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Abstract

This paper presents a new model to overcome the occlu-
sion problems coming from wide baseline multiple camera
stereo. Rather than explicitly modeling occlusions in the
matching cost function, it detects occlusions in the depth
map obtained from regular efficient stereo matching algo-
rithms. Occlusions are detected as inconsistencies of the
depth map by computing the visibility of the map as it is
reprojected into each camera. Our approach has the par-
ticularity of not discriminating between occluders and oc-
cludees. The matching cost function is modified according
to the detected occlusions by removing the offending cam-
eras from the computation of the matching cost. The al-
gorithm gradually modifies the matching cost function ac-
cording to the history of inconsistencies in the depth map,
until convergence. While two graph-theoretic stereo algo-
rithms are used in our experiments, our framework is gen-
eral enough to be applied to many others. The validity of
our framework is demonstrated using real imagery with dif-
ferent baselines.

1. Introduction

The goal of binocular stereo is to reconstruct the 3D
structure of a scene from two views. As the baseline gets
wider, the problem of occlusion, wich is often considered
negligible with small baseline configurations, can become
severe and limit the quality of the obtained depth map. Oc-
clusion occurs when part of a scene is visible in one camera
image but not in the other (see figure 1). The difficulty of
detecting occlusion comes from the fact that it is induced
by the 3D structure of the scene, which is unknown until
the correspondence is established, as it is the final goal of
the algorithm. We propose a novel multiple camera stereo
algorithm that relies on photometric and geometric incon-
sistencies in the depth map to detect occlusions. As this
algorithm is iterative, it does not explicitly model an oc-
clusion state or add extra constraints to the cost function.

Figure 1. Example of occlusion. Occluded pixels appear in white,
occluders in black.

This makes it possible to use a standard efficient algorithm
during each iteration, instead of tackling a very difficult op-
timization problem. Futhermore, our approach guarantees
to preserve the consistency between the recovered visibility
and geometry, a property we call geo-consistency. In this
paper, the maximum flow [19] and graph cut [2] formula-
tions are used to solve each iteration. Our framework is gen-
eral enough to be used with many other stereo algorithms.
A survey paper by Scharstein and Szeliski [21] compares
various standard algorithms.

The rest of this paper is divided as follows: in Section 2,
previous work will be presented. Section 3 describes occlu-
sion modeling and geometric inconsistency. Our proposed
algorithm is described in Section 4. Experimental results
are presented in Section 5.



2. Previous work

In a recent empirical comparison of strategies to over-
come occlusion for 2 cameras, Egnal [4] enumerates 5 basic
ones: left-right checking, bimodality test, goodness Jumps
constraint, duality of depth discontinuity and occlusion, and
uniqueness constraint. Some algorithms that have been pro-
posed rely on one or more of the these strategies, and are
often based on varying a correlation window position or
size [9, 6, 26, 10]. These methods are binocular in na-
ture and do not generalize well to the case of multiple arbi-
trary cameras. Other algorithms use dynamic programming
[16, 7, 3] because of its ability to efficiently solve more
complex matching costs and smoothing terms. Two meth-
ods using graph theoretical approaches [8, 11] have been
proposed, but again they do not generalize to multiple cam-
era configurations.

When extending binocular stereo to multiple cameras,
the amount of occlusion increases since each pixel of the
reference camera can be hidden in more than one support-
ing camera. This is particularly true when going from a sin-
gle to a multiple-baseline configuration, such as a regular
grid of cameras [15]. Some researchers have proposed spe-
cially designed algorithms to cope with occlusion in mul-
tiple camera configurations. Amongst these, Kang et al.
[10] proposed a visibility approach. While they did not
improve over adaptive windows, their scheme was based
on the hypothesis that a low matching cost function im-
plies the absence of occlusion. This hypothesis is also
made in [15, 20, 17, 18]. In contrast, we do not rely on
such an assumption. In [27], a relief reconstruction ap-
proach based on belief propagation is presented where the
correct visibility is approximated by using a low resolution
base surface obtained from manually established correspon-
dences. In [14, 23], visibility-based methods are introduced.
The matching cost incorporates the visibility information
into a photo-consistency matching criteria, thereby implic-
itly modeling occlusion in the reconstruction process. Our
method differs completely in the way it handles smoothing
and by its ability to recover from bad “carving”. Similarly,
a level-set method [5] uses the visibility information from
the evolving reconstructed surface to explicitly model oc-
clusion. In [12] a stereo algorithm based on graph cuts is
presented. It strictly enforces visibility constraints to guide
the matching process and ensures that it does not contain
any geometric inconsistencies. The formulation imposes
strict constraints on the form of the smothing term, con-
straints that will not apply to our method as we will see.

3. Modeling occlusion and Geo-consistency

We have a set of reference pixels P, for which we want
to compute depth, and a set of depth labels Z. A Z-

configuration f : P — Z associates a depth label to every
pixel. When occlusion is not modeled, the energy function
to minimize is
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where A}, is a neighborhood of pixel p. This can be solved
efficiently because the likelihood term e(p, f(p)) is inde-
pendent from e(p’, f(p’)) for p # p’, and the smoothing
term has a simple 2-site clique form.

To model occlusion, we must compute the volumetric
visibility V;(q, f) of a 3D reference point q from the point
of view of a camera 4, given a depth configuration f. It is
set to 1 if the point is visible, and 0 otherwise. Visibility
is a long range interaction and knowledge about immediate
neighborhood configuration is insufficient most of the time
for computing it. The visibility information is collected into
a vector, the visibility mask

where N is the number of cameras outside the reference;
a vector (1,...,1) means that the 3D point is visible in all
supporting cameras, (0,...,0) that it is invisible instead.
We call M the set of all possible visibility masks; an M-
configuration g : P — M associates a mask to every pixel.
Using this, we transform Eq. 1 into an energy function with
mask

E(f,9) = Y _ e(p, f(), 9(p)) + smoothing.  (2)

PEP
Typically, we define

m - C(p|2)
||

where the 3D point p|z is p augmented by z and C(q) =
(Ci(q),-..,Cn(q)) is the vector of matching costs of 3D
point g for each camera. We use |m]| to represent the ;-
norm which is just the number of cameras used from q. The
case where |m| = 0 is discussed in section 4.2. A simple
cost function is C;(q) = (Ire&t (Mrerq) — I;(M;q))? where
M, and M; are projection matrices from the world to the
images of camera ref and ¢ respectively, and I, and I; are
these images. Now, in order to model occlusion properly,
we simply need to examine the case g(p) = V(p|f(p), f).

If the visibility masks were already known and fixed,
the occlusion problem would be solved and only photogra-
metric ambiguity would remain to be dealt with; the en-
ergy function (2) would then be relatively easy to minimize.

e(p,z,m): fOI’pEP,zEZ,mEM



Since this is not the case and f and V (., f) are depen-
dent, we relax the problem by introducing the concept of
geo-consistency: we say that a Z-configuration f is geo-
consistent with an M-configuration g if

g(p) < V(plf(p), f) 3)

for each component of these vectors and all p € P. The
inequality thus allows the mask to contain a subset of the
visible cameras. The removal of extra cameras has been
observed to have little impact on the quality of the solution
[15]. Our problem becomes the minimization of Eq. 2 in f
and g, with the constraint that f is geo-consistent with g.

3.1. Solving simultaneously for depth and visibility

Lets define ¢°(p) = (1,...,1) forall p € P; this cor-
responds to the case where all cameras are visible by all
points. Minimizing E(f, ¢°) in f is equivalent to minimiz-
ing E(f). In general, it is possible to minimize E(f,g)
by explicitly testing all combinations of depth labels and
visibility masks in Z x M. Since #M = 2V, this effec-
tively makes the problem too big to be solved except in the
simplest cases. One way to reduce the number of visibil-
ity masks is to realize that for a given camera configuration,
some masks may occur for no configuration f. This makes
it possible to precompute a smaller subset of M. Another
way to reduce the number of masks is simply to decide on
a reasonable subset to use [15]. Unfortunately, even with
a small number of masks, it is still not practical to mini-
mize in f and g simultaneously. We can however use photo-
consistency alone to select the visibility mask of a pixel, if
it is assumed equivalent to geo-consistency. In order to de-
termine the mask for a pixel p at depth f(p), we can try
each mask and select the most photo-consistent one, i.e. we
define g} as

g5(p) = arg min e(p, f(p),m)w(m)
where w(m) is a weight function favoring ¢° and eliminat-
ing improbable masks. The problem thus becomes the min-
imization of E(f, g}) in f. Since e is point-wise indepen-
dent, the new problem is reduced to the original formula-
tion of Eq. 1 and is easily solved using standard algorithms.
This technique is used in [15, 20, 17]. However, the selected
masks are not guaranteed to preserve geo-consistency.

In space carving[14], the depth f(p) of a pixel is in-
creased at a given step if it is not photo-consistent (which
is determined using a threshold). When depth is changed
at a point, the mask configuration g is updated accordingly,
and so preserves geo-consistency. Space carving is a greedy
algorithm that solves Eq. 2 subject to the constraint of Eq. 3
without smoothing. Kolmogorov and Zabih [12] tried to

minimize an approximation of Eq. 2 subject to the con-
straint of Eq. 3 with spatial smoothing by moving iteratively
from one geo-consistent solution to the other.

4. Stereo with a new implicit occlusion model

We propose to reduce the dependency between f and g
by making it temporal: we let f° be the Z-configuration
minimizing E(f,¢°) in f and for t > 0, we define itera-
tively f* as the function minimizing

> e(p. f1(p). V(plf'(p), ') + smoothing  (4)

pPEP

and g¢ as

g'(p) = V(plf'(p). f'1),
that is to say, f* minimizes E(f¢, g*), where g* depends on
f* according to the above equation. Now, this can be done
using any standard algorithm. Unfortunately, this process
does not always converge [10].

4.1. Using history for convergence

Because of the way g* is defined, cameras that are re-
moved at one iteration can be kept at the next, possibly in-
troducing cycles. To guarantee convergence, we introduce
a visibility history mask independent of the matching cost
function value

H(q7t) = (Hl(q7t)7"'7HN(qat))

where N is again the number of cameras other than the ref-
erence and

. _ g k\ __ : g k
Hi(q,t) = [] Vi(a.f*) = min Vi(a.f*) (5)
0<k<t -
The new problem is obtained by substituting H for V' in
Eqg. 4 to obtain

EL(f) = e, f'(p), H(p|f'(p), t — 1)+ smoothing

pEP
(6)
Mutatis mutandis, f* now minimizes £, (f*) and ¢*(p) =
H(p|ft(p),t — 1). This iterative process always converges
(or stabilizes) in a polynomial number of steps. Indeed,
H(q,t) is monotonically decreasing in ¢ for all q; more-
over, if H(q,t — 1) = H(q,t) for all q, then f* = fi+!
since both are solutions to the same minimization problem,
and the process has stabilized. We see that the number of
iterations is bounded by N - #P - #Z.
Furthermore, after convergence, the final configuration
FfT+1 = fT is geo-consistent with ¢7+1; this comes from
the fact that for all p:

g"'(p) = HplfM(p).T)=H(p|f (p).T)
< Vplf(p). fH) =Vl @), 1.
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Figure 2. Effect of object enlargement on classification of occlud-
ers and occludees of a scene viewed by 2 cameras. The ground
truth is in thick gray and the depth map in thick dashes. Occluders
and occludees are shown for both ground truth (GT) and com-
puted depth map (DM). Illustration of classification shift. Respec-
tively, the 5 zones represent 1) regular pixels wrongly classified as
occludees 2) occludees correctly classified 3) occludees wrongly
classified as occluders 4) occluders correctly classified 5) occlud-
ers wrongly classified as regular.

We thus have an algorithm that converges to a geo-
consistent solution, but that can transit through intermediate
ones that are not. This type of behavior differentiates our
approach from others that strictly enforce geo-consistency
during the optimization process [14, 5, 12].

4.2. Pseudo-visibility

For agiven f, an occluder p|f(p) is a 3D point blocking
an occludee p’|f(p’) in some camera. Figure 1 illustrates
the phenomenon. Each pixel of a depth map can be classi-
fied as an occluder, an occludee, or a regular pixel (neither
occluder nor occludee). We have observed experimentally
that many algorithms have a tendency to overestimate the
disparity of occluded pixels. This has the effect of making
close objects larger, creating a shift in the pixel classifica-
tion of occludees and occluders. Occludees have a tendency
to be classified as occluders, occluders as regular pixels
and regular pixels as occludees (see figure 2 ). To validate
this assertion, we used the results of two of the best stereo
matchers evaluated with the Middlebury dataset. [21, 24, 2].
[2] was ranked the best stereo matcher in two comparative
studies [25, 21]. [24] appeared later and achieved an even
lower error rate. For each obtained depth map, we com-
puted the percentage of pixels classified as occluder by the
depth map that really are occludees and that of pixels clas-
sified as occludees that really are regular (figure 3). Both
turned out to be quite high. Since most pixels are regular,
the percentage of wrong classification for them is low. Nev-
ertheless, there is a clear bias: more pixels classified as reg-

Scenes from Middlebury comparative study

Algo Tsukuba Head and Lamp 1 Sawtooth

Real status of pixels classified from depth map as occluders

occludee | occluder | regular occludee | occluder | regular
bp [24] 443 16.3 38.9 42.6 3.8 53.6
bnv [2] 50.4 15.4 342 42.6 43 53.3

Real status of pixels classified from depth map as occludees

occludee | occluder | regular occludee | occluder | regular
bp [24] 155 5.9 76.6 55 11 934
bnv [2] 16.4 58 77.8 7.2 11 91.7

Real status of pixels classified from depth map as regulars

occludee | occluder | regular occludee | occluder | regular
bp [24] 1.0 2.0 97.0 05 15 98.0
bnv [2] 1.0 2.0 96.9 0.5 15 98.0

Figure 3. Real (ground truth) status in percentages of pixels ac-
cording to their classification. Examples from the Middlebury
comparative study [21]. In bold are the misclassifications favored
by the overestimation of the disparity of occluded pixels.

ular are occluders than occludees. The observation above
discourages the direct use of visibility to update the visibil-
ity history mask. Instead, we introduce a pseudo-visibility

Via, f) = Vi(a. f)--- Vx(a, f))

which compensates for the bias by labeling both occluders
and occludees as invisible. An obvious consequence of this
definition is the fact that

Vi(plf(p), f) <Vilplf(p),f) VpeP,

The ordering constraint simply states that when scanning
an epipolar line, the order in which we encounter two dif-
ferent objects visible in two images of a stereo pair must
be the same in the two images (see Fig 4-left). This con-
straint holds for most scenes (see Fig 4-right) [13]. While
this constraint is broken in some rare cases, it remains a
powerful tool when dealing with occlusion and outliers. If
we represent the depth map as an opaque mesh, we are guar-
anteed to preserve the ordering constraint between the refer-
ence and any supporting camera for any point visible from
them. If a set of pixels O breaks the ordering constraint
between the reference camera and some supporting image
1 at iteration ¢, then according to our definition of pseudo-
visibility (and using an opaque mesh), the history mask is
updated to H;(p|f**!(p),t) = 0 forall p in O. After con-
vergence for the final configuration f7 we have for all p
H(p|f™\(p),T) = H(p|/"(p),T — 1). In particular
H;(p|fT*(p),T) = 0 forall p € O. Since the offending
camera ¢ was not used to compute the final solution, the or-
dering constraint is respected between the reference camera
and the supporting camera i.

The pseudo-visibility masks V; are computed by using
rendering techniques. Two renderings of the current depth
map f are done from the point of view of each support-
ing camera 4: one with an ordinary Z-buffer and one with
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Figure 4. Left) Ordering constraint is satisfied. In this camera con-
figuration, the epipolar lines are parallel to the X-axis. The line 2
is located to the left of the line 1 in both images. Right) Ordering
constraint is broken, the line 2 appears to the left of the line 1 in
one image and to the right in the other.

a reverse Z-buffer test. Two depth maps L/ and G/ are
thus obtained and contains minimal and maximal depth ob-
served by the camera. By comparing them, we can detect
when two points of the mesh project to the same location for
a given supporting camera. When using rectified images,
this rendering process can be greatly sped up and simplified
by replacing it by a line drawing using depth buffers. The
pseudo-visibility function V/(q, f) can therefore be com-
puted as

V/(a, f) = (L{(Tia) - G (Tia)

where ¢ is 1 at 0 and 0 elsewhere.

Itis possible for a voxel to have all its cameras removed,
ie. H(p|z,t—1) =0evenif V(p|z,t—1) # 0 In practice,
when this happens, we replace e(p, z, H(p|z,t — 1)) by
e(p, f*+1(p)), H(p|z, ') in the minimization process that
computes f¢ (see Eq 6), where t’ is the largest index such
that H(p|z,t') # 0. It this case, depth is assigned only
from the neighborhood through smoothing.

5. Experimental results

In all our experiments, the matching cost function was
the same for all algorithms, that of [12] which is based on
[1]. We used color images but only the reference images
in gray scale are shown here. As for the smoothing term,
we used the experimentally defined smoothing function that
also comes from [12]:

s(p,r, f(p), f(r)) = Ag(p,r) I(f(P), f(T))

[ Scenes from Middlebury |
Algorithm | Barnl | Barn2 [ Bull [ Poster [ Venus [ Sawtooth |

FULL-BNV 35% | 31% | 0.7% | 3.7% 34% 3.3%
FULL-MF 40% | 54% | 0.7% | 34% | 44% 3.8%
GEO-BNV 08% | 06% | 04% 11% | 24% 1.1%
GEO-MF 15% | 09% | 03% 14% | 34% 15%
KAN-BNV 1.4% 15% | 09% 11% | 40% 1.5%
KAN-MF 11% 12% | 03% | 09% | 58% 22%

Figure 5. Error percentages for the different scenes of the Middle-
bury data set. The best performance for each image set is high-
lighted.

where g is defined as

[ 3 if It (MresP) — Ires (Mrr @) < 5
9(p,r) _{ 1 otherwise

with I(p,r) = |f(p) — f(r)| for the maximum flow [19]
formulation and I(p,r) = J(f(p) — f(r)) for graph cut
formulation [2]. The parameter X is user-defined. For each
depth map computation, we chose the \ that achieved the
best performance. A pixel disparity is considered erroneous
if it differs by more than one disparity step from the ground
truth. This error measurement is compatible with the one
used in two comparative studies for 2-camera stereo [25,
21, 12].

When minimizing Eqg. 6, a visibility mask must be keep
for every voxel of the reconstruction volume, that is, for
each p € P and z € Z. To reduce memory requirements
and the number of iterations, we kept a single visibility his-
tory for each pixel p regardless of the disparity z, i.e. (5)
becomes H;(p,t) = [To<p<, Vi(plf*(p), f*). This saves
a lot of memory but the convergence is no longer guaran-
teed. We simply stop iterating when H(p,t) = H(p,t—1)
for all p € P. We observed that running the algorithm any
longer only produce minor modifications to f¢. However,
the number of pixels with final zero masks increases, usu-
ally in regions where the ordering constraint is broken. Pix-
els with zero masks are more prone to error, therefore we
tried to improve results by adding a second step that reintro-
duces eliminated cameras. This step consisted in fixing to
their final values the depth labels of the pixels with non-zero
final camera masks. The history of the others was discarded
and the volumetric visibility recomputed, considering only
occlusion caused by the fixed pixels. Finally, an additional
minimization was run to produce a better depth map.

5.1 Middlebury

This datasets from Middlebury [22] consists of 6 series
of 9 images of size 434 x 383. We used images 0 to 7 in
our experiments. The disparities between images 2 and 6
range from 0 to 19 pixels and 20 disparity steps were used.
Since the ground truth was available for this dataset, we



Figure 6. Reference images for the Head and Lamp scene (left)
and the Santa scene (right) from the Multiview Images database of
the University of Tsukuba.

used it to compute error percentages when using the second
image as the reference. We compared our method against
Nakamura’s [15] with a special choice of masks: either all
the cameras to the left of the reference are visible or all the
cameras to the right are. This specialized version of Naka-
mura is described in [10, 20]. The abbreviation used for
this method is KAN. Our method is denoted by GEO. The
results of GEO after one iteration are also shown under the
label FULL, since this is a case where no occlusion mod-
eling is made. We used 2 different stereo matchers: maxi-
mum flow [19] (MF) and graph cuts [2] (BNV). Results are
shown in Figure 5. While KAN’s modeling of occlusion
achieves impressive results, our approach using the BNV
stereo matcher perform better in 4 of the 6 sequences of
images and were close to KAN in the other two. Oddly
enough, in the Venus scene, KAN had a higher error rate
than FULL, even though FULL is a simplified version of
KAN (a single mask with all the cameras). Our algorithm
takes an average of 8 iterations to converge, the improve-
ment after just 4 is minimal.

5.2. Tsukuba Head and Lamp

This dataset is from the Multiview Image Database from
the University of Tsukuba (see Figure 6). It is composed of
a5 x5 image grid. Each image has a resolution of 384 x 288.
The search interval is between 0 and 15 pixels and we used
16 disparity steps. We only used 5 images for each depth
map computation. The reference image is the center one
and the 4 supporting images are at an equal distance from
it, arranged in a cross shape. In addition to those of GEO-
BNV and GEO-MF, the results of GEO-BNV when using
the recovery method described in section 5 are shown under
the label “GEO-BNV pt”. Some depth maps are shown in
figure 7 and error precentages are shown in table 8. The en-
try KZ1 of the table comes directly from [12]. This method
achieved a very low error rate. However, as the authors
mentioned, the algorithm has trouble with low textured re-
gions (the top right corner for instance), therefore the error
is somewhat underestimated by the removal of an 18 pixel
border in the ground truth. We also computed the error af-

GEO-BNV GEO-BNV pt

Ordering constraint mask

Ground truth

Figure 7. Depth maps for the Head and Lamp scene (Multiview
Images database of the University of Tsukuba). Note for GEO-
BNV how the errors are concentrated in regions breaking the or-
dering constraint. A mask of pixels breaking the ordering con-
straint for the smallest baseline is also shown.

[ Algorithm [ Baseline [[ Error (wholeimage) |  Error (mask) |
GEO-BNV pt 1x 2.23% 1.53%
KZ1 1x 2.30% 2.01%
GEO-BNV 1x 2.46% 1.64%
GEO-MF 1x 3.42% 2.52%
GEO-BNV 2X 2.69% 2.11%
GEO-MF 2X 2.62% 1.28%

Figure 8. Percentages of error of the different algorithms for Head
and Lamp scene, using 5 images. The right column contains the
amount of error computed after the removal of the pixels breaking
the ordering constraint, the left shows it for all the pixels.

ter removing the pixels breaking the ordering constraint, in
particular part of the arm of the lamp. The mask was deter-
mined by re-projecting the ground truth in each supporting
camera, hence it differs for the two baselines.

GEO-BNV almost performed as well as KZ1; when re-
moving pixels breaking the ordering constraint, it achieved
a slightly lower error rate. For some algorithms, the er-
ror rate decreased for the larger baseline. This counter-
intuitive behavior is explained by the fact that the matching
cost function in the lamp region is less ambiguous when the
baseline is larger. Figure 9 shows the stability to changes of
the smoothing parameter of our algorithm using graph cuts,
giving the error percentage for 6 values of this parameter.

5.3. Baseline test
As the baseline increases, the amount of occlusion in

the scene increases as well. A stereo matcher not affected
by occlusion would give identical depth maps for different



Algorithm Smoothness parameter
o [1V0] 1 ] 2 [ 3 T 4

261 | 267 | 266 | 255 | 353 | 412

GEO-BNV 1x

Figure 9. Resistance to change of the smoothing parameter for the
Head and Lamp scene. The smoothing parameter increases by a
factor of 120, while the error rate varies by less than 1.6% for the
small baseline.

baselines. To measure the level of resistance to change of
the baseline, for the different occlusion overcoming strate-
gies, we introduce the notion of depth map incompatibility.
A pixel p is incompatible in two depth maps 7 and j if

Ifi(p) — fi(p)| > 1

(a difference of 1 is meaningless as it could be the result
of discretization errors). It is important to mention that a
low incompatibility level is not necessarily a sign of low
error level in the depth map. But the amount of occlusion
increases with the baseline, and so should the error and in-
compatibility levels for stereo matchers that do not model
occlusion. To test the stability of our algorithm, we used
the Santa scenes from the Multiview Image Database of the
University of Tsukuba (see figure 6). This dataset contains
81 imagesina9 x 9 grid and the focal distance of the cam-
era was 10 mm with successive baselines of 20, 40, 60 and
80 mm. We only used 5 images in a cross shape configu-
ration. Images were reduced by a factor of 2 to achieve a
resolution of 320 x 240. Each depth map was computed us-
ing 23 disparity steps. Note the details on the right side of
the hat and on the candle. Again, for each depth map, the
smoothing parameter was adjusted to obtain the best possi-
ble performance. Since no ground truth was available, the
choice was made by visual inspection of every depth maps.

The figure 11 contains bar charts of the percentages of
pixels incompatible between the depth maps obtained for
two baselines. In addition to GEO-MF and KZ1, results
from the Nakamura approach [15, 20] using maximum flow
(NAKA-MF) and graph cuts (NAKA-BNV) were also in-
cluded. GEO-MF is twice as stable as NAKA-MF and
yields less noisy depth maps. KZ1 and NAKA-BNV are
less stable by a factor of 5 and more. The results for FULL-
MF are again given. We can see in Figure 10 that GEO-MF
achieves the best results for the third baselines. For the first
baseline, KZ1, NAKA-MF and GEO-MF performed simi-
larly. The running times for GEO-MF and GEO-BNV are
respectively less than 5 and 9 minutes on a 2.0 GHz AMD
Athlon(tm) XP 2600+.

6. Conclusion

We have presented a new framework to model occlusion
in stereo by introducing geo-consistency. We also provided

GEO-MF 1x GEO-MF 3x

NAKA-MF 1x NAKA-MF 3x

Figure 10. Depth maps obtained by 3 algorithms for 2 differ-
ent baselines (1x and 3x) on the Santa scene (Multiview Image
Database of the University of Tsukuba).

a way to apply this framework to add occlusion modeling
to standard stereo algorithms. Rather than explicitly model
occlusion, our iterative approach relies on geo-consistency
of depth maps to determine visibility of cameras and to ag-
gressively remove them to adjust the matching cost func-
tion to the scene structure and to the bias in the type of
error committed by the stereo matcher. One of the main
characteristic of our approach is that we do not discrimi-
nate between occluders and occludees. Our implicit occlu-
sion model is successful in obtaining sharp and well-located
depth discontinuities and allows the use of efficient standard
stereo matching algorithms. Moreover, our framework does
not add any parameter or constraint to the matching pro-
cess. The validity of our framework has been demonstrated
on standard datasets with ground truth and was compared
to other state of the art occlusion models for multiple view
stereo. Our approach was also tested on increasingly wider
baselines in order to demonstrate its stability to increasing
amount of occlusion in the scene. While the validity of our
framework has been demonstrated using two stereo match-
ing algorithms, it is general enough to be applied to others.
It is not limited to regular grids of cameras and also works
with other camera configurations.

As for future work, better approach to recover from er-
ror in scene breaking the ordering constraint should be in-



Figure 11. Resistance to baseline change for 5 algorithms for
the Santa scene (Multiview Image Database of the University of
Tsukuba ); each bar represents a percentage of incompatible pix-
els between depth maps obtained for two different baselines.

vestigated. Also, the extension of this occlusion model to
full volumetric reconstruction, where occlusion becomes
the dominant problem, should be investigated.
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