Loading [a11y]/accessibility-menu.js
A Bayesian framework for fusing multiple word knowledge models in videotext recognition | IEEE Conference Publication | IEEE Xplore

A Bayesian framework for fusing multiple word knowledge models in videotext recognition


Abstract:

Videotext recognition is challenging due to low resolution, diverse fonts/styles, and cluttered background. Past methods enhanced recognition by using multiple frame aver...Show More

Abstract:

Videotext recognition is challenging due to low resolution, diverse fonts/styles, and cluttered background. Past methods enhanced recognition by using multiple frame averaging, image interpolation and lexicon correction, but recognition using multi-modality language models has not been explored. In this paper, we present a formal Bayesian framework for videotext recognition by combining multiple knowledge using mixture models, and describe a learning approach based on Expectation-Maximization (EM). In order to handle unseen words, a back-off smoothing approach derived from the Bayesian model is also presented. We exploited a prototype that fuses the model from closed caption and that from the British National Corpus. The model from closed caption is based on a unique time distance distribution model of videotext words and closed caption words. Our method achieves a significant performance gain, with word recognition rate of 76.8% and character recognition rate of 86.7%. The proposed methods also reduce false videotext detection significantly, with a false alarm rate of 8.2% without substantial loss of recall.
Date of Conference: 18-20 June 2003
Date Added to IEEE Xplore: 15 July 2003
Print ISBN:0-7695-1900-8
Print ISSN: 1063-6919
Conference Location: Madison, WI, USA

Contact IEEE to Subscribe

References

References is not available for this document.