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Abstract problem, usually referred to as recognition from cluttered
scenes, where it is assumed that the training examples are
A novel procedure for object detection from cluttered not previously segmented [2, 5, 4, 9, 10]. For example, a
scenes is proposed. It consists of an integrated solutiontraining set of faces will contain images where the faces are
to the problems of learning 1) a saliency detection mod- shown in front of some background scene that occupies the
ule tuned to a class of objects of interest, 2) a set of com-bulk of the image area. One aspect that makes the new for-
plex features that achieves the optimal trade-off, in a mini mulation fundamentally different from the traditional,-un
mum probability of error sense, between discrimination and cluttered, learning problem is the very unbalanced nattire o
generalization ability, and 3) a large-margin object detec the available example labels. While in the “negative” class
tor. All stages of the new procedure have some degree ofevery image region can be confidently assumed to be a “neg-
biological motivation and this is shown to enable a com- ative” example, for the “positive” class the situation istqu
putationally efficient solution that is scalable to problem different. In fact, while each training image in this class i
containing large numbers of object classes. Experimentallabeled as containing the object of interest, it is not clear
evidence is given in support of the arguments that differentwhich image regions are really “positive” or “negative” ex-
levels of feature complexity are optimal for different abje = amples. This implies that every image neighborhood could
classes, and that optimal features range from parts to tem-potentially be of interest for learning, and leads to a poten
plates, depending on the variability of the object class. tially very large (and noisy) training set. Hence, in addi-
tion to the standard problems in detection and recognition
(how to find good features, how many should be used, how
to design an effective classifier) recognition from cluter
scenes requires the ability to learn which regions of each
training image are informative for the task at hand, namely
With the formulation of object detection and recognition which regions contain the objects of interest.
as statistical classification problems and the advent ofpow  This can be seen as a saliency problem, i.e. the problem
erful classification architectures, the last decades hatve w of determining the image regions that are salient for de-
nessed major improvements in detection and recognition actection/recognition purposes. Given a reasonable salienc
curacies. Yet, there are still various aspects inwhichtiie ¢ module, it should be possible to extract a set of image re-
rent state of understanding of these problems is too limitedgions containing the objects of interest, and then apply to
to allow the design of systems with the robustness and flex-this training set (complemented with a set of negative ex-
ibility required by most practical applications. One of the amples which are usually easy to find) any of the existing
significant limitations of current recognizers is a require procedures for the design of object detectors or recogniz-
ment for carefully controlled training, usually performed ers. Overall, the problem has two major components: 1)
with large training sets that are manually assembled andthe identification of training examples and 2) the design
pre-processed. This results in extremely lengthy data col-of the classifier itself. Given that neither the saliency nor
lection procedures that make it difficult to rapidly deploy a the classification stage are likely to be perfect, it appears
classifier for a given class of objects, if a training set is no that significant gains might be possible by integrating the
already available for that class. two stages. The classifier should certainly improve when
Lately, however, the vision community has started to saliency is more accurate (because it will have access to a
investigate a new formulation of the detection/recognitio cleaner training set) and the saliency stage should beable t

1. Introduction



improve with feedback from the classifier (regarding image Comminety
regions that it considered salient but were clearly ideadifi Control
by the classifier as not containing the object of interest). e et o pewent | ['Satiency | [ Object P, Complex
This is the problem addressed by this work, where we Select Map ] ADetection] | peatures | | FeatureSet
present an integrated solution for saliency and classificat
in the context of object detection problems. The work in-
cludes various contributions that address significant open
questions for this problem. The first is a discriminant for-
mulation of saliency that is optimal in a classification sgens
and produces saliency locations which are most informative

in the sense of identifying the object of interest. The seélcon  of the object of interest in its entirety, this approach ligua

is an iterative procedure that relies on classificationltesu requires Samp"ng a very |arge number of image locations.
to improve saliency, and on the improved saliency results toThis makes the subsequent step of patch selection compu-
obtain a better classifier. The third is a procedure to gener-ationally intensive and, so far, this method has only been
allows fine control over the trade-off between discriminant 5 ~itarnative approach is to rely on a saliency detec-
power (which increases with complexity) and generaliza- tor to find a set of “interest points” in each training im-
tion ability (which tends to decrease with increasing com- age [2, 5, 9, 10]. While drastically more efficient, from a

pIeX|t>/). The foyrth IS a b|olpg|cally inspired, a”?' com- computational point of view, this approach has weaker per-
putationally efficient, mechanism for featurg Se.le(?t'wr formance guarantees from an accuracy standpoint, because
overcomplete featu_re sets, that balances discriminatidn a the definitions of saliency in current used are unrelated to
redundancy reduction. - . . the detection problem. Instead, saliency is usually defined
Overall, our results show that it is possible to simultane- as some universal property that salient image regions must

gusly I.earn, |rclja|str|ctlydd|sc;:m|n§nt fas|h|on, fl) a sahyenz exhibit. Particularly popular definitions are that the irmag
etection module tuned to the object class of interest, )aregion must 1) contain specific visual attributes, such as

setof c(;)_mp_lex fegtures ghat ach|e|z_ve an ofptm;]al (tjradea-l;abff be edges or corners [6], or 2) exhibit a significant amount of
wg?en .|scfr1|m|n|at|on and 3gen|era |zat|on_ortb_e %teekt n complexity, where complexity can be defined in multiple

0 jectsint atcass,.an ) alarge-margin object et. tor ways [8, 7]. Since these definitions do not constrain salient
'S a}so showp that dlﬁgrent levels of feature complgxﬂg ar regions to be informative with regards the detection prob-
optimal for different object classes, and that the optireatf |, (e.g. are not tuned in any form to the class of objects

tures range from parts to templates, depending on the Vallio pe detected) they tend to produce a collection of interest

gbmty of ;d;)e ?Ias_,s. IA” S.tag‘?s of o durhelxlg.orltﬂm have sorgle points that are only weakly guaranteed to have any relation
egree of biological motivation and this Is shown to enable i ,q object of interest. This increases the difficulty @& th

a computati_onally efficient solution tha.t is scalable tolpro design of representative object parts, which has to be very
lems containing large numbers of object classes, W'thOUtrobust to the presence of training outliers. The complex-

compromising optimality in a classification sense. ity is, in this way, shifted to the representation stage ciwhi
tends to be computationally intensive for these methods.

2. Related work With respect to the representation of object parts, while
some have argued for the use of simple features (e.g. lo-
Learning to segment and recognize objects from clut- cal descriptors such as PCA, or SIFT [7]) [5, 9, 10], others
tered scenes is a topic that has received an increased amouhtwve proposed complex ones (image patches) [2, 4]. Being
of attention in recent years [1, 2, 5, 4, 9, 10]. A common more closely tuned to the objects of interest, complex fea-
theme to current approaches to this problem is to representures are certainly more discriminant. On the other hand,
an object as a collection of parts. This leads to two fun- the response of simple features tends to exhibit less vhariab
damental questions: how to extract these parts from clut-ity when images are subject to spatial image deformations,
tered images, and how to represent them. The first problernoise, or other perturbations. Overall, feature compyexit
is usually solved in one of two ways. The first is to ran- is, for object detection, the main variable for controlling
domly crop image patches from the images in the training the trade-off between discriminant power and generaliza-
set, at a wide range of scales, and then select those whiction ability (invariance) faced by any classifier. It themef
are informative with respect to the object class [4]. This appears that best results should stem from 1) considering a
is a strategy of least commitment which guarantees that nohierarchy of features that span the continuum from simple
fundamentally important patches will be lost due to coarse to complex, and 2) learning the appropriate level of feature
sampling. On the other hand, in order to guarantee coverageomplexity for each detection problem.

Figure 1. A hierarchical model for integrated learning of
saliency maps, object detector, and complex features.



3. Integrated saliency and object detection (through factorizations based on known statistical proper
ties of images) over the trade off between optimality, in

In this work, we address all problems discussed above by Minimum Bayes error sense, and computationally effi-
proposing an integrated solution for learning saliencyspap ¢iency [11]. Our experience of applying algorithms in this
object detectors, and features. In particular we propose arfamily to the saliency detection problem is that, when the
iterative procedure, illustrated by Figure 1, consistifithe ~ Starting feature set is complete, even those strongly diase
following steps. We start by selecting the most discrimtnan towards efficiency can consistently select good salieney de
subset among a set of simple features (the discrete cosinéection filters. This is illustrated by all the results preteel
transform - DCT - descriptors), which is used to generate In this paper, where we have adopted the maximization of
a discriminant saliency map. Image patches are then exmarginal diversity (MMD) [12] as the guiding principle for
tracted from the most salient locations and used to train anf€ature selection.
object detector. Using standard cross-validation it isspos Given a classification problem with class labéls
ble to identify which patches are most likely to be positive Prior class probabilities™y (i), a set ofn features, X =
examples, and these are passed to a feature extraction modX1, - - -, Xy ), and such that the probability density &%
ule. This consists of finding the best approximation to each given class is Px, |y («i), the marginal diversity (MD) of
of the salient patches, at a given level of spatial resaiutio  featureXj, is
The resulting features are more complex than the initial set
and more tuned to the object class of interest. The process is md(Xy) =< KL[Px,y (@|i)||Px,(z) >y (1)
then iterated and the spatial resolution of the featuram{co
plexity) allowed to increase at each iteration. The resulti where< f(i) >y= M Py (i)f(i), and KL[p|lq] =
a feature hierarchy, that ranges from simple (DCT descrip- [ p(s)log %dw the Kullback-Leibler divergence between
tors) to complex (image patches), allowing explicit cohtro p and q. Since it only requires marginal density estimates,
of the trade-off between discriminant power and generaliza the MD can be computed with histogram-based density esti-
tion ability. A saliency map and an object detector are also mates leading to an extremely efficient algorithm for featur

produced at each level of this hierarchy. selection. Furthermore, in the one-vs-all classificatice s
nario, the histogram of the “all” class can be obtained by a
3.1. Salient feature selection weighted average of the class conditional histograms of the

image classes that it contains, i.e.

To avoid the lack of specificity of existing saliency de-
tectors, we rely on a new form of saliency, which we refer Px, v (2] A) = Px, vy (x]i) Py (i) 2
to asdiscriminant saliencyand is intrinsically grounded on icA
the recognition problem [11]. In particular, we equate the
saliency of each region with how much it contributes to the
solution of the detection problem, by definitige salient
attributes of a given visual concept as the attributes that
most distinguish it from all other visual concepts that may
be of possible interestDue to this equivalence between
saliency and discrimination, discriminant saliency can be
naturally formulated as an optimal feature selection prob-
lem: the most salient features are the ones that best separa3.1.2 Saliency map and salient location
the class of interest from all other classes.

where A is the set of image classes that compose the “all”
class. This implies that the bulk of the computation, the-den
sity estimation step, only has to be performed once for the
design of all saliency detectors. In summary, for complete
feature dictionaries, the discriminant saliency procedsr
highly scalable in the number of object detectors to learn.

Our experience is that, given a set of discriminant features
. remarkably simple mechanisms, inspired by biological vi-
311 Scalablefeature seection sion, are sufficient to achieve good saliency results. In par

Since saliency is only a pre-processing stage to object delicular, we have adopted a two step procedure based on the
tection, the process of salient feature selection should beclassical Malik-Perona model of texture perception [13], i
computationally efficient. The design of optimal feature se lustrated in Figure 2. First, a saliency map (i.e. a function
lection methods of low-complexity is a problem that we, describing the saliency at each image location) is obtained
and others, have been actively pursuing in the contextPy pooling the responses of the different salient featufes a
of research in feature selection itself [11]. Our research ter half-wave rectification

has shown that information-theoretic methods, based on on

maximization of mutual information be’Fween feat.ures and S(z,y) = ZwiRz(fc v), )
class labels, have the appeal of enabling a precise control =
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Figure 2. Schematic of the saliency detection model. - -
(d)

where S(z,y) is the saliency at location(z,y),
Ri(xz,y),i = 1,...,2n the channels resulting from Figure 3. lllustration of non-maximum suppression. (a) A ref-

half-wave rectification of the outputs of the saliency fiter erence image. (b) Three features (c) Saliency maps (d) Splienc
Fi(z,y),i=1 n maps after suppressoin.
(3 ) P} — 9o ey

Roj—1 = max|[—1I * Fg(z,y),0]

Rap = max[] x Fy(z,y),0] ) Furthermore, we would like to embed feature selection

in the computation of the saliency map itself, as some de-
pendencies may have great impact on the latter while others
may be irrelevant. To achieve this goal, we propose a bio-
logically inspired feature selection procedure that corabi
aspects of the two feature selection strategies. As in the ca
of the simple features, we start by ordering the feature set

location. All neighbors within a circle whose radius is this according to the MMD criterion. We then pick features se-

scale are then suppressed (set to zero). The process is iteg_uentyally, In a mann.er that.maX|m|ze.s dlscrlmmguon bqt
ated and produces a list of salient locations, their safienc penalizes redundancies. This penalty is accomplished with

strengths, and scales. recourse to the prime biological me;hanlsm for redund_ancy
reduction, non-maximum suppression, which results in an
example-reweighting method for feature selection.

The use of non-maximum suppression to penalize de-

Unlike simple generic features, such as wavelet or DCT fil- Pendencies is probably best understood with respect to Fig-
ters, class-specific features sets learned from trainiagén  ure 3, which presents an example in the context of face de-
collections tend to be highly over-complete. This implies tection. A set of features, shown in (b), is initially avéie
that they contain subsets of features which are highly redun in result of the MMD-based selection step. These features
dant. These redundancies must be penalized during featur@re highly discriminant (they look like faces or components
selection, since the selection of a feature that is highly re Of faces) but also redundant. Typical redundancies include
dundant with a previously selected one does not add muchsimilar features at slightly different scales, shiftedliegs
discriminant power (independently of how discriminant the Of the same feature, etc. A reference image, shown in (a),
new feature is on its own). is first randomly selected and individual saliency maps pro-
Feature selection in the presence of strong dependencie§uced for that image by considering one feature at a time.
is, computationally, a much more demanding process than'he individual saliency maps are shown in (c). The largest
when such dependencies are not present. In particular, acl€sponse among these saliency maps is then found, and the
counting for dependencies requires either 1) modeling join corresponding feature selected. Non-maximum suppression
densities, a process that has exponential complexity in thethen consists of subtracting the saliency map of the selecte
order of the dependency sets, or 2) penalizing the trainingfeature to all the others. The process is iterated untikeith
samples that are well explained by the previously selectedl) all features are selected, or 2) all the remaining sajienc
features, at each round of feature selection, as is done ifmaps are below a threshold (set to zero in all results pre-
methods such as boosting [14]. Our experience with vari- sented in this paper). Our experience is that the latter in-
ous existing feature selection methods, from both camps, isvariably occurs much earlier than the former.
that that they would significantly compromise the computa-  The example of Figure 3 contains three features, two that
tional efficiency of discriminant saliency detection. are highly redundant (full-face detectors of slightly dint

I(x,y) the input image, and; = md(i) a weight equal to
the feature’s marginal diversity. Second, the saliency map
is fed to a peak detection module implemented as a winner-
take-all network. The location of largest saliency is first
found. Its spatial scale is set to the size of the region of
support of the salient feature with strongest responseaat th

3.1.3 Over-complete feature sets



scale shown on the leftmost slots of (b)) and a third (a face are shown as circles in Figure 4). This produces a set of pos-
part shown in the rightmost slot) that has small redundancyitive (object) examples. Repeating the process on images
with them. In result, the saliency maps of the first two fea- known not to contain the object produces a set of difficult
tures are quite similar and significantly different fromttha negative (non-object) examples. The two sets are then used
of the third. Because the full-face features are most discri  to learn a classifier using standard cross-validation tech-
inant for face detection, the leftmost feature is selected i niques. The process is repeated for all possible numbers
the first round. The middle feature is also highly discrimi- of simple features used in saliency map design. By moni-
nant, but due to its redundancy with the first, the subtractio toring test error it is possible to determine the optimalieal

of the two saliency maps is nearly zero. On the other hand,for that number.

the saliency map of the rightmost feature is not signifigantl The main source of difficulties for this procedure is that
affected by the suppressium, and this feature becomes thé¢he training set of the positive class is, in general, caedp
winner in the second round, even though it is individually Because saliency is not perfect, there are usually outlying
less discriminant that the one in the middle. Overall, the background patches which survive the saliency filter. To in-
combined process of feature selection and generation of thecrease the robustness to this problem, we adopt as measure

saliency map has great computational efficiency. of classifier goodness the probability of error on the task of
classifying training images, rather than patches. Aftér al
3.2. Learning complex features this is the only data for which there is unmistakable ground

truth. Images are classified in two steps. First, the image

The saliency maps of the previous section can be seen agatches extracted from an image by the saliency detection
stage are classified individually. Next, if at least one @f th

soft segmentation masks for the object of interest. In this

section we present a method that relies on these masks t@d'v'dual patches is classified as positive, the image-is as

learn complex features tuned to that object. So far, we havefs'gmad to the object class. If all patches are negative, the

not addressed the problem of how to determine the num-'"Mage is assigned to the negative class. The ROC equal er-

ber of features that contribute to a given saliency map. In ror rate ("e'_p<Tm6pOS7’t_we) = 1 — p(Falsepositive))
general, it is important to limit the number of such featyres of the resulting detector is used as a measure of the perfor-
because there are usually many which are not discriminantMance. - _
Non-discriminant features usually have a strong respanse i W? beheye t.h?t the exact cle_lssmer arch|tect_ure used to
image regions that do not cover the object of interest, there plassn‘y the individual patches is not a determinant fa_cto.r
fore degrading the saliency map. If the features are simple,In thg overall performgnce, as long as a good classifier is
even the saliency map originated by the best feature subse?btamEd' In our experiments we have used a support vec-

can have outliers, since the content of some image Iocation§Or dTr?Chme'i (tj)uli tof|tsﬁ_vv_ell tk_novxlln gerle:ghzau%r: ag\"/"t%
may be indistinguishable from the object of interest in the and the avariability of eflicient implementations. The

feature space under consideration. learns a decision boundary of the form

Given that extracting complex features from areas not
covered by the object of interest is likely not to be very use-
ful, the extraction of complex features requires 1) determi
nation of the best number of simple features to use in thewhere K (x, y) is a kernel function that transform data to
construction of saliency maps, and 2) elimination of outlie a high dimensional spacé,a bias term, and; anda; are
locations in the resulting saliency maps. We refer to the a set of support vectors and their weights. SVMs are best
combined process as the&traction of representative object understood in the context of classifying separable daa, i.
locations Once itis done, a collection of object patches can when there is no overlap between the positive and negative
be obtained by retrieving the locations of largest saligncy classes. When this is the case, the SVM parameters (support
and a new set of features, more complex and tuned to thevectors and weights) are learned so as to find the classifica-
object, can be learned. We refer to this process agehe  tion boundary with the maximum margin, where the margin
eration of complex features is defined as the distance from the closest examples to the
boundary. Support vectors are the examples closest to the
boundary (i.e. at a distance from it equal to the margin).
The problem is usually normalized so that margin is equal
We adopt a cross-validation strategy for the extraction of to 1. Given a test example, the SVM computes the distance
representative locations. The basic idea is to start fromfrom the example to the boundary and thresholds it by the
the saliency maps associated with images that contain theébias. The larger (and positive) this distance, the grebter t
object of interest and extract image patches located at theconfidence that the example is from the positive class.
points whose saliency is above a threshold (some examples For non-separable data, the SVM formulation is slightly

f(z) = sz’gn(z a;yi K (z;, ) + b) )

3.2.1 Extraction of representative locations



in the least squares sense

k
min |\I—Zanibni|\2,1§ni§N (6)
ny...ng i=1
Gpy - - Gy

Figure 4. Examples of image patches accepted (white circles) If the set Of simple fea.ture.s is orthogonal, the coefficients
and rejected (black circles) by the SVM. a; are obtained by projectinfonto the space spanned by
the features,. The optimal seb,,,,i = 1,...,k is that
containing thek features of largest coefficient magnitude.
When the simple feature set is complete, the approximation
more complex, we omit the details which can be found in €0r is monotonically decreasing dnand can always be
various texts [15]. The most relevant point, in the context Made zero by making = N. In this work we rely on a set
of this work, is that the confidence measure provided by the ©f 8 x 8 DCT features to compose the simple feature set.
distance to the classification boundary generalizes to this!hiS Setis orthogonal and complete.
case. It can therefore be used as a measure for selecting
the image patches from the positive class to be passed tg . .
the next stage, where complex features are generated. Wg' Resultsand discussion
adopt the strategy of selecting the positive patches that ha

a distance to the boundary superior to the margin. Figure 4 The performance of the proposed object detection archi-

shows a collection of images with saliency detection errors tecture was evaluated on the Caltech database, using the ex-

dicate patches accepted by the classifier, while blackesircl
indicate their rejected counterparts.

3.2.2 Generation of complex features

The image patches extracted from representative locations
are usually good prototypes for the object of interest. Nev-
ertheless, because they are extracted from particulagsyag
they tend to be too specifically tuned to the particular ob-
ject and viewing conditions captured by those images. Itis,
therefore, unlikely that they will generalize well if dirc
used as features for object detection [3]. Instead, good fea
tures must balance discrimination with robustness to varia
tions in object appearance, in order to guarantee good gen-
eralization. As suggested in [3], one possibility to inaea
robustness is to reduce spatial resolution (or complexity)
For example, the variation in the response of a feature of
high frequency content to a variation in object pose is jikel

to be larger than that of a low-pass filtered replica.

It follows from this argument that feature complexity is
naturally equated with spatial resolution. To generate fea
tures with a given level of complexity, we therefore pro-

pose to approximate the salient image patches by the best , , _
linear combination of a pre-specified number of simple Figure 5. saliency maps generated with features of different
complexity. Saliency maps shown from the second to the last row

features. In particular, i[. is a salient image patch and were generated with 1, 4, 8, 16, 32 and 64 linearly combined DCT
{b1,ba,...,by} asetofN simple features, the best approx- features.

imation of complexityk is defined as the subset bffea-

tures whose linear combination best approximates the patch

HEREEE:



4.1 Performance of complex salient features inside the ground truth aree8% of the times. For more
complex features this percentage is always atsove.
Figure 5 shows some examples of saliency maps gen-
erated at different stages of the feature complexity hierar N
chy for the face class. They were obtained with subsets of _,
complexityk € {1,4,8,16,32,64} from the DCT set. The
simple and generic features used in the first stage appear to
be sufficient for some scenes, but are not very selective for
others, where they respond quite strongly to various areas o » P
background. It is, however, clear that even for the SimpleSt Osoa|iency0é2r1ergy?r§:idemggmundoi?um area ° uveorép witt? (rte gruﬁfﬂ mm? .aBrea !
features the face regions always originate a strong respons (@) (b)
At later stages, where the saliency is computed with com-
plex features, the response is clearly stronger on the faces

areas than the background, for all scenes. Figure 7. Comparison between saliency maps, generated with
features of different complexity, and the ground truth on feee
database. Cumulative distribution of (a) percentage oésakn-
ergy inside the ground truth box, and (b) overlap betweeiersal
locations and ground truth.

i

o
©

o
o

206

15
=
)
)
2
<
]
3
9
o
©

o
IS

E 04

accumulative sum

o
N}

o

The second measure, whose cumulative sums are shown
in Figure 7(b), is the relative overlap between the bounding
box of the most salient location and the ground truth. If
A and B are two bounding boxes, the relative overlap is

defined as
|AN B
lap(A, B) = 7
overlap(A, B) = 3 (7)

where|A] is the area ofd. Again, complex features show
better performance, but the differences are less significan
This indicates that, even though the simple features raspon
more strongly in non-face areas, the strongest response is
already quite reliably aligned with the face location. QGver
all, the best results are obtained with complex features com
posed by a linear combination of 16 simple features.

Figure 6. Salient locations detected with features of dif- ThIS. result is probably best understood by_con3|der|ng
ferent complexity. From the second to the last row: & the salient features learned at each stage, which are shown
{1,4,8,16,32,64} respectively. White circles are salient loca- in Figure 8. In the first stage salient features tend to be ver-

tions accepted by the SVM classifier, black circles inditiaeones

that are rejected, tical bars, and contain only very low frequency information

about face. As the complexity increases, and more high
frequency information is added to the features, these start
To evaluate the saliency maps objectively we comparedto look more like faces. In the final stages, where all 64
them, as well as the resulting detected salient locationssimple features are used to represent each complex feature,
(shown in Figure 6), with ground truth, manually obtained the features become face templates cropped from individual
by placing a rectangle around each face. The results arémages. As discussed above, these templates are too tuned
shown in Figure 7. The first measure that we computed wasto individual faces and cannot account well for the variatio
the percentage of the total energy of the saliency map thatinside the face class. In result, they lead to worse saliency
was contained in the ground truth box. Figure 7(a) presentsmaps than the ones of intermediate complexity.
the cumulative sum of this measure for features of differ-  We finalize the discussion on saliency by presenting, in
ent complexity. It can be observed that the saliency is moreFigure 10 and 11, saliency maps generated by features of
spead over the image for simple features than for complexcomplexityk € {1, 4, 8,16, 32} for the airplane and motor-
features, confirming the observations of Figure 5. However, bike classes. In general terms, the conclusions derived for
in most cases, the bulk of the saliency energy is contained inthe face class hold for these classes as well. The only sig-
the ground truth box. For example, the saliency maps generificant difference is that, while for faces the learned com-
ated by simple features have more thaft of their energy  plex features tend to be templates, for these classes taey ar
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Fig ure 8. Six salient features generated at each stage of the fea-
ture complexity hierarchy. From top to bottom: complex feature
generated by combination of 1, 4, 8, 16, 32 and 64 DCT features.

parts, as can be seen from Figure 9. This shows that optimal
complex features can range between the two types, depend-
ing on the variability of the object class. Figure 10. Saliency maps generated with features of different

complexity, for the bike class. From the second to the last row

k€ {1,4,8,16,32}.

Figure 9. Seven of the salient features learned for Airplanes by tend to reject more examples in the earlier stages, where the

combinations of 32 DCT features. lower quality of the saliency maps leads to a higher number

of mislabeled positive examples. At the later stages, where
there are fewer saliency outliers, the classifier tends to ac
cept more examples.

4.2 Object detection We would like to finish by pointing out that all results
presented were obtained with a straightforward implemen-

In this section, we evaluate the performance of the SVM tation of the algorithmic procedures discussed in the text.
classifiers at each stage of the hierarchy. Figure 12(a)There are many operations that could be implemented to
presents the ROC equal error rates obtained at the differentimprove performance but which we have, so far, not con-
stages. For the face class, and consistently with the sesultsidered. These include pre-processing operations, such
of Figure 7, the best performance is achieved with the com-as compensating for illumination variations by histogram
plex features of complexity = 16. It is quite interesting,  equalization or subtraction of a dominant gradient, or re-
however, to realize that for the other two classes, moterbik sampling operations, such as augmenting training sets with
and airplanes, simpler features actually work best. Fram th perturbed replicas of the training examples (so as to obtain
images of these two classes, shown in Figures 10 and 11, ibetter invariance to various transformations). The benefit
is clear that these classes contain significantly more vari-of including such operations remain an open subject for fu-
ability in appearance, pose, and scale than the faces. It isture research.
therefore, not surprising that the performance of the com-
plex features degrades in this case.

Another interesting observation is that, although there
are mislabeled examples in the positive training set used to
design the classifiers at all stages, these classifiers do not [Hl Y- Amitand D. Geman, "A computational model for visual
exhibit great difficulty in eliminating the mislabeled imag iglggtlon Neural ComputationVol.11(7), pp.1691-1715,
patches and, consequently, generate good candidatedgatur
for the next stage. This is illustrated by Figure 4. Fig- [2] S. Agarwal and D. Roth, “Learning a sparse representation
ure 12(b) shows the percentage of examples accepted by  for objection detection,” IrProc. ECCV 2002Vol. 4, pp.
the SVM at each stage. It can be seen that the classifiers 113-130, 2002.
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