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Abstract

We extend the GMM-based approach of [17], for learning
part-based appearance models of object categories, to the
unsupervised case where positive examples are corrupted
with clutter. To this end, we derive an original version of
EM which is able to fit one GMM per class based on par-
tially labeled data. We also allow ourselves a small fraction
of un-corrupted positive examples, thus obtaining an effec-
tive, yet cheap,slightly supervised learning. Proposed tech-
nique allows as well a saliency-based ranking and selection
of learnt mixture components. Experiments show that both
the semi-supervised GMM fitting with side information and
the component selection are effective in identifying salient
patches in the appearance of a class of objects. They are
thus promising tools to learn class-specific models and de-
tectors similar to those by Weber et al.[6], but at a lower
computational cost, while accommodating larger numbers
of atomic parts.

1. Introduction
In the past four years, a number of studies have investi-
gated various ways of learning part-based appearance mod-
els for object categories. Representative examples include
[9, 3, 8, 14, 16, 6]. The idea is to extract and model the
appearance, and possibly the localization, of a number of
visual fragments that are specific to a given class of ob-
jects seen from one or few specified viewpoints. These ap-
proaches differ in many respects, but they all rely on the
following common bases:

1. Some sort of low-levelinterest pointdetector, for ex-
ample, an edge or corner detector, is used to focus the
attention of the learning procedure.

2. The raw intensity of the image around each of these
points is summarized by adescriptor, which might in-
clude or not various forms of invariance.

3. The large set of descriptors stemming from the image
training set is thenclustered. Each cluster can be seen
as a possible appearance fragment, and can be associ-
ated, if required, to an individual part detector.

4. A global category-specific visual detector is learnt us-
ing the set of parts previously extracted or a subset of
them obtained throughselection.

The different approaches defined along these lines prove
very promising. However, they are usually confined tosu-
pervisedsetups where training images are carefully labeled.
This makes both learning phases 3 and 4 simpler in that pos-
itive examples are not corrupted by irrelevant clutter, and
crucial information about part localization is often accessi-
ble. The high cost of manually preparing the training sets is
however a major limitation.

Unsupervisedscenarios are only considered by Peronaet
al. [11, 15, 5, 6]. Positive examples are images exhibiting,
at an unknown location, one occurrence of the object class
before a cluttered background. A very ambitious probabilis-
tic approach is proposed to learn jointly a small set of salient
parts, their relative localization, and their appearance. The
formidable complexity of the resulting learning procedure
requires however appropriate heuristics be designed, and,
more importantly, that the number of parts involved remains
extremely small (at most five).

In this paper, we propose to re-examine the generic
synopsis above in an unsupervised context similar to the
one of Peronaet al., as a first step towards lighter tech-
niques for unsupervised learning of part-based appearance
models. We shall use in particular Gaussian mixture
models (GMMs) and learn them jointly on both positive
and negative examples, using appropriate variants of the
Expectation-Maximization (EM) algorithm. This frame-
work will also allow us to introduce easily a small but ben-
eficial fraction of supervision with a few “clean” positive
examples. These different ingredients are presented in Sec-
tion 2.

In Section 3 we discuss the ranking of the mixture com-
ponents with an information-theoretic criteria and the sub-
sequent pruning to discard both least salient fragments and
those stemming, at least partly, from the clutter present in
the corrupted positive examples.

We shall report a few experiments in Section 4; before
turning to a number of future directions in Section 5.
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Figure 1: Slightly supervised setup for learning part-based class-specific appearance models. Two large collections
of positive examples with clutter and negative examples, along with a small set of clutter-free positive examples are used.
Generic interest-point are detected in all images and each detected point is associated with ad-dimensional descriptor based
on the intensity pattern in its neighborhood. The three previous image subsets yield the three descriptor sets{xi}i∈I∗ ,
{xi}i∈I− , and{xi}i∈I+ , respectively.

2. Slightly supervised GMM learning

Consider a training set composed of positive images cor-
rupted with clutter and negative images (pure background).
As opposed to Peronaet al., we also allow ourselves a few
clutter-free examples obtained by manually framing up the
object of interest in a handful of images. Some generic in-
terest point detector (or a combination of them) is run on all
these images (e.g., Harris corner detector as in [17, 8, 14],
Forstener detector as in [9, 6], entropy-based Kadir-Brady
blob detector as in [15], Difference-of-Gaussian blob detec-
tor as in [17], etc.).

The intensity pattern around each detected point is sum-
marized by ad-dimensional vectorx ∈ Rd. Examples in-
clude raw intensity patches (d is the number of pixels of
the window considered) as in [9, 14, 6], subsets of wavelet
or PCA coefficients as in [3, 8], or SIFT descriptors with
d = 128 as in [17].

Let {xi}i∈I be the set of all descriptors collected on the
complete training set, with the index set being partitioned as
I = I+∪I∗∪I−, whereI+, I∗ andI− are respectively as-
sociated to the clean positive images, the cluttered ones, and
the negative images. Figure 1 illustrates the overall setup.

Let {yi}i∈I be the associated binary labels, whereyi =
+1 stands for “foreground” andyi = −1 stands for “back-
ground”. Two descriptor densities have to be learnt, for the
positive and negative classes respectively. Following the su-
pervised approach in [17], we resort to GMMs, as opposed
to non-parametric clustering used in most of the other stud-
ies. Apart from the advantage of giving access to densi-
ties, EM-based GMM fitting is in addition well suited to the
semi-supervised extension we require.

Formally, we want to fit a two-fold GMM

p(x) =
∑

m∈M+∪M−
πmN(x; µm, Γm), with

∑
m

πm = 1, (1)

where mixture subsets indexed byM− and M+ respec-
tively are associated to classes−1 and+1 respectively. If
z ∈ M stands for the hidden variable that indicates which
mixture componentx stems from, we have the deterministic
relation:

y =
{ −1 if z ∈ M−

+1 if z ∈ M+.
(2)

Setting

p(z = m) = πm andp(x|z = m) = N(x; µm, Γm), (3)

we obtain a joint model,

p(x, y, z) = N(x, µz, Γz)πz1Msgn(y)(z), (4)

overRd × {−1,+1} ×M , whose marginal onx coincides
with (1). Notation1A stands for the characteristic func-
tion of discrete setA. The associated graphical model is
depicted in Fig. 2.

For data pointsxi, i ∈ I+ ∪ I−, the class labelyi is
observed, whereas it is not fori ∈ I∗. As demonstrated
in other contexts, the generic EM approach to learning with
incomplete data works in particular with such mixes of la-
beled data and unlabeled (or, similarly, noisily labeled) data
[7, 4]. Our problem also falls in the class of learning prob-
lems withside information, where the side information is,
in this case, composed of the available data labels. Other ex-
amples of side information include ”equivalence” and ”non-
equivalence” constraints between samples as in [13, 12].
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(b)

z ∼ {πm}

p(x|z) = N(x;µz, Γz)

p(y = +1|z)

(a)

x ∈ Rd

y ∈ {−1, +1}
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Figure 2: Graphical model associated to the two-fold
GMM to be learnt . Learning is based on observing (a)x
only, on interest points from cluttered positive images, and
(b) x and class labely, on interest points from negative im-
ages (y = −1) and from a small number of clean positive
images (y = +1). Shaded nodes correspond to observed
variables.

In our specific case, the classic EM-based GMM fitting
is readily extended. The updating of current parameter es-
timateθ(k) = (θ(k)

m )m = (π(k)
m ,µ

(k)
m , Γ(k)

m )m at stepk is
based on the following individual responsibilities:

∀i ∈ I+ ∪ I−, ξ
(k)
i (m) = p(zi = m|xi, yi, θ

(k))

∝ N(xi; µ(k)
m , Γ(k)

m )π(k)
m 1Msgn(yi)

∀i ∈ I∗, ξ
(k)
i (m) = p(zi = m|xi, θ

(k))

∝ N(xi; µ(k)
m , Γ(k)

m )π(k)
m ,

(5)

all normalized to one overM = M+ ∪M−. The update of
mean vectors, for instance, is then classically given by:

µ(k+1)
m =

∑
i∈I ξ

(k)
i (m)xi∑

i∈I ξ
(k)
i (m)

. (6)

Given definitions (5), one can notice that:

• if I+ = I− = ∅, the problem boils down to a standard
GMM fitting over {xi}i∈I∗ , with no particular mean-
ing for the two subsets of mixture components;

• if I∗ = ∅, the problem boils down to the indepen-
dent fitting of two GMMs on data points{xi}i∈I+ and
{xi}i∈I− respectively;

• if no index subset is empty, new parametersθ
(k+1)
m for

a positive componentm ∈ M+ depend not only on
data points{xi}i∈I+∪I∗ , but also on the full set of for-
mer parametersθ(k). Hence they also depend on data
points{xi}i∈I− .

The presence of the small set{xi}i∈I+ of points labeled
for sure as foreground should help the unsupervised learn-
ing on mixed data{xi}i∈I∗ , by providing a sort of anchor
for the EM-based soft labeling.

An additional way to make the most out of this certain
information is to use it at initialization time, as initializa-
tion is indeed crucial for GMM fitting (as well as for other
clustering techniques). The set{xi}i∈I+ being clustered
beforehand withK-means, we choose to initialize a subset
of the positive mixture components around these clusters.

3. Component selection
The previous step, of GMM fitting in our case, of clustering
in most other approaches typically outputs a large number
(e.g., from 50 to 500) of atomic visual components. Each
of them is associated to one mixture component in case of
GMMs.

These components are related to some extent to the parts
of the objects of interest. This relation, however, is neither
simple, nor one-to-one. As we shall see, different compo-
nents can be associated to a same object part (seen at dif-
ferent resolutions or with different shifts), whereas some
other components can arise from multiple object and back-
ground parts which are locally similar. This mapping be-
tween atomic visual components and semantic object parts
remains a difficult and open problem that we will not try to
address here.

In any case, selecting a small subset of highlysalient
components among the large set previously obtained should
provide appearance models that are more compact, hence
lighter to learn and manipulate, and hopefully more dis-
criminant. Such a pruning step is however not mandatory
in supervised setups: the use of interest point detectors as a
preliminary sieve to discard least informative parts and the
access to part localization are sometimes sufficient to learn
part-based appearance models [9, 8]. However, when lo-
calization is not part of the descriptor, it is very important
to separate out visual fragments that characterize the class
of object of interest from those routinely seen in both posi-
tive and negative examples [17, 16]. Selection can be based
on some assessment of the information content of the frag-
ment relative to the object class, or, in other words, on the
discriminant power of the fragment alone.

In the case of unsupervised or semi-supervised learning,
corruption of the positive examples by clutter makes this
issue of retaining only the most salient features even more
important. In this adverse context, selection is also crucial
to cut down the complexity of the model to be fitted.

The problem of selecting a subset of relevant parts from a
larger noisy pool is analogous to the feature selection prob-
lem [2] where a subset of dimensions of the input space
is selected according to its relevance to the target concept.
Solutions to feature/part selection dichotomize intofilter
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and wrapper methods [2]: the former evaluaterelevance
from the dependency relationships between individual fea-
tures and the learning target, whilerelevancein the latter
is wrapped around the particular learning algorithm being
used.

The part selection scheme used by Peronaet al. [15, 6]
falls into thewrapper class. Each subset ofP candidate
parts, out of a total ofN , is fitted to the joint appearance-
shape model, and the one with the best likelihood is eventu-
ally retained. Although the selection criteria are consistent
with the overall objective of the model (likelihood), search-
ing through all possible subsets incurs a high complexity of
O(NP ) on top of the exponential complexity for inferring a
fully-connected shape model. Hence, greedy [6] or random-
ized [15] search strategies were used to render this process
feasible even for a small number (5 ∼ 6) of parts.

As done by Dorko and Schmid in a clutter-free context
[17], we propose to use afilter method for part selection
prior to learning a layout model (if any), for its ability to
accommodate a much larger number of parts with much
less computation. Having many fragments, hence a richer
model, should improve the robustness of the object detector
(e.g., higher resistance to severe occlusion) and its flexibil-
ity (e.g., the capture of multiple poses) [8].

The criteria for filtering out irrelevance can be mutual
information [17, 2], likelihood ratio [17], or their variants.

In our context, such criteria will rely on the joint distri-
bution of(y, z). However, the model used in Section 2 to fit
the two-fold GMM assumes the deterministic relation (2).
The derivation of the above-mentioned criteria thus requires
that we loosen this relationship. The rest of the model being
kept unchanged, we now set:

p(y = +1|z = m) = αm, (7)

where parameters{αm}m∈M have to be learnt.
The mutual information criterion measures the statis-

tical dependency between binary random variablesy and
1{m}(z). As demonstrated in [17], the higher this measure
for a mixture componentm, the more “informative” the fea-
ture relative to class labels. In the prospect of building an
object-specific detector, focusing on the discriminant power
of a feature seems more appropriate. This power is better
characterized by likelihood ratios [17]:

Lm =
p(z = m|y = +1)
p(z = m|y = −1)

. (8)

With our model, this score reads

Lm ∝ αm

1− αm
(9)

up to a multiplicative factor independent ofm. Ranking
mixture components according toLm then simply boils
down to rank them according toαm.

We are left with the problem of estimating parameters
{am}m∈M . This problem can be addressed with EM, in a
fashion similar to the estimation of mixture paremeters in
Secton 2. The new definition of the individual responsabil-
ities is:

∀i ∈ I+, ξ
(k)
i (m) = p(zi = m|xi, yi = +1, α(k))

∝ α(k)
m N(xi; µm,Γm)πm

∀i ∈ I−, ξ
(k)
i (m) = p(zi = m|xi, yi = −1, α(k))

∝ (1− α(k)
m )N(xi; µm, Γm)πm

∀i ∈ I∗, ξ
(k)
i (m) = p(zi = m|xi)

∝ N(xi; µm, Γm)πm,

(10)

all normalized to one overM . The update rule is readily
obtained and reads:

α(k+1)
m =

∑
i∈I+ ξ

(k)
i (m) + α

(k)
m

∑
i∈I∗ ξ

(k)
i (m)

∑
i∈I ξ

(k)
i (m)

. (11)

A lighter approximate learning procedure can be ob-
tained by freezing each hidden variablezi to some sensible
estimatêzi independent from{αm}, e.g.,

ẑi = arg max
m∈M

πmN(xi; µm, Γm). (12)

In this case, the EM estimate coincides with the max-
imum likelihood estimate on fully observed data points
{yi, ẑi}i∈I+∪I− only; that is, it is not iterative and reads

αm ≈ #{i ∈ I+ : ẑi = m}
#{i ∈ I+ ∪ I− : ẑi = m} , (13)

as in [17].
Note the GMM parameters could be jointly estimated

with {αm}: we only need to replace responsibilities (5) by
those in (10) with{πm, µm, Γm} set to its current value,
while updates stay the same (Eqs. 6 and 11).

4. Experiments
We illustrate the semi-supervised GMM fitting and compo-
nent selection algorithms for foreground/background dis-
crimination in the following setup. Face images in heavy
clutter are from the Oxford/Caltech database,1 there is one
frontal face under varying lighting conditions and scales in
each image.N = 200 images are randomly chosen as the
training set, and another 200 as the test set;Nbg = 200
background images from the same database (that contain no
face) are used as the negative examples. Additional supervi-
sion, if any, is obtained by framing faces up manually inNrg

images out ofN , which we will refer to as the “registered”
images.

1http://www.robots.ox.ac.uk/∼vgg/data/
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Figure 3: Interest points and descriptors: (a) Comparison of the Harris corner and DoG [18] interest point detectors. (b)
The magnitudes of Haar wavelet coefficients for different16× 16 images patches from two clusters (“eye” and “chin”); the
first fifteen are retained to build patch descriptors.

We first apply Harris corner detector on each image. As
illustrated in Figure 3, this interest operator exhibits sat-
isfactory sparsity and stability across objects in the same
broad class. Haar wavelet decomposition is then performed
on a16 × 16 patch around the interest point, and we retain
the lowestd = 15 AC coefficients as the descriptor for each
patch. The wavelet descriptors are chosen for their ability to
capture the perceptually salient features of the patch while
ignoring the noise (Fig. 3). Compared to alternative de-
scriptors, it is computationally lighter than PCA and is of
much lower dimensionality than SIFT [18]. We have also
empirically found that the lowest 15 coefficients are good to
characterize the different patch components while general-
izing well. They allow a94% data reduction to be achieved
from the raw 256-dimensional patch.

4.1. GMM fitting
We perform the semi-supervised GMM fit with side infor-
mation (Section 2) on the wavelet-based descriptors. We
use|M+| = 40 components for the “object” class, initial-
ized using the interest points lying within the bounding box
in the registered images (I+); and|M−| = 80 components
for the “background”, initialized using the negative patches
(I−) lying both in theNbg negative images and outside the
bounding boxes in the registered images (if any). The num-
ber of components of the Gaussian mixture is empirically
chosen to ensure that the mixture captures well the various
patch appearances within the object, and that it does not in-
clude similar components that would each be associated to
a very small number (< 5) of training patches. The Gaus-
sian components are initialized withK-means, and the EM
algorithm usually halts within 10 iterations when the im-
provement in the log-likelihood falls below0.1%.

To assess the quality of estimated models, we build the
following simple classifier

ŷ =

{
+1 if p(x|y=+1)

p(x|y=−1) > threshold
−1 otherwise,

(14)

where label likelihoods are computed according to the
model defined in Section 2; e.g.,

p(x|y = +1) = p(x|z ∈ M+) =
∑

m∈M+ πmN(x; µm, Γm)∑
m∈M+ πm

.

(15)
Various thresholds are used on the likelihood ratio in or-

der to produce the ROC curves in Figure 4, wherein the false
positive rate (recall) vs. true positive rate are measured as
follows.

True positive rate=
#positive returns

#all positive samples

False positive rate=
#false returns

#all negative samples

Note that, for the purpose of retrieving a few top-ranked
patches that lies on the object, only the lower left portion of
the ROC curve is useful. Also, one should bear in mind that
these simple GMM-based classifiers are only meant to serve
as the basis for a more sophisticated object-specific classi-
fier where part layout is taken into account. Figure 4(a)
shows that the constrained GMM fit yields superior results
than ordinary GMM fit upon equivalent initialization: the
first |M+| and the next|M−| components in both mixture
models are initialized using the labeled subsetI+ andI−,
respectively. The only difference between the two fits is that
the side information is not used in the second case.
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Figure 4: Semi-supervised GMM fitting. (a) constrained GMM fit with side information vs. ordinary GMM fit. (b)
constrained GMM fit with different numbersNrg of registered images. (c) constrained GMM fit with or without the set of
Nbg = 200 background images.

Figure 4(b) illustrates that having more registered im-
ages does improve the accuracy, as we vary from a totally
unsupervised approach with no object bounding boxes pro-
vided (Nrg = 0) to a supervised approach with registra-
tion information in every training image (Nrg = N , hence
I∗ = ∅). We have noticed that on the unsupervised end,
having no registered images at all may do better than hav-
ing very few of them (6 10), since it is difficult to reliably
initialize the “object” mixture components on too few data
points.

From the comparison in Fig. 4(c) on using or not the
Nbg = 200 background images, we can see that using cor-
related negative examples alone (mostly clutter in indoor
scenes from the same image as the objects) is better than us-
ing additionalun-correlated negative images (random out-
door scenes). For instance,Nrg = 20 andNbg = 0 out-
performsNrg = 20 andNbg = 200, while the latter has a
similar performance asNrg = 100 andNbg = 20.

4.2. Component selection
We select a subset of|K| components with the largest
conditional probability of being in the positive class (Sec-
tion 3); i.e., chooseK ⊂ M such that∀ k ∈ K, m ∈
M \ K,αk ≥ αm. We obtain the values ofαm with EM
after constrained GMM fitting (Eq. 11) or by joint EM on
all the parameters in the graphical model as explained at
the end of Section 3. We compare the components cho-
sen by these two (GMM andJoint) learning and selection
methods to those obtained by the following baselines: (1)
Random, where|K| components are chosen at random from
the |M+| components in the GMM obtained in Section 2,
and the results are averaged over five independent runs; (2)
Tight, where the|K| components with the smallest 2-norm
in the covariance matrix are chosen; (3)MAP [17], where
αm is approximated with the empirical percentage of pos-
itive patches among all maximuma posterioripatches as-

signed to componentm in the training set (Eq. 13).
Similar to the previous subsection, we traverse the ROC

curve of each selection algorithm with the likelihood ratio
P (x|z∈K)

P (x|z∈M\K) of the|K|-component subset over all the other
components in the GMM. Figure 5(b) shows an example
that selection strategiesGMM or joint identify most of the
foreground patches with as few as half (20) of the compo-
nents in the positive mixture componentsM+. From Fig-
ure 5(c) we can see thatGMM, Joint, or MAP outperform
Randomor Tight, while GMM is still better than the other
two. The difference betweenJointandGMM is seen in Fig-
ure 5(a): starting from identical initial conditions, the joint
EM results in slightlyloosermixture components and more
skewed values ofαm. While the data likelihood values are
very close in either case, the performance difference may
be due to the fact that addressing two related but different
learning objectives (tight fit vs. relevantcomponents) at
once may not be better than two separate steps addressing
each objective in turn. Note the baselinerandomor tight
caused sub-diagonal performance in the upper right part
of the ROC curve because many of the salient foreground
patches were erroneously thrown into the background class.

One alternative strategy for traversing the ROC curve is
to return all the MAP patches under componentk ∈ K be-
fore returning any inM \K. Compared to the use of likeli-
hood ratios, this is a stricter criterium in that it makes each
component in the subsetK compete with the full model
M+. Intuitively, the MAP patches are all treated equally
in this respect, while those lying further away from the
component centers are more likely to be the false posi-
tives. The component-wise ROC obtained with theGMM
andMAP ranking is compared with that of the likelihood
ratio, and this experiment is conducted on the UIUC car
dataset [9, 17]. The training set contains 400 positive im-
ages of size40 × 100 showing the side views of sedans,
with approximately the same scale, as well as 400 negative
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Figure 5:Results for component selection.(a) Ten most-likely patches from the test set in the 40 top mixture components
where GMM fitting and component selection are performed separately or jointly. The joint model uses identical initialization
as the constrained GMM fitting, and the resulting clusters are ranked in the order of decreasingαm (shown in gray levels)
learnt separately using Eq. 11. (b) Examples of foreground/background patches by theGMM andjoint model, using|K| = 10
or 20 top-ranked mixture components. The foreground points are marked withmagentaand the background points are in
yellow. (c) The false positive vs. true positive rate of the top 10 or 20 mixture components under different selection strategies:
GMM, Joint, MAP, Random, or Tight (see text for detail). (d) ROC curves forGMM, MAP, andlikelihood ratioon the car
dataset using16× 16 and8× 8 patches, respectively. (e) Ten most-likely patches for each component in the car dataset with
16× 16 patches.

40 × 100 images of natural or urban scenes without cars.
The testing set has 150 images that contain one or more
sedans (of size40 × 100 pixels) in natural environments.
The location of cars are known in this case, hence leading
to a supervised task where|M+| and|M−| components are
learnt from the positive and negative images, respectively
(Eq. (5)). From Figure 5(d) we can see that GMM performs
comparably or even better than likelihood ratio while both
outperformMAP.

5. Summary and future directions
In this paper, we investigated the scenario of semi-
supervised learning of a Gaussian-mixture patch appear-
ance model for object-class recognition. This scenario re-

quires much less effort in preparing the dataset than the su-
pervised approaches [9, 17, 8, 10], yet involves much lighter
computation than a totally unsupervised one [11, 15, 6].
We proposed an algorithm for semi-supervised fitting of ap-
pearance GMMs using side information, and addressed the
problem of mixture component selection by estimating the
conditional distributions of the patch class labels with re-
spect to the mixture components. Experiments show that
both the constrained GMM fit and the component selection
improves the performance in finding patches lying on the
objects of interest despite the presence of heavy clutter in
the training images.

Appearance modeling is the first step towards a patch-
based constellation object model than can be used for class-
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specific detection. Moving toward such a global part-based
appearance model poses the problem of the spatial relation-
ship between the parts. This can be addressed with full co-
variance Gaussian models as in [6] and sequel, or with more
tractable and yet very powerful tree-based layout models
[3, 8, 16], with the star model based on relative positioning
w.r.t. reference frame as a useful particular case.

Other open issues, left untouched in the literature, in-
clude the following aspects:

• Better capture of the available side-information: the
noisy/incomplete labeling learning framework does
not model all the available information. In particular,
the soft labeling of training inputs in descriptor space
is independent from one point to another,including for
points arising from the same training image. This
mechanism is thus unable to enforce the fact that one
instance of the object of interest is present for sure in
each positive image. As done with other types of side
information [13, 12], new EM mechanisms should be
designed to capture this particular type of side infor-
mation.

• Earlier (and hopefully better) use of the negative ex-
amples in the learning process. Techniques that follow
the generic synopsis presented in introduction usually
make use of negative examples only at selection time.
Indeed, the candidate pool of visual components is ex-
tracted from positive examples only, whereas negative
examples are invoked later on to assess the discrim-
inant power of these various components. The tech-
nique we propose goes one step further by using both
corrupted positive images and negative images as soon
as the extraction of the visual fragments. If this permits
the jointly fitting of Gaussian mixtures to both popula-
tions while taking label noise into account, it also fa-
vors the emergence of mixture components with high
discriminant power. At the moment, this assessment
of discriminant power is only performed afterwards,
at selection time. A more integrated learning scheme
could however be considered, based on discriminant
learning tools popular in speech analysis [1].

• Discriminant power and uniqueness: inner salient fea-
tures of an object appearance are likely to correspond
to specific parts of the object (e.g., the nose or the eye
for faces). Hence, as opposed to texture features, the
features of interest are likely to berare in the images
where one occurrence of the object class lies. This rar-
ity makes them prone to be lost in each of the differ-
ent learning steps. Mechanisms, in both the GMM fit-
ting and the component selection, should be devised to
protect, and favor, image fragments that appear consis-
tently in the positive images but with low intra-image
frequency.
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