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Abstract

The virtual white cane is a range sensing device based on
active triangulation, that can measure distances at a rate
of 15 measurements/second. A blind person can use this
device for sensing the environment, pointing it as if it was
a flashlight. Beside measuring distances, this device can
detect surface discontinuities, such as the foot of a wall, a
step, or a drop-off. This is obtained by analyzing the range
data collected as the user swings the device around, track-
ing planar patches and finding discontinuities. In this paper
we briefly describe the range sensing device, and present an
online surface tracking algorithm, based on a Jump-Markov
model. We show experimental results proving the robustness
of the tracking system in real-world conditions.

1. Introduction

There are an estimated 200,000 totally blind individuals
in the US [3]. Approximately five times this number are
legally blind, but they still have some usable vision left
which is not correctable by standard eyeglasses. They ex-
perience difficulty performing visual tasks, because of re-
duced acuity or field of view

Losing one’s vision can be devastating for a number of
reasons. In particular, one’s ability to move about indepen-
dently may be seriously affected. It has been estimated that
more than 30% of the blind population do not ambulate au-
tonomously outdoors [12]. Given the importance of mobil-
ity in everyone’s daily life, education and technology that
enable visually impaired persons to walk with confidence
even in unfamiliar environments have a very significant so-
cial impact.

Different types of Electronic Travel Aids (ETA) have
been developed over the past thirty years. Commercially
available ETA’s (which are meant only as secondary aid)
include: the Mowat [19] and Sendero Group’s MiniGu-
ide [15], simple hand–held ultrasound devices that can be
pointed toward any direction to give “clear path” infor-
mation (a similar system mounted on a wheelchair is dis-
tributed under the name of Wheelchair Pathfinder [11]); the
Nurion Laser Cane [9], embedded in a long cane to help
detecting drop–offs and overhead obstacles; and the Sonic
Pathfinder [10], an ultrasonic sonar device mounted on a

headband, which gives information about the surfaces in the
immediate surroundings in the form of notes on a major mu-
sical scale1.

This paper describes our recent research aimed at a novel
ETA concept, targeting the category of visually impaired in-
dividuals unable or unwilling to fully rely on the long cane
as a mobility device. The proposed ETA (“Virtual White
Cane”) is a hand–held instrument that measures distances to
surfaces, using an active triangulation sensor composed bya
laser pointer and a camera. Together with the range sensor,
this device will have an onboard processor to analyze the
range profiles acquired as the user scans the scene, and to
detect features of interest such as curbs, corners, drop–offs,
and stairways. Thus, the user will be able to explore the
environment with a very narrow laser beam receiving infor-
mation about features and their distances, and integratingit
into a mental image of the scene. Note that laser technol-
ogy allows for high spatial and temporal resolution that are
far superior to those of existing ETA’s based on ultrasound
technology2.

In order to validate our ideas, we have built a simple
proof–of–concept prototype [18], shown in Figure 1 and
briefly described in Section 2. This device produces range
measurements at 15 Hz. This relatively high measurement
rate can be used to track surfaces as the user moves the sys-
tem around, pointing it at different areas in the scene. Sur-
face tracking can provide precious information in the form
of environmental features, which often presents themselves
as geometric singularities.

In this paper we present a novel approach to surface
tracking and geometric feature detection using our hand–
held range sensing device. We use a Jump–Markov pro-
cess to describe the evolution of the range data acquired by
the device as it is pivoted in front of different types of sur-
faces. Our technique can reliably detect and classify differ-
ent types of geometric singularities in the scene, which are
important for a blind user’s safe deambulation.

1A similar device, the SonicGuide [13], mounted on a pair of spectacle
frames, is currently out of production.

2The Nurion Laser Cane uses laser triangulation as well [9]. However,
since the Laser Cane’s purpose is not to compute distances, it only has a
very limited amount of photoreceptors and no range processing capabili-
ties. In addition, since it is embedded in a physical long cane, it cannot
be used for scene exploration with the same freedom of movement as the
proposed device.



Figure 1: Left: The handheld device for range sensing.
Through the opening slit, the laser (left) and the camera
(right) can be seen. Right: The trace generated by the laser
beam as the user pivots the device in an upward motion
around a horizontal axis in front of two steps. (Note: this
picture was taken with an exposure time of about 2 sec-
onds.)

This paper is organized as follows. Sec. 2 describes our
hand–held range sensing device. Sec. 3 discusses our model
for the dynamics of range readings in front of piecewise pla-
nar surfaces, based on a Jump–Markov process formalism.
A particle filter solution to the MAP feature detection is also
presented. Sec. 4 presents quantitative experiments, while
Sec.5 has the conclusions.

2. A Virtual White Cane
In order to make the paper self–contained, we provide here
a brief description of our hand–held range sensing device,
dubbed “Virtual White Cane”. For more details, please
consult [18]. This sensor is based on active triangula-
tion (see Fig. 2). Light is shone by a laser pointer (cur-
rently of Class 2, although we plan to migrate to a Class 1
pointer), and its reflection from a surface is detected by a
miniaturized greyscale Firewire camera (PointGrey Drag-
onfly [16]), with a resolution of 1024× 768 pixels, frame
rate of 15 frames/s, and mounting a microlens of focal
lengthf = 8mm. The laser has nominal divergence of 2
mrads and centerband at 650 nm. An optical filter, attached
to the camera lens, reduces the effect of ambient light out-
side the laser’s bandwidth. The baselineB (that is, the dis-
tance of the camera to the laser) is equal to 80 mm, while
the vergenceβ (the angle between the optical axis and the
laser pointing direction) is equal to11.1◦. The law relating
the positiond of the light return on the camera (see Fig. 2)
to the distanceD to a surface is the following:

D =
fB cosβ − dB sin β + df

d cosβ + f sin β
(1)

The determination of the epipolar line (that is, the line on
the camera’s focal plane that is the locus of all the possible

Figure 2: The layout of our laser triangulation system.

positions of the laser light return) is determined by a self–
calibration procedure every time the device is turned on.
The detection of the laser light return is performed using
matched filtering. An automatic light compensation system
controls the gain and the integration time of the camera. In
our current prototype, a laptop computer connected to the
camera is responsible for range sensing and processing.

Note that this system takes point measurements, which
are immediately communicated to the user via acoustic or
tactile feedback. A blind individual would thus scan the
scene using our tool, relying on proprioception to deter-
mine the pointing direction and thus build a spatial map of
the environment. An alternative would be to scan a whole
area (for example, using a striper laser as in [14]), and then
communicate important features (e.g., the presence of an
obstacle) to the user.

3. Environment Sensing

A main goal of the proposed environment sensing module is
to detect features that are important for safe deambulation.
Obstacles that stick out from the ground at a certain height
(say, 1 meter or higher) can be detected directly by aiming
the range sensor at the space in front of the user. However,
there are more insidious features such as steps, curbs, holes
and drop–offs, which, if not detected, may be dangerous
as the user may trip over them. These features are not de-
tectable by point range measurement. They can, however,
be detected by analyzing the time profile of the measured
range as the user pivots the device around his/her wrist. For
example, Fig. 3 shows the ideal time profiles of distance
measurements in front of an ascending and of a descend-
ing step, when the device is rotated around an horizontal
axis through its optical center in an upward and downward
motion. The features corresponding to the base and edge
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Figure 3: The time profiles of range as the device is piv-
oted around an horizontal axis in front of an ascending step
(left column) and of a descending step or drop–off (right
column). Segments of data belonging to different state evo-
lution models are marked with different symbols (Model 1:
circles; Model 2; stars).

of the ascending step and of the edge of the descending
step are clearly recognizable from the time profiles of the
range. Hence, it is conceivable that by modeling surfaces as
piecewise planar, and by tracking the range using suitable
models, discontinuities between surfaces can be detected
and characterized. A similar problem have been studied for
robotics navigation, with surfaces being tracked by a rotat-
ing lidar [2, 1]. However, whereas a lidar takes calibrated
point measurements (i.e., the angular period between two
consecutive measurements is known), the velocity at which
the device is being pivoted, as well as the pivoting direction,
are unknown to the processing module in our case. One pos-
sibility for taking direct angular measurements is to equip
the device with a single–axis accelerometer, which can be
used effectively as an inclinometer. This, however, would
add to the hardware complexity of the system and therefore
to its cost. In [18], the authors used an Extended Kalman

Filter to track planar surfaces under unknown (but constant)
angular velocity. The dynamical model for the range, mea-
sured on a planar surface, was based on the following ge-
ometric identity, which relates the current measurement to
the previous three measurements (see Fig. 4):

γ

γ
γ

Dn-3 Dn-2

Dn-1

Dn

Figure 4: The measurement model for a planar surface, as-
suming constant angular velocity.

Dn =
Dn−1

Dn−2

Dn−3

+ Dn−2

Dn−1

− Dn−1

Dn−2

(2)

Points that are not well described by the planar surface
model, and that are therefore likely to indicate a surface dis-
continuity, were identified based on a validation gate mech-
anism [8] (i.e., by thresholding the normalized posterior er-
ror variance). Although this strategy gave promising results,
there are three major drawbacks to this approach. The first
problem is that the validation gate mechanism is not very
robust to other nuisances in the sensing process. For exam-
ple, if the user varies the angular velocity of pivoting during
a scan, this could mistakenly be interpreted as a disconti-
nuity. In addition, it is difficult to characterize the type of
a discontinuity (e.g., differentiate between a drop–off and a
step).

Second, equation (2) requires that three previous consec-
utive measurements of the same surface type are available
to predict the current measurement. Given the reading rate
of the sensor (in our case, 15 readings per second), and the
expected rotation rate (in our experience with user tests, this
varies from6◦/s to20◦/s), this requirement translates into a
possibly large minimum size of planar patches for success-
ful tracking. For example, if the device is held at 1 meter of
height, aimed at at an area of the horizontal ground surface
2.5 meters ahead of the user, and undergoing an upward ro-
tation of10◦/s, the distance between two consecutive read-
ing points on the ground surface is of about 9 cm. Hence,
a patch of at least 27 cm of horizontal surface before a dis-
continuity is needed for detecting the discontinuity in this
situation. This can be a problem in the case of staircase
tracking, when the size of the step is too small for reliable
feature detection. A lower pivoting rate would reduce this



size requirement, but demands good control of the wrist mo-
tion to avoid vibration or changes in speed.

Third, the result of the validation gate procedure depends
heavily on the chosen values for the state and observation
variances, which requires some degree of ad–hoc tweaking.
To overcome these drawbacks, we propose to use a differ-
ent tracking scheme. First, the state dimension is reduced
by only considering the past two mesurements and using
a locally linear model for state evolution. Second, a more
sophisticated reasoning module is used for surface discon-
tinuity detection, based on a Jump–Markov Process (JMP)
structure. The higher robustness of the JMP approach com-
pensates for the bias introduced by the suboptimal state evo-
lution model. At the same time, simple dynamic modeling
is needed for efficient implementation of the JMP tracker.

3.1. Jump–Markov Tracking – Overview
Jump–Markov Processes are a particular instance of Multi-
ple Model processes. It is assumed that, at timen, the state
evolves according to one ofN possible stochastic models.
The statistical description of the processes is known, but
it is not known which process is effective at timen. In a
Jump–Markov Process, the evolution in time of the model
index is described by a Markov chain with known transition
probabilities. Hence, JMP can be seen as a generalization of
Hidden Markov Models (HMM), which are Markov chains
seen in white noise. Even when each dynamic model in the
JMP is linear with Gaussian noise, closed form recursive
optimization results in the exponential explosion of candi-
date trajectories. JMP tracking is thus better performed by
means of particle filtering [4, 5, 6, 17], which provides a
compact description of the posterior state distribution, with
complexity that remains constant through time. At each
time periodn, particles are sampled from the previously
estimated posterior distribution and the current observation.
Each particle is associated to one model and therefore one
Kalman filter. The estimated state and model index at each
time t can be computed based on the current posterior dis-
tribution of the state, represented by the particles and their
weights.

3.2. Surface Models
Suppose the user is pivoting the sensor around an horizontal
axis at constant angular rate in front of a surface. We’ll
approximate (2) with a second–order linear model:

Dn ≈ Dn−1 + (Dn−1 − Dn−2) = 2Dn−1 − Dn−2 (3)

Note that only two past samples are needed to predict the
current sample. The bias introduced by this approximation
depends on the distance to the surface, the angle at which
the surface is seen, the angular rate, and the reading rate.

In order to detect surface discontinuities, it would be help-
ful to describe different surface orientations with different
models. For example, one model would represent horizon-
tal surfaces, while the other model would represent vertical
surfaces. Unfortunately, since the direction of pivoting is
unknown, it is impossible, based only on the analysis of
the time profile of range, to differentiate between horizontal
and vertical surfaces (see Fig. 3). It is, however, possible
to discriminate between scan segments with increasing and
decreasing measured distances. The first case corresponds
to an horizontal surface seen by an upward scan or to a ver-
tical surface seen by a downward scans. The second case
corresponds to a vertical surface seen by an upward scan
or to an horizontal surface seen by a downward scan3. In
the first case we will say that the range evolves according
to Model 1, and according to Model 2 in the second case.
Indeed, the direction of switch between two models (1 → 2
or 2 → 1) is sufficient to identify the type of surface dis-
continuity, regardless of the direction of rotation. As shown
in Fig. 3, the first case (1 → 2) occurs at the base of a wall
or of a step, while the second case (2 → 1) occurs at the up-
per edge of a step or of a curb. Being able to identify these
two types of discontinuity would enable further, higher level
reasoning about the scene. Unfortunately, the identity in
(3) cannot be used to discriminate between Model 1 and
Model 2. Hence, we propose to modify (3) into a model
with two outcomes, one of which corresponds to Model 1
and the other one to Model 2:

∆n−1 = Dn−1 − Dn−2

Dn ≈

{

eitherDn−1 + |∆n−1| (Model 1)
or Dn−1 − |∆n−1| (Model 2)

(4)

The two geometric models above are used to define two
stochastic dynamic state equations for tracking distances.
We will denote byxn = [xn(1), xn(2)]′ the state of the
system at timen, with xn(1) = Dn, xn(2) = Dn−1. Then,
the state evolution model is defined as follows:

xn = Axn−1 + (−1)rn |Bxn−1| + vn (5)

A =

(

1 0
1 0

)

, B =

(

1 −1
0 0

)

(6)

wherern = 0 if Model 1 applies, andrn = 1 if Model 2
applies.vn is a zero–mean i.i.d. Gaussian noise with co-

varianceQ =

(

σ2
w 0
0 0

)

. The obervationzn is modeled

as follows:

zn = Hxn + wn , H = [ 1 0 ] (7)

wherewn is a zero–mean i.i.d. Gaussian noise with vari-
anceσ2

w. We use the guidelines described in [18] for the
choice of the noise variance in (5–7).

3We assume here that the user never points the laser above the horizon.



At first sight, state update equation (5) may seem
redundant: after all, the simpler linear modelxn =
(

2 −1
1 0

)

xn−1 +vn can perfectly describe the geomet-

ric approximation in (3). However, by expressing the state
evolution as in (5), we are able to impose prior constraints
on the expected rate of transitions between different models
(corresponding to features in the environments). More pre-
cisely, we model the evolution of the model indexrn as a
Markov chain:

p (rn|r1:n−1) = Mrn,rn−1
(8)

whereM is the transition probability matrix andr1:n−1 rep-
resents the sequence of model indices until timen−1. Since
model switches are relatively rare events, we usually set
M1,2 = M2,1 = 0.01.

The goal of the feature detection system is to estimate,
at each timen, the correct model indexrn, based on the se-
quencez1:n of observations. We will concentrate on MAP
estimation ofrn, by determining the maximizer of the pos-
terior mass distributionp(rn|z1:n). This operation should
be performed in parallel with the estimation of the statexn.

A problem with the state evolution model (5) is that it
is not linear inx, which may impede direct use of Kalman
filter for state prediction (for a fixedrn). We can circumvent
this problem by rewriting (5) as follows:

if xn−1[1] > xn−1[2] (9)

if rn = 1 (Model 1)

xn = Cxn−1 + vn ,

elseifrn = 2 (Model 2)

xn = Dxn−1 + vn ,

else

if rn = 1 (Model 1)

xn = Dxn−1 + vn ,

elseifrn = 2 (Model 2)

xn = Cxn−1 + vn ,

where

C =

(

2 −1
1 0

)

, D =

(

0 1
1 0

)

(10)

The state update equation (9) is linear, given the previous
statexn−1 and the current model indexrn. Unfortunately,
states are never observed directly. We thus propose to sub-
stitute the terms in the first line of (9) with an approximation
of xn−1. More precisely, rather than branching on the con-
dition xn−1(1) > xn−1(2), we will use either the condition
x̂n−1(1) > x̂n−1(2), wherex̂n−1 is the estimate ofxn−1,
or the conditionzn−1 > zn−2 on the observations.

3.3. Particle Filtering Implementation
Our algorithm for estimating the surface indexrn given the
observationsz1:n is based on particle filtering, as described
in [5]. The idea is to represent the posterior distribution
p(rn|z1:n) by a set ofN particles4, {ri

n}, with associated
weights,wi

n. Then,p(rn|z1:n) can be approximated by:

p(rn|z1:n) ≈
∑

i

wi
nδ

(

rn − ri
n

)

(11)

In other words, each particle votes with weightwi
n to one

value ofrn.
At each time periodn, N new particles are sampled.

More precisely, fori from 1 toN , a particleri
n is sampled

from an importance densityπ(rn|z1:n, ri
1:n−1). Then, the

importance weights of the particles are computed (up to a
normalizing constant) as follows:

wi
n ∝

p
(

zn|z1:n−1, r
i
1:n

)

p
(

ri
n|r

i
n−1

)

π
(

ri
n|z1:n, ri

1:n−1

) wi
n−1 (12)

and then all weights are normalized so that they sum up to
one.

Given the simple form of our update equation, we are
able to use the posteriorp

(

rn|z1:n, ri
1:n−1

)

as importance
density (the details are deferred to the Appendix). This
choice is optimal in the sense that it minimizes the variance
of the weights{wi

n}, thereby maximizing the effective sam-
ple size [7]. This is seen by noticing that, for any giveni,
the weightwi

n is proportional top(zn|z1:n−1, r
i
1:n−1), and

therefore it is independent of the actual sampleri
n. Being

able to sample fromp
(

rn|z1:n, ri
1:n−1

)

reduces the risk of
algorithm degeneracy. Indeed, in our tests, we never found
any occurrence of degeneracy, and therefore didn’t need to
implement resampling procedures.

3.4. Drop–Off Detection
As shown in Fig. 3, the surface model index never changes
across a drop–off. Hence, the method outlined in the pre-
vious section cannot be applied here. In fact, we observed
that a drop–off always determines a noticeable “jump” (dis-
continuity) in the tracked data. Accordingly, we propose
to detect such discontinuities using a validation gate on the
variance of the estimation error for the statexn, computed
using the EKF tracker of [18] running in parallel to the JMP
tracker. Whereas, as stressed earlier, the validation gateap-
proach is not sufficiently reliable for the detection of model
switches, our experience has shown that it can be a valid
indicator of drop–off occurrences.

Due to its large error variance, the statexn is not reliably
estimated by the system at the jump location and for a few
samples afterwards. For this reason, in these situations the

4In our implementation, we setN = 100.



conditionxn−1(1) > xn−1(2) in (9) is approximated by the
conditionzn−1 > zn−2. In all other cases, the condition is
computed on the estimated statex̂n−1.

4. Experiments

We ran a number of different experiments with our feature
detection algorithm, in different conditions of illumination
and with different surface types. The algorithm runs in real
time with the sensor’s reading rate of 15 frames/second.
Fig. 5 and 6 show two examples of range acquisition and
feature detection in front of an ascending and of descend-
ing staircase respectively.1 → 2 model switches are repre-
sented by diamonds, while2 → 1 model switches are repre-
sented by squares. Circles represent jumps (drop–offs). The
range varied between 0.7 and 3 meters. Almost all features
are correctly detected, with very few false positives.

In order to provide a quantitative assessment of the al-
gorithm’s performances, we ran a number of tests with re-
peated pivoting at variable angular speed in front of the
same ascending and descending staircases of Fig. 5 and 6.
ROC curves for model switches and jump detection were
measured on the ascending and on the descending staircase
test respectively. In the first case, out of 1766 measure-
ments, we manually identified 321 model switches, which
represent the ground truth for comparison. In the second
case, out of 753 measurements, there were 90 ground truth
jumps. The ROC curves for the two cases, plotting sensitiv-
ity versus selectivity (the latter represented with an inverted
scale as customary) are shown in Fig. 7. The ROC curve for
model switch detection was built by varying the transition
probabilityM1,2 = M2,1 in (8), while in the jump detection
case we varied the validation gate for the EKF model [18].
Note that model switch and jump detection are not indepen-
dent processes (e.g., detecting a jump conditions the future
model switch detection, and vice–versa). This is the reason
for the non–monotonic behavior of jump model detection
sensitivity as the validation gate is increased, which is no-
ticeable in Fig. 7.

5. Conclusions

We have presented an algorithm for the automatic detec-
tion of geometric singularities as a blind user scans the
scene with our hand–held range sensing device (Virtual
White Cane). A Jump–Markov process was used to de-
scribe the evolution of range measurements in a piecewise
planar world model. Quantitative experiments have been
carried out to assess the performances of the geometric fea-
ture detection algorithm.

0 20 40 60 80 100 120 140
120

140

160

180

200

220

240

SAMPLE #

D
IS

TA
N

C
E

 (
C

M
)

Figure 5: Experiments with an ascending staircase. Dots:
actual measurements. Diamonds:1 → 2 switches. Squares:
2 → 1 switches. Circles: jumps.
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Figure 6: Experiments with a descending staircase. Dots:
actual measurements. Diamonds:1 → 2 switches. Circles:
jumps.
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Figure 7: ROC curves for model switch detection (left) and
jump detection (right).

Appendix

In this Appendix we show how, based on our dynamic
model, it is possible to computep

(

rn|z1:n, ri
1:n−1

)

. Using
Bayes’ rule, one can write:

p
(

rn|z1:n, ri
1:n−1

)

(13)

∝ p
(

zn|z1:n−1, r
i
n−1, rn

)

p
(

rn|z1:n−1, r
i
1:n−1

)

wherep
(

rn|z1:n−1, r
i
1:n−1

)

= p
(

rn|r
i
n−1

)

according
to the basic Markovian hypothesis. The first factor in (13)
can be rewritten as

p
(

zn|z1:n−1, r
i
n−1, rn

)

= (14)
∫

p
(

zn|z1:n−1, r
i
1:n−1, rn,xn

)

p
(

xn|z1:n−1, r
i
1:n−1, rn

)

dxn

The first factor in the integral is equal top (zn|xn) (accord-
ing to (7)), and therefore it is a Gaussian variable. The sec-
ond factor represents the estimate ofxn given the sequence
of past model indicesri

1:n−1, the model indexrn, and the
previous observationsz1:n−1. Hence, this is again a Gaus-
sian variable, with parameters that depend onrn.
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