slants away from the cameras and, therefore, where
stereo fails. Note that the texture-mapped views of Fig. 2
and the shaded views of Fig. 7 were generated by moving
the initial explicit surface to match the deformed implicit
shell, thereby underlining the importance to go back and
forth from the explicit to the implicit representation.

Figure 8. Tracking results for a short 21
frames video sequence. Left column: Real
images of 1st, 11th and 21st frame with over-
laid neck and shoulder model. Right column:
View from above of the deformed model over-
laid on the reprojected stereo data.

Handling Deformations Finally, we tested our approach
on a short stereo-video sequence in which we tracked the
shoulder motion movement of a subject person moving his
arms. In the left column of Fig. 8, we show three images
from the 21frame sequence we used on which we overlaid
the neck and shoulder model we recovered for each frame.
The model precisely follows the silhouettes of the neck and
shoulders and shrinks when the arms move forward. On the
right column of Fig. 8, we show corresponding views from
above in which we overlay the models on reprojected stereo
data. The shoulders are aligned with the stereo data and,
even though there is no large shoulder motion, we can spot
a subtle deformation of both shoulders.



8. Conclusion

We have presented an approach to switching from ex-
plicit surfaces to implicit ones and back that allows us to
take advantage of the strengths of both kinds of approaches.
To this end, we have proposed a technique for creating im-
plicit shells in such a way that their shape depend only on
the explicit surface’s shape and a method based on Dirich-
let Free Form Deformations for deforming the implicit and
explicit models in tandem.

We used the example of upper-body modeling using
stereo and silhouette data to demonstrate the power of this
approach. The explicit model we started from was not tai-
lored for fitting purposes has man facets and a complex
topology, neither of which has a significant impact on the
quality of the fitting or the complexity of the computation.

Our next step will be to explore the use of general-
ized metaballs [9] representations in addition to the current
spherical primitives. This will allow us to handle com-
pletely general meshes without restriction on their facet
sizes. We expect this to result in a completely generic tool
for handling arbitrary explicit surface topologies.

References

[1] A. H. Barr. Global and local deformations of solid prim-
itives. In Proceedings of the 11th annual conference on
Computer graphics and interactive techniques, pages 21–
30, 1984.

[2] J. F. Blinn. A Generalization of Algebraic Surface Drawing.
ACM Transactions on Graphics, 1(3):235–256, 1982.

[3] J. C. Carr and R. K. Beatson. Reconstruction and Repre-
sentation of 3D Objects with Radial Basis Functions. In
SIGGRAPH, Los Angeles, CA, August 2001.

[4] I. Cohen, L. D. Cohen, and N. Ayache. Introducing new
deformable surfaces to segment 3D images. In Conference
on Computer Vision and Pattern Recognition, pages 738–
739, 1991.

[5] M. Desbrun and M. Gascuel. Animating Soft Substances
with Implicit Surfaces. SIGGRAPH, pages 287–290, 1995.

[6] F. P. Ferrie, J. Lagarde, and P. Whaite. Recovery of Volu-
metric Object Descriptions from Laser Rangefinder Images.
In European Conference on Computer Vision, Genoa, Italy,
April 1992.

[7] P. Fua. Regularized Bundle-Adjustment to Model Heads
from Image Sequences without Calibration Data. Inter-
national Journal of Computer Vision, 38(2):153–171, July
2000.

[8] S. Ilic and P. Fua. Using Dirichlet Free Form Deforma-
tion to Fit Deformable Models to Noisy 3-D Data. In Eu-
ropean Conference on Computer Vision, Copenhagen, Den-
mark, May 2002.

[9] X. Jin, Y. Li, and Q. Peng. General Constrained Deformation
Based on Generalized Metaballs. Computers and Graphics,
24(2):219–231, 2000.

[10] I. Kakadiaris and D. Metaxas. Model based estimation of
3d human motion with occlusion based on active multi-
viewpoint selection. In Conference on Computer Vision and
Pattern Recognition, San Francisco, CA, June 1996.

[11] D. G. Lowe. Fitting parameterized three-dimensional mod-
els to images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13(441-450), 1991.

[12] L. Moccozet and N. Magnenat-Thalmann. Dirichlet Free-
Form Deformation and their Application to Hand Simula-
tion. In CA, 1997.

[13] A. Pentland and S. Sclaroff. Closed-form solutions for phys-
ically based shape modeling and recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 13:715–
729, 1991.

[14] R. Plänkers and P. Fua. Articulated Soft Objects for Video-
based Body Modeling. In International Conference on Com-
puter Vision, pages 394–401, Vancouver, Canada, July 2001.

[15] R. Plänkers and P. Fua. Tracking and Modeling People in
Video Sequences. Computer Vision and Image Understand-
ing, 81:285–302, March 2001.

[16] S. Roy and I. J. Cox. A Maximum-Flow Formulation of the
N-camera Stereo Correspondence Problem. In International
Conference on Computer Vision, pages 492–499, Bombay,
India, January 1998.

[17] T. Sederberg and S. Parry. Free-Form Deformation of Solid
Geometric Models. SIGGRAPH, 20(4), 1986.

[18] R. Sibson. A vector identity for the Dirichlet Tessellation. In
Math. Proc. Cambridge Philos. Soc., pages 151–155, 1980.

[19] E. M. Stokely and S. Y. Wu. Surface parameterization and
curvature measurement of arbitrary 3-d objects: five prac-
tical methods. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 14(8):833–839, August 1992.

[20] S. Sullivan, L. Sandford, and J. Ponce. Using geometric
distance fits for 3–d. object modeling and recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
16(12):1183–1196, December 1994.

[21] R. Szeliski and D. Tonnesen. Surface Modeling with Ori-
ented Particle Systems. In Computer Graphics, SIGGRAPH
Proceedings, volume 26, pages 185–194, July 1992.

[22] D. Terzopoulos and D. Metaxas. Dynamic 3D models with
local and global deformations: Deformable superquadrics.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 13:703–714, 1991.

[23] D. Terzopoulos and M. Vasilescu. Sampling and reconstruc-
tion with adaptive meshes. In Conference on Computer Vi-
sion and Pattern Recognition, pages 70–75, 1991.

[24] G. Turk and J. F. O’Brien. Shape transformation using vari-
ational implicit surfaces. SIGGRAPH, pages 335–342, Au-
gust 1999.

[25] B. Wyvill and K. van Overveld. Warping as a modelling tool
for csg/implicit models. In Shape Modelling Conference,
University of Aizu, Japan, pages 205–214. IEEE Society
Computer Press ISBN0-8186-7867-4, March 1997. inivited.


