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Abstract

Interactive or semi-automatic segmentation is a useful
alternative to pure automatic segmentation in many appli-
cations. While automatic segmentation can be very chal-
lenging, a small amount of user input can often resolve
ambiguous decisions on the part of the algorithm. In this
work, we devise a graph cut algorithm for interactive seg-
mentation which incorporates shape priors. While tradi-
tional graph cut approaches to interactive segmentation are
often quite successful, they may fail in cases where there
are diffuse edges, or multiple similar objects in close prox-
imity to one another. Incorporation of shape priors within
this framework mitigates these problems. Positive results on
both medical and natural images are demonstrated.

Keywords: segmentation; graph cuts; shape priors; level
sets.

1 Introduction

Interactive or semi-automatic segmentation is a useful
alternative to pure automatic segmentation in many appli-
cations. While automatic segmentation can be very chal-
lenging, a small amount of user input can often resolve am-
biguous decisions on the part of the algorithm. One exam-
ple application is the use of segmentation to improve the
accuracy of prostate radiation therapy. A patient may be
scanned prior to treatment; having access to the segmen-
tation of the prostate and surrounding structures can make
the therapy considerably more precise. However, the two
standard options, manual segmentation and fully automatic
segmentation, are both problematic. On the one hand, man-
ual segmentation is very time-consuming – 20 minutes for
the prostate alone; on the other hand, automatic segmenta-
tion is very challenging in this type of medical imagery, due
to diffuse edges and the presence of multiple objects with
similar intensity profiles. As a result, interactive segmenta-
tion, which relies on minimal physician input and is easily
refined, is an attractive option.

Boykov and Jolly [1, 2] proposed a very effective method
for interactive segmentation based on graph cuts. The user

input is minimal, consisting of a few mouse-clicks indicat-
ing some pixels which are inside the object of interest, and
some which are outside. An energy function based on both
boundary and region information is then minimized subject
to these user-imposed constraints. The global minimum is
found by using graph cut techniques. The results from this
method are quite impressive: with a relatively small amount
of user input, the algorithm successfully segments a variety
of objects from both medical and natural images.

Unfortunately, there are some cases in both medical and
natural images, where this cut-based method is insufficient.
Figure 1 shows an example of this phenomenon, in the case
of a medical image of a bladder, even with a significant
amount of user-input. The cause of this failure is often (a)

Figure 1. The graph cuts algorithm fails with
a fair amount of user input. (a) The user in-
put: circles indicate object points, squares
indicate background point (colour is for visu-
alization purposes only). (b) The segmenta-
tion, shown in white, leaks out of the bladder.

the absence of strong boundaries and (b) the presence of a
number of objects with similar intensity profiles. The for-
mer confounds the boundary terms in the energy, while the
latter confounds the region terms.

Our solution to this problem is to include shape priors in
a graph cut based formulation. A variety of segmentation
methods have been designed with the idea of using shape
knowledge; obviously, this knowledge can only improve the
performance of the algorithm. However, to this point, it has
been difficult to find a way to incorporate shape priors into
a graph cuts based approach. This is highly desirable be-
cause, as was mentioned above, the graph cuts approach
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is one of the few thatguarantees a global optimum. Our
solution is simple, yet effective. The idea is to use graph
edge-weights which contain information about a level-set
function of a template, in addition to the usual boundary
and region terms. This allows the edges of the graph to
convey information both about the image as well as about
the prior shape knowledge. The template itself can be trans-
formed, where the particular transformation is chosen based
on the user input. Using this algorithm on a variety of im-
ages shows that it can lead to significant improvements in
segmentation.

The remainder of the paper is organized as follows. Sec-
tion 2 examines related work. Section 3 describes the
algorithm: following a brief description of the original
Boykov-Jolly algorithm, we describe how to emend the
edge-weights to include shape information, and how trans-
formations of the template can be incorporated. In Section
4, we show results on both medical and natural images,
which demonstrate that shape priors can improve perfor-
mance. Section 5 concludes.

2 Related Work

Related work falls into two categories: segmentation us-
ing shape priors, and globally optimal methods for segmen-
tation (including graph cuts). We address each in turn.

Let us begin with segmentation using shape priors. Some
researchers have augmented a level-set active contour seg-
mentation algorithm with a PCA term that biases the curve
evolution towards shapes that are judged to be more likely
based on the training set [13, 16]. Cremers et al. incor-
porated a more sophisticated (non-PCA) shape model [7].
Segmentation of 3-D medical images has also been accom-
plished by the coarse-to-fine deformation of a shape-based
medial representation model, or “m-rep” [14, 17].

Other segmentation methods use both shape priors and
an appearance model. Simple models of appearance are
used in [18, 19]; for example, the intensities within the seg-
mented areas may be forced to have means or variances sig-
nificantly different than the background. There are a va-
riety of methods that model the shape and appearance of
an object using PCA. The standard-bearer for such meth-
ods is the “active shape and appearance model” of Cootes
et al. [5], which has been successfully applied to the three-
dimensional segmentation of medical volumes, including
magnetic resonance images of the brain, heart, and articular
cartilage [9, 12, 20].

Let us now examine globally optimal methods for seg-
mentation. The most relevant papers are those by Boykov
and Jolly [1, 2] which have already been mentioned. How-
ever, there are several earlier papers which are also relevant.
The method of Greig et al. [8] is similar to that of [2] when
there is no user input. Wu and Leahy [21] pose the problem

of segmenting an image intoK components (again, with-
out user input) in terms of graph cuts. This technique tends
to have a bias towards small components. While the cur-
rent algorithm, and those already mentioned, can work on
two- or three-dimensional images, there are a slew of algo-
rithms which are specialized to two-dimensional segmenta-
tion. These include snake-related method [4], ratio regions
[6], deformable template methods [22], as well as the work
of Jermyn and Ishikawa [11].

3 The Algorithm

In this section, we describe the method of incorporating
shape priors into graph cut based segmentation. In Section
3.1, we focus on the method of [2] for performing graph cut
segmentation without shape priors. In Section 3.2, we ex-
plain the mechanism for incorporating shape priors within
this formulation for a fixed template. In Section 3.3, we
show how the template itself can be adjusted.

3.1 Interactive Graph Cuts Segmentation

Boykov and Jolly [2] introduced a novel interactive
method for segmentation. The idea is as follows: the user
marks some pixels as being part of the object of interest,
and some as lying outside the object i.e. within the back-
ground. The number of such points is up to the user, but in
practice can be quite small (less than ten). Given these con-
straints, the algorithm tries to find the optimal segmentation
such that these hard constraints are satisfied. In particular, a
segmentation is scored according to the following criteria:

1. Each pixel inside the object is given a value according
to whether its intensity matches the object’s appear-
ance model; low values represent better matches.

2. Each pixel in the background is given a value accord-
ing to whether its intensity matches the appearance
model of the background; low values represent better
matches.

3. A pair of adjacent pixels, where one is inside the ob-
ject and the other is outside, is given a value according
to whether the two pixels have similar intensities; low
values correspond to contrasting intensities (i.e. to an
edge).

Note that the appearance models can be learneda priori, or
they can be learned by examining the points selected by the
user as hard constraints. More will be said on this subject
in Section 4.

Given these criteria for scoring a segmentation, the goal
is to devise an algorithm that can find an optimal segmen-
tation. Specifically, letp be a pixel, letP be the set of all
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pixels, and letAp = 0 or 1 if p is in the background or
the object, respectively. LetRp(Ap) be the individual pixel
matching cost for pixelp (items 1 and 2 above); letBp,q

vary inversely with the difference of intensities of pixelsp
andq (see item 3 above). Then the segmentation score is
given by

E = µ
∑
p∈P

Rp(Ap) +
∑

(p,q)∈N :Ap 6=Aq

Bp,q

whereN is the set of neighboring pixels. The particular
forms forRp(Ap) andBp,q are discussed in Section 4.

A fast (polynomial time) combinatorial algorithm exists
for minimizing E, based on the problem of computing a
minimum cut across a graph. We will defer the discus-
sion of this until after we formulate the new energy function
which incorporates shape priors.

3.2 Adding in Shape Priors

We begin by assuming that our shape prior is a single
fixed template. Clearly, this is not a realistic assumption, as
the object may, at the very least, undergo rigid transforma-
tions to move around the image. We drop this assumption
later on, in showing how to accommodate such transforma-
tions. Our goal will be to emend the energy function to be

E = (1− λ)Ei + λEs

where Ei is the image energy described in Section 3.1,
while Es is an energy based on the shape prior.

Our first attempt at defining a shape energy might run as
follows. Suppose our fixed template is the curve specified
parametrically as̄c(s). Our segmentation is given by the
variablesAp; the curve surrounding the segmented object
may be written as

c = bd({p ∈ P : Ap = 1})

wherebd(S) is the boundary of the setS. (In this case,
the boundary might be extracted by standard set operations
on images.) We could then parametrize this curve to get
c(s); if the parameters is defined on[0, 1], a natural energy
function is

Es[c(·)] =
∫ 1

0

[c(s)− c̄(s)]2ds

Such an energy will indeed achieve its global minimum
whenc(s) = c̄(s) for all values ofs. Unfortunately, how-
ever, there are two main problems with this simple energy.
First, it is dependent upon a parametric specification of both
c and the templatēc. This implies that there must be a rea-
sonable correspondence made between the parameters ofc
and c̄; otherwise, the functionalEs can give meaningless

values. For example, suppose thatc(s) = c̄(1−s); geomet-
rically, then,c and c̄ represent the same curves. However,
they are parametrically distinct, and therefore the value of
Es will be positive in comparing these curves (and could,
potentially, be quite large). Furthermore, combining this
shape-based criterion with the image-based criterion of the
previous section may lead to even more unpredictable re-
sults. The second problem is perhaps even more impor-
tant: we cannot use graph cut techniques to minimize such
a function. As a result, we cannot guarantee the global op-
timality of the solution, which is critical to our approach.

Thus, we must find a functional which allows us to match
the segmented curvec with a template curvēc, and yet
does not rely on a parametric specification of either the seg-
mented curve or the template. In order to achieve this goal,
let us specify the template as a distance function whose
zero level set corresponds to the template. That is, let
φ̄ : R2 → R be such that

c̄ = {x ∈ R2 : φ̄(x) = 0}

wherec̄ so specified is given as a collection of points. Note
that unlike much of the work in the active contours litera-
ture [15],φ̄ is not a signed distance function; it is a regular,
unsigneddistance function. An example of such a function
for a curve which is the contour of a fish is given in Figure
2.

Figure 2. Distance function φ̄(x) for the con-
tour of a fish.

Using this idea of a level-set template, the shape energy
can be written in the following form.

Es =
∑

(p,q)∈N :Ap 6=Aq

φ̄

(
p + q

2

)
whereN is the set of neighboring pixels. Let us explain the
meaning of this function. The energy will be low if

φ̄

(
p + q

2

)
≈ 0

for all neighbouring pixelsp andq where one of the pixels
belongs to the object and the other to the background (i.e.
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Ap 6= Aq). But recall that if a pointx lies near the shape
template, then it will satisfȳφ(x) ≈ 0. Since(p + q)/2 is
roughly a point on the boundary of the segmented object,
the condition forEs to be small is the same as the condi-
tion that the boundary of the segmented object lies near the
shape template. Thus, this particular form forEs neatly
captures the idea of shape priors.

Finally, we have that the energy function is

E =
∑
p∈P

(1− λ)µRp(Ap) (1)

+
∑

(p,q)∈N :Ap 6=Aq

[
(1− λ)Bp,q + λφ̄

(
p + q

2

)]

3.3 Transforming the Template

The foregoing discussion centered on using a fixed tem-
plate. In reality, we would like to deal with a deformable
template, which can undergo a variety of transformations,
i.e. with a family of learned curves. In what follows, we
will focus on the group of euclidean similarity transforma-
tions of a particular fixed template; we will treat the rigid
part of the transformation and the scale part separately. It
is important to note that we are not dealing with any other
types of non-rigid deformations, which may be specific to
the object at hand. At the same time, the algorithm seems to
be experimentally quite robust to the situation in which the
template is not exact, i.e. in which the true object and the
template are related by some non-rigid deformation. More
will be said on this topic in Section 4.

Let us now turn to the treatment of rigid transformations
of the template, i.e. to rotations and translations. The key
idea is to realize that we already have a pretty good idea of
where the segmented object is, based on the user input. For
example, the centroid of the user input gives us a reasonable
idea of the centroid of the true object. More formally, we
can treat this input as landmark data, and use the Procrustes
Method [10] to match the template curvēc to the data,
yielding the transformed template curvec̄trans. (In fact, we
use a variant of the Procrustes Method, see [23].) Given this
transformed curvēctrans, we can then compute its distance
function φ̄trans as our input to the scale-based algorithm
described in the next paragraph. Note that the rigid trans-
formation we will compute via the Procrustes Method will
not be extremely accurate, due to the paucity of user input.
However, this method turns out to be sufficient for the rea-
sons mentioned in the previous paragraph, namely that the
algorithm is robust to the situation in which the template is
not exact. This is born out in the experiments of Section 4.

It remains to deal with scale. Once we have computed
the optimal rigid transformation, our approach to scale is
based on brute force. We compute a gaussian pyramid of
the image, and simply minimize the energy function given

in (1) – via the graph cut techniques described in the next
section – for each level of the pyramid. The key is that for
each level we use the level-set templateφ̄trans at thesame,
fixed scale.1 By keeping the scale of the template fixed, but
shrinking the scale of the image, we are effectively looking
for a larger object.

The reason for proceeding in this way, rather than by
expanding the template, has to do with the complexity of
the operation. Rather than dealing with several operations
on an image of a fixed size, we are dealing with operations
on multiple smaller images. In fact, despite the brute force
nature of the operation, it is not very expensive. The total
number of pixels in a pyramid are less than4/3 times the
number of pixels in the original image, as each level is1/4
the size of the previous one. Since the graph cut techniques
used are, in practice, linear in the number of pixels [3], the
time to run the algorithm should only increase by1/3 at
most.

To decide on the best segmentation amongst all of the
scales, we may simply compare the scale-normalized values
of the optimal energies at each level. That is, for pyramid
level k (where level 1 is the finest), we must multiply the
optimal energy by4k, as there are4k more pixels in level 1
as there are in levelk. In practice, using four levels of the
pyramid gives good results.

3.4 Minimizing the Energy

In order to minimize the energy function given in (1), we
can use graph cut techniques. Our undirected graphG =
(V,E) is as follows. The set of vertices is just the set of
pixels augmented by two special vertices:V = P ∪ {S, T}
whereS is the source andT is the sink. The set of edges
consists of all neighbouring pairs of pixels, along with an
edge between each pixel and the source and sink:

E = N ∪ {(p, S), (p, T ) : p ∈ P}

In terms of the weights on the edges, there are three cases
to consider. If(p, q) ∈ N , then

w(p, q) = (1− λ)Bp,q + λφ̄trans

(
p + q

2

)
On the other hand, if the edge contains the sourceS as one
of its vertices, then

w(p, S) =


∞ p ∈ O
0 p ∈ B
(1− λ)µRp(Ap = 0) otherwise

1Of course, for bookkeeping purposes, we must shift the template ac-
cording to the decimation entailed by the gaussian pyramid. That is, the
pixel (2i, 2j) at leveln of the pyramid corresponds to the pixel(i, j) at
leveln + 1; thus, we must shift the centroid of the template accordingly.
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Figure 3. Segmenting a bladder. (a) The user input: circles indicate the object, squares indicate
the background (colour is for visualization purposes only). (b) The result without shape priors –
segmentation is shown in white. (c) The level-set of the shape template after transformation, φ̄trans.
(d) The result with shape priors.

Figure 4. Changing the template. (a) The level-set of the deformed template (compare with Figure
3). (b) The segmentation result is largely unchanged. (c) The level-set of the deformed and shifted
template. (d) The segmentation result is largely unchanged.

whereO is the set of pixels selected by the user to belong to
the object, andB is the set of pixels selected by the user to
belong to the background. Finally, if the edge contains the
sinkT as one of its vertices, then

w(p, T ) =


0 p ∈ O
∞ p ∈ B
(1− λ)µRp(Ap = 1) otherwise

It is relatively straightforward to show that the minimum
cut on the graphG corresponds to the minimum of the en-
ergy function in (1). We refer the interested to [2] for a
formal proof of this fact. The actual maximum flow algo-
rithm which is used for solving minimum cut problem is
that described in [3].

4 Results

We have run the algorithm on a number of examples,
both of natural and medical images. Before describing the
results, let us discuss some aspects of the implementation.
As in [2], we use the following form forBp,q:

Bp,q ∝
e−(I(p)−I(q))2/2σ2

‖p− q‖
The idea is to make the edge-weight large when pixels have
similar intensities, and small when they are dissimilar; in

this case, we will prefer to cut through edges where the
pixels are quite different, i.e. along contours in the im-
age. The denominator is the distance between pixelsp and
q; this term is relevant because we use 8-neighbourhoods,
rather than 4-neighbourhoods, so that not all neighbours are
equally close. Note the single parameterσ; in all of the ex-
periments except for the corpus callosum, we setσ = 3,
which gave the best performance for the algorithm without
shape priors. In the case of the corpus callosum,σ was var-
ied over a wide range in an effort to improve the results of
the algorithm without shape priors; please see the discus-
sion below.

The form forRp(Ap) given in [2] requires knowledge of
some information about the object and the background. In
particular, suppose that we know the probability distribu-
tions over intensity for both the object and the background,
i.e. Pr(I|obj) andPr(I|back). In this case,

Rp(Ap = 0) = − log Pr(I|back)
Rp(Ap = 1) = − log Pr(I|obj)

(Recall thatAp = 0 corresponds to the background and
Ap = 1 corresponds to the object.) These distributions can
either be learned beforehand, or they can be learned based
on the user input: two histograms can be built up of the
intensity information, one based on the object seeds, and
one on the background seeds. In the experiments we have
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Figure 5. Segmenting the transformed bladder image. (a) The user input: circles indicate the object,
squares indicate the background (colour is for visualization purposes only). (b) The result with-
out shape priors – segmentation is shown in white. (c) The level-set of the shape template after
transformation, φ̄trans. (d) The result with shape priors.

performed, we have found that this region-based term has
been helpful sometimes, but not others; for example, in the
bladder image, it is not particularly useful, as much of the
surrounding tissue is roughly similar to the bladder in inten-
sity. As a result, we have tried running the algorithm with
and without this region-based term; we show the result that
is best for the original Boykov-Jolly algorithm.

We show the results of experiments on several images;
in all cases, the template is captured by hand from an image
of a similar object. Let us first examine a case from medi-
cal imagery: segmentation of the bladder from a slice of a
CT scan. This is a challenging task, as the bladder and the
surrounding tissue have similar intensity profiles. In the left
two panels of Figure 3, one can see the effect of running the
Boykov-Jolly algorithm, even with a relatively large amount
of user input: the bladder segmentation bleeds out into the
surrounding tissue. The right two panels show the shape
template, and the effect when it is used: the segmentation
is much more accurate. A natural question is whether the
algorithm without shape priors would proceed successfully
by simply adding a little more user input. In the experi-
ments in this paper, the answer is generally no; one needs to
add significantly more input, typically 2-3 as many points,
to find the correct segmentation.

It is a natural question to wonder how accurate the tem-
plate needs to be for this method to be successful.2 This
is answered in two separate ways. First, we deform the
bladder template somewhat, and run the algorithm; this is
illustrated in the left two panels of Figure 4. Second, we
translate this deformed template by 10 pixels in both verti-

2In many of the images, the template appears very well aligned with
the object. This is not always the case – as already noted, the Procrustes
Method is not perfect. However, in examining the images side-by-side, the
eye tends to line up the objects.

cal and horizontal directions (for comparison purposes, note
that the bladder has dimensions of about 40 pixels); the re-
sults are shown in the right two panels of Figure 4. In both
cases, the segmentation remains successful, and is only al-
tered slightly.

Figure 5 shows the success of the algorithm in dealing
with transformations. The image in Figure 5 is gotten by
rotating the image of Figure 3 by100◦ and scaling it down
by a factor of2. The resulting segmentation, shown in the
rightmost panel, is once again correct.

Figures 6, 7, and 8 show the segmentations of a maple
leaf, a fish, and a corpus callosum, respectively. In all
cases, the algorithm without shape priors cannot deal with
the complex imagery, despite quite a lot of user input; the
shape priors are critical to computing the correct segmen-
tation. In particular, the case of the corpus callosum is
interesting. Distinguishing the middle part from the sur-
rounding brain tissue is quite complicated for the non-shape
based algorithm; indeed, we tried varyingσ over the range
0.1−6 without significant improvement in the final segmen-
tation. (σ = 1, which gives the best performance without
using shape priors, is shown.) By contrast, the shape-based
method is successful.

5 Conclusions and Directions for Future Re-
search

We have devised an algorithm for incorporating shape
priors into a graph cuts based interactive segmentation. The
shape priors are embedded into the weights on the edges
in the graph, by using a level-set formulation. Transforma-
tions of the shape template are also taken into account. The
results of the algorithm on medical and natural images show
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Figure 6. Segmenting a maple leaf. (a) The user input: circles indicate the object, squares indicate
the background (colour is for visualization purposes only). (b) The result without shape priors –
segmentation is shown in white. (c) The level-set of the shape template after transformation, φ̄trans.
(d) The result with shape priors.

Figure 7. Segmenting a fish. (a) The user input: circles indicate the object, squares indicate the
background (colour is for visualization purposes only). (b) The result without shape priors – seg-
mentation is shown in black. (c) The level-set of the shape template after transformation, φ̄trans. (d)
The result with shape priors.

Figure 8. Segmenting a corpus callosum. (a) The user input: circles indicate the object, squares
indicate the background (colour is for visualization purposes only). (b) The result without shape
priors – segmentation is shown in white. (c) The level-set of the shape template after transformation,
φ̄trans. (d) The result with shape priors.
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the new method shows some promise in making graph cut
segmentation more precise.

The main direction for future research is to examine
whether more complex transformations of the template can
be easily incorporated into the scheme. Many objects can
bend and shear in ways that are not taken account of through
euclidean similarity transformations. While we have seen
that the current algorithm is robust to modest modifications
of the shape, it will be interesting to see whether this robust-
ness holds in the case of greater modifications; and if this is
not the case, how the algorithm may be modified to account
for these changes.
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