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Abstract— In this paper, we address the problem of the
automatic metric reconstruction Surface of Revolution (SOR)
from a single uncalibrated view. The apparent contour and
the visible portions of the imaged SOR cross sections are
extracted and classified. The harmonic homology that models
the image projection of the SOR is also estimated. The special
care devoted to accuracy and robustness with respect to outliers
makes the approach suitable for automatic camera calibration
and metric reconstruction from single uncalibrated views of a
SOR. Robustness and accuracy are obtained by embedding a
graph-based grouping strategy (Euclidean Minimum Spanning
Tree) into an Iterative Closest Point framework for projective
curve alignment at multiple scales. Classification of SOR curves
is achieved through a 2-dof voting scheme based on a pencil of
conics novel parametrization. The main contribution of this work
is to extend the domain of automatic single view reconstruction
from piecewise planar scenes to scenes including curved surfaces,
thus allowing to create automatically realistic image models
of man-made objects. Experimental results with real images
taken from the internet are reported, and the effectiveness and
limitations of the approach are discussed.

I. INTRODUCTION AND RELATED WORK

The confluence of projective geometry and computer vi-
sion has produced recently impressive results in image based
modeling. In particular, self-calibration methods have been
developed to support metric 3D reconstruction even from
single uncalibrated views. However, single view reconstruction
is typically performed in a semi-automatic way, due to the
difficulties arising in automatic image segmentation [1] [2]
[3]. Automatic segmentation for reconstruction is even more
challenging than for recognition, since accurate estimates of
geometric features and their relationships are needed in order
to get reasonable calibration results. The use of geometric
models of the scene can ease the automatic segmentation task,
by reducing the hypothesis search space during the process.
In [4] [5] [6] [7], a piecewise planar scene model was used to
support segmentation for reconstruction.

Models of non planar surfaces such as the Straight Ho-
mogeneous Generalized Cylinder (SHGC) were extensively
used in the past for the specific problem of segmentation for
recognition under affine view conditions (for a review, see
[8]). Recent work on this problem is described in [9], where
a bottom-up strategy is used to recognize SHGC models from
B-spline interpolated image curves. Similar time consuming
bottom-up strategies are also exploited in other approaches
performing curve segmentation without a specific 3D model
[10] [11] [12].

The most recent research in the domain of single view
camera calibration and reconstruction has focused on Surfaces
Of Revolution (SOR’s), which are a subclass of SHGC’s.
In [13] it is shown that a single SOR view can provide
two constraints to partially calibrate a pinhole camera. Semi-
automatic approaches extending single view planar scene
reconstruction to the SOR case were presented in [14] and
[15]. In particular, the latter approach also shows how to
perform texture acquisition from a single SOR view.

In this paper, a method for the automatic segmentation of
SOR models from a single uncalibrated perspective view is
presented. The method is aimed at supporting single view
reconstruction, and make it fully automatic. A top-down
segmentation strategy is devised, in which a global projective
model and the image curves consistent with it are estimated
at multiple scales. The estimation interleaves robust curve
alignment and graph-based curve grouping. The segmented
image curves are then classified into apparent contour and
imaged SOR cross sections by means of a voting scheme
based on the projective properties of imaged SOR’s. The
paper is organized as follows. In the following section, the
segmentation problem is stated, and an outline of its solution
is provided. In Sect. III, model estimation and curve grouping
is described. Curve classification is addressed in Sect. IV. In
Sect. V experimental results are discussed; finally, conclusions
and directions for further research are presented in Sect. VI.

II. PROBLEM STATEMENT AND OVERVIEW OF THE

APPROACH

The perspective projection of a SOR like the bell of Fig. 1(a)
gives rise to two different kinds of image curves, namely the
apparent contour and the imaged cross sections. The apparent
contour is the image of the points at which the surface is
smooth and the projection rays are tangent to the surface. The
shape of this curve is view dependent. On the other hand,
imaged cross sections are view independent elliptical curves,
which correspond to parallel coaxial circles in 3D and arise
from surface normal discontinuities or surface texture content.
Both the apparent contour and the imaged cross sections of
a SOR are transformed onto themselves by a 4-dof harmonic
homology

H = I− 2
v∞ lTs
vT∞ ls

, (1)

where v∞ and ls are respectively the vanishing point and the
imaged axis of revolution of the normal direction of the plane
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Fig. 1. (a): original SOR image. (b): the edge image of (a), several cross-
section fragments are visible (indicated with arrows); yet, these measurements
are practically useless for classic ellipse detection and estimation algorithms.

passing through ls and the camera center [16].
The problem addressed here is how to estimate automat-

ically from a SOR image the harmonic homology of Eq. 1
together with the apparent contour and the visible imaged cross
sections consistent with it. This geometric information is use-
ful to perform both camera calibration and metric reconstruc-
tion of a SOR object based on a single uncalibrated view. This
problem could hardly be solved without embedding the full
geometric knowledge of the scene into the estimation process.
For instance, as shown in Fig. 1(b), the visible segments of the
imaged cross sections typically correspond to almost straight
edgel chains, thus making their extraction highly inaccurate or
even impossible with standard ellipse detectors. The approach
followed in this work, sketched hereafter, attempts to exploit
as much as possible the prior knowledge of the scene in order
to tightly constrain the estimation process.

The overall approach can be divided into two phases: (1)
estimation of the harmonic homology of Eq. 1 and of all
image curves consistent with it (see Sect. III); (2) classification
of the image curves (see Sect. IV). The first phase uses an
Iterative Closest Point (ICP) strategy [17][18] to align sets
of edgels related by the harmonic homology as the result
of a nonlinear optimation problem. (Edgels are obtained by
Canny edge detection.) The main advantage of using ICP

is that it allows to represent curves globally as noisy point
sets, thus avoiding any intermediate representation by local
descriptors, which are typically cumbersome to extract and
unreliable. In order to cope with a large fraction of outliers –
i.e., edgels not belonging to the SOR –, the approach makes
an extensive use of robust regression methods, such as the
Least Median of Squares (LMedS) [19]. Outlier rejection also
benefits from the use of a general curve grouping scheme
based on continuity properties. Moreover, in order to avoid to
get stuck in local minima during the nonlinear minimization,
ICP is run at multiple scales and applied to subsequent levels
of a Gaussian pyramid. ICP algorithms generally need an
initial alignment in order to converge. At the beginning of
the first phase, the RANdom SAmple Consensus (RANSAC)
algorithm is run at the coarsest pyramid level so as to provide
ICP with a reliable first guess solution. The second phase
is devoted to classifying the image curves obtained in the
first phase respectively into (a) apparent contour, (b) imaged
cross sections and (c) clutter. To this end, ellipses are searched
for over the image as particular instances of a conic pencils
spanning the apparent contour.

III. HOMOLOGY ESTIMATION AND CURVE GROUPING

a) RANSAC-based initialization.: To compute a weak
estimate of the harmonic homology and use it as a first
guess for the whole estimation process, bitangents to imaged
SOR curves could be used as shown in [20] [13]. However,
bitangent estimation generally requires that the Canny edgels
be interpolated by polynomials. To avoid this heavy compu-
tational step, an alternative way is to estimate the homology
directly from the edgels. This is achieved by running RANSAC
at the coarsest level of the pyramid. RANSAC is a random
sampling procedure which is known to be slow in the presence
of a large number of outliers and/or model parameters. In
fact, the number N of RANSAC trials which guarantees the
statistical convergence depends on the percentage of outlier
to tolerate: N = log(1−p)

log(1−(1−ε)s) , where ε is the fraction of
outliers present in the data and s is the number of points of
the sample set (p is a probability value generally set to 0.99).
If the sample set and the outlier percentage are low, a fast
convergence is obtained. This is what happens at the coarsest
level of the pyramid, since (i) due to low pass filtering, the
number of edgels – and therefore, of possible outliers – is
small; (ii) the harmonic homology reduces to Euclidean axial
symmetry, which can be described by the 2-dof axis ls only
– the vanishing point v∞ being the point at infinity in the
direction orthogonal to the axis. Fig. 2(a) shows the estimated
axial symmetry for the bell of Fig. 1.

b) Robust homology estimation.: At each level of the
pyramid, the harmonic homology is estimated starting from the
results obtained at the immediately coarser level by directly
minimizing the registration error

F(ls,v∞) =
∑

i

‖x′
i − H(ls,v∞)xi‖2 + (2)

∑

i

‖xi − H−1(ls,v∞)x′
i‖2

Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW’04) 
1063-6919/04 $ 20.00 IEEE 



using nonlinear optimization. In Eq. 3, xi and x′
i are edgel

points corresponding under H. In particular, since H−1 = H,
F is a symmetric transfer error – a distance measure with
a remarkable geometric meaning. To reject outliers and also
to improve convergence, the LMedS is used. Its effect is to
reduce, by selecting them, the points involved in Eq. 3. Once
the histogram of symmetric transfer distances is computed,
only the points inside six times the standard deviation from
the mode are retained.

Figs. 2(b) and 2(c) show the estimation results obtained at
the first and second pyramid levels, respectively. In particular,
the result of Fig. 2(b) is an improvement of the RANSAC
result shown in Fig. 2(a), and represents the initial guess for
the result of Fig. 2(c). Note that although new edgels arise at
each finer resolution level, the homology estimate (whose axis
is shown in the figures) remains locked to the dominant SOR.

(a) (b)

(c)

Fig. 2. ICP homology RANSAC initialization (a) and estimation at the end
of the 1st (b) and 2nd (c) levels of the pyramid. Each level uses as initial
guess the results of the previous one.

c) Curve Grouping.: Despite the fact that the multires-
olution approach together with LMedS heavily contributes
to regularize the error surface, the non linear minimization
strategy above can get stuck in local minima in the presence
of a huge number of outliers. This is typically the case when
the background clutter and/or the SOR texture accidentally
exhibit symmetric patterns which act as distractors. In order
to cope with this situation, further prior knowledge about the
geometric characteristics of imaged SOR curves is exploited.
Indeed, only those image curves which (1) are long and dense,
and (2) have tangents which also correspond under the homol-
ogy should contribute to the minimization. To check the above
criteria, curves have to be constructed from edgels. An efficient

way to do this is to compute the Euclidean Minimum Spanning
Tree (EMST) for the whole set of edgels. This is obtained by
running the Kruskal algorithm on the Delaunay triangulation
graph computed over the whole edgel set [21]. The assumption
that the edgels lie on regular curves allows for the removal of
inconsistent arcs from the EMST, whose remaining connected
components are the required image curves. Arc removal is
achieved by performing simple topological testing. Indeed,
since each curve is regular, multiple branching from an edgel
is not allowed. Therefore, all arcs but two at any branching
point of the EMST must be removed. In particular, to meet
the denseness requirement, the longest arcs are removed.
The gradient direction information associated to each edgel
is also exploited to check the local tangency requirement.
In particular, given the point transformation H, tangent lines
must correspond under H−T. Edgels whose tangent lines do
not correspond are not put into correspondence in the ICP
procedure. Fig. 3(a) shows the EMST for the last level of the

200 300 400

(a)

200 300 400

(b)

(c) (d)

Fig. 3. (a): the EMST of the original image (finer pyramid level). (b): arc
removal from branching points. (c): the curves resulting from arc removal.
(d): the curves resulting after saliency thresholding.

pyramid (bell image). Fig. 3(b) shows the result of arc removal
at branching points. Fig. 3(c) shows the remaining connected
components, i.e. the resulting image curves. The figures show
the results for one of the two half planes generated by ls.
Indeed, due to symmetry under the homology, the edgel set
belonging to any half plane is sufficient for curve grouping
purposes.

After arc removal, the obtained image curves Ck, k =
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1, . . . K are scored by means of the following saliency mea-
sure:

S(Ck) =
M

1
M−1

∑M−1
j=1 d(xi,xi+1)

, (3)

where M is the number of edgels of the curve and d(xi,xi+1)
is the Euclidean distance between subsequent edgels. This
measure assigns high scores to dense, long curves and low
scores to short, fragmented ones. This allows for using LMedS
again to keep only the curves which lie outside the mode.
Fig. 3(d) shows the curves of Fig. 3(c) after saliency thresh-
olding.

d) Summary.: The homology estimation and curve
grouping algorithm is summarized as:

0. Compute the Gaussian pyramid {Gl}, l = 0 . . . L − 1 and
extract the edgels at all levels.

1. Set l = 0 (coarsest level). Compute H(l) from the edgels of G0

with RANSAC.
2. Repeat until convergence:

– Transform each edgel xi with H(l) and compute the edgel
closest to H(l)xi.

– Discard all edgel pairs whose tangent lines do not corre-
spond under [H(l)]−T.

– Compute the inlier set {xi} from the histogram of dis-
tances with LMedS.

– Compute the EMST from the points of {xi}.
– Remove all but two arcs from the EMST branching points

and obtain the set of curves {Ck}.
– Compute the histogram of the saliency and the inliers from

{Ck} with LMedS.
– Update the homology as H(l) ← arg minH(l) F(ls,v∞) by

nonlinear optimization.

3. If l < L, set l ← l + 1 and go to 2.

IV. CURVE CLASSIFICATION

In this section a novel method is presented to classify
curves extracted from a SOR image into three classes: apparent
contour, imaged cross section (ellipse), clutter. The third class
includes all the curves that are not part of the dominant SOR
object in the scene. The classification strategy is based on the
following result (see also Fig. 4):

Given two curves γ and γ′ and two points on them, x ∈ γ
and x′ ∈ γ′, which correspond under H, then all the possible
imaged SOR cross sections through x and x′ are described by
the 1-dof pencil of conics

C(λ) = mmT + λ(ll′T + l′lT) , (4)

where mmT is the (rank 1) degenerate conic composed by
the line m = x′ × x through x′ and x, and ll′T + l′lT is the
(rank 2) degenerate conic composed by the line pair l and l′

tangent to γ and γ′ (the two symmetric side of the apparent
contour) respectively at x and x′.

To prove this result, it is sufficient to recall that the apparent
contour is tangent to an imaged SOR cross section at any
point of contact [8]. This means that, at the point of contact,
the apparent contour and the ellipse have the same tangent
line. Fig. 4 shows two symmetric portions γ and γ′ of the
apparent contour, corresponding under the harmonic homology

m

l 'l
sl

x 'x

γ 'γ

( )λC

Fig. 4. The pencil of conics at the tangent contact points x and x′ of the
apparent contour of a SOR. Three members of the pencil are reported for
three distinct values of λ.

with axis ls. If the tangent lines x ∈ γ and x′ ∈ γ′ are l and
l′ respectively, then all the possible imaged cross sections C
must include x and x′ and have there as tangent lines l and l′

respectively. From the point inclusion constraints xTCx = 0
and x′TCx′ = 0 and the tangency constraints Cx′× l′ = 0 and
Cx × l = 0 the result follows immediately.

It is also straightforward to show that there exists a closed
form solution for the member of the pencil passing through
any assigned point p, i.e. such that pTC(λp)p = 0:

λp = − pT(mmT)p
pT(ll′T + l′lT)p

. (5)

This last result can be used to formulate the curve classifi-
cation algorithm as a voting procedure similar to the Hough
transform. The algorithm is as follows.

0. Repeat steps 1–3 for all the ordered pairs (Ci,Cj).
1. Consider Ci from the curve set {Ck}, assume that it

belongs to the apparent contour, and parametrize it as
xm, with m an integer spanning all the edgels of Ci. For
each value of m, a pencil Cm(λ) is obtained.

2. Consider a second curve Cj , and parametrize it as xn.
For all values of n, use Eq. 5 to find the value λn such
that xT

nCm(λn)xn = 0.
3. Let v(m,n) be the fraction of points of Cj whose distance

from Cm(λn) is below a predefined threshold δ (we
use 1 pixel). If the peak value v(m�, n�) of the matrix
{v(m,n), ∀m∀n} is above 0.9, then classify Ci as a
portion of the apparent contour, and Cj as a portion of
the imaged cross section Cm�(λn�).

V. EXPERIMENTAL RESULTS

In order to test the algorithm for SOR detection and
homology estimation discussed in Sect. III, a set of 37 SOR
images was considered. In order to have a ground truth for
experiments, for each image of the set the dominant SOR
was identified, and the associated harmonic homology was
computed from hand drawn apparent contours. The dominant
SOR was correctly detected with the proposed algorithm in
the 93% of the cases. Moreover, the average departure of
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(a) (b)

Fig. 5. (a): Two ellipses fitted with the algorithm described in [22]. (b): The
results of the proposed ellipse classification algorithm.

the harmonic homology axis computed automatically from the
ground truth axis is 0.6 degrees. The main source of error for
the SOR detection algorithm is the presence of planar scene
structures exhibiting a high degree of symmetry, giving rise
to harmonic homologies which do not actually correspond to
a SOR.

Concerning curve classification, results show that the al-
gorithm of Sect. IV is always correct in finding the SOR
apparent contour, and also provides ellipse estimates which are
far more reliable than the ones obtained with classical ellipse
estimation algorithms. Fig. 5 shows the results of ellipse
estimation obtained respectively with the algorithm described
in [22] on two manually selected curves (Fig. 5(a)), and with
the algorithm proposed in this paper (Fig. 5(b)).

Curve classification takes about two minutes per image on
a 1.5Ghz computer. Generally, most of the computation is
spent on the last pyramid level (the original image), where
a huge number of edgels is extracted. Timings are measured
with images of medium size (640 × 480 or 800 × 600) and
4 or 5 pyramid levels.

The algorithms proposed here were used to support the
method for camera calibration and metric reconstruction from
single uncalibrated SOR images described in [15]. All images
were taken from the internet. Results are shown in Figs. 6, 7
and 8. Fig. 6(a) and 6(b) show the effectiveness of results
for the metric reconstruction of the bell of Fig. 1. Estimation
results are good enough to calibrate the camera and perform
both metric reconstruction and texture acquisition as described
in [15]. Fig. 6(c) shows the acquired texture, in which im-
aged cross sections and SOR meridians become orthogonal
straight lines. Fig. 6(d) shows the image rectification of the
plane the bell is laid. The detected ellipses furnish also the
homography which reports to metric the planar geometry of
the SOR ground plane. An example with a vase image is
also presented. Fig. 7(c) shows the original image with the
superimposed interpolated curves. Figs. 7(a) and (b) show the
non interpolated curves before and after saliency thresholding.
Finally, Fig. 7(d) reports the reconstructed 3D model. Fig. 8(a)
is an image showing the Taj Mahal. Fig. 8(b) shows a synthetic
view of the reconstructed dome of the Taj Mahal.

The algorithm may fail when the shadows is present nearly

(a) (b)

(c) (d)

Fig. 6. Applications. (a),(b): two synthetic views of the reconstructed bell
of Fig. 1. (c): metric flattened texture of the bell surface (the imaged cross-
section looks straight). (d): metric rectification of the floor inferred from the
SOR.

(a) (b)

(c) (d)

Fig. 7. (a), (b): Curve grouping before and after saliency thresholding for
the vase shown in (c). (c): the original vase with superimposed the spline
curve and the ellipses used for metric reconstruction. (d): A view for the
reconstructed vase.
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(a) (b)

Fig. 8. (a): The Taj Mahal. (b): The reconstructed dome.

the apparent contour as shown in Fig.9(a). This problem arise
since the detected edges of the two curves (the apparent
contour and the shadow boundary) are very close to each other.
This produce a slightly deviating symmetry which can be
erroneously detected by the RANSAC initialization as shown
in Fig.9(b). This also prevent the convergence of the nonlinear
minimization to a global minimum (Fig.9(c)).

(a) (b) (c)

Fig. 9. (a): A SOR view in which the algorithm may fail. (b): The RANSAC
initialization at the coarsest level. The shadow boundary edges are erroneously
classified as symmetric. The dotted lines indicates corresponding points. (c):
The final result. The nonlinear minimization remain trapped in a local minima.

VI. CONCLUSION AND FUTURE WORK

An original approach to automatically grouping and es-
timation of the projective geometry of single SOR views
was presented. The approach is mainly devoted to camera
autocalibration from a single SOR view and single view metric
reconstruction of SOR objects.

The main limitation of the approach is related to the pos-
sibility of misdetections due to symmetric line patterns acting
as distractors. To overcome this limitation, further research
will be devoted to combining in a single general framework
the SOR and planar cases. Another limitation is that curve
differentiability is required in order to use Eq. 4 for the purpose
of ellipse detection. This requirement prevents from estimating
all ellipses corresponding to surface normal discontinuities.
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