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Abstract

A new robust matching method is proposed. The Progres-
sive Sample Consensus (PROSAC) algorithm exploits the
linear ordering defined on the set of correspondences by a
similarity function used in establishing tentative correspon-
dences. Unlike RANSAC, which treats all correspondences
equally and draws random samples uniformly from the full
set, PROSAC samples are drawn from progressively larger
sets of top-ranked correspondences.

Under the mild assumption that the similarity measure
predicts correctness of a match better than random guess-
ing, we show that PROSAC achieves large computational
savings. Experiments demonstrate it is often significantly
faster (up to more than hundred times) than RANSAC.

For the derived size of the sampled set of correspon-
dences as a function of the number of samples already
drawn, PROSAC converges towards RANSAC in the worst
case. The power of the method is demonstrated on wide-
baseline matching problems.

1. Introduction

Finding' reliable correspondences in two or more images is
a difficult and critical step in many computer vision prob-
lems such as narrow and wide-baseline stereo matching
[10, 17, 11, 7, 6] structure and motion estimation [8, 14],
image retrieval, and object recognition [12].

It is generally accepted that incorrect matches cannot be
avoided in the first stage of the matching process where
only local image descriptors are compared. The mis-
matches, due to phenomena like occlusions, depth discon-
tinuities and repetitive patterns, are detected and removed
by robust methods that search for sets of matches consis-
tent with some global constraint. Random sample consen-
sus RANSAC [3] and similar robust hypothesize-and-verify
methods [15, 14] have become the methods of choice for
outlier removal.

IThe authors were supported by the Czech Science Foundation un-
der project GACR 102/03/0440 and by the European Commission under
project IST-004176.

Figure 1: The Great Wall image pair with an occlusion.
Given 250 tentative correspondences as input, both PROSAC
and RANSAC found 57 correct correspondences (inliers).
To estimate the epipolar geometry, RANSAC tested 106,534
seven-tuples of correspondences in 10.76 seconds while
PROSAC tested only 9 seven-tuples in 0.06 sec (on average,
over hundred runs). Inlier correspondences are marked by a
line segment joining the corresponding points.

Standard RANSAC does not model the local matching
process. It is viewed as a black box that generates IV ten-
tative correspondences, i.e. the error-prone matches estab-
lished by comparing local descriptors. The set{f of tentative
correspondences contains an a priori unknown number I of



correct matches (inliers). The inliers are consistent with a
global geometric model that is found by fitting a model to
a randomly selected subset of &{. The hypothesize-and-test
loop is terminated when the probability of finding a superior
solution falls below a pre-selected threshold. The time com-
plexity of RANSAC depends on N, I, and the complexity m
of the geometric model. The average number of samples
drawn is proportional to (N/I)™ [4].

In this paper, we introduce a new hypothesize-and-verify
(sample-and-test) matching approach called PROSAC (PRO-
gressive SAmple Consensus). The method achieves large
computational savings (with speed-up factors of the order of
102 compared to RANSAC) by exploiting the linear ordering
structure of /. The ordering is defined at least implicitly in
all commonly used local matching methods, because the set
of tentative correspondences is obtained by first evaluating
a real-valued similarity function (or “quality”) ¢(-) that is
subsequently thresholded to obtain the [V correspondences.
Correlation of intensities around points of interest [18], Ma-
halanobis distance of invariant descriptors [17] or the ratio
of distances in the SIFT space of the first to second nearest
neighbor [5] are commonly used examples of g(-).

In PROSAC, samples are semi-randomly drawn from pro-
gressively larger sets of tentative correspondences. The
improvement in efficiency rests on the mild assumption
that tentative correspondences with high similarity are more
likely to be inliers. More precisely, we assume that the or-
dering defined by the similarity used during the formation
of tentative matches is not worse than random ordering. The
assumption was found valid in our experiments, for all qual-
ity function and for all tested image pairs. Experiments
presented in Section 3 demonstrate that the fraction of in-
liers among the top n sorted correspondences falls off fairly
rapidly and consequently PROSAC is orders of magnitude
faster than the worst-case prediction.

The PROSAC process is in principle simple, but to fully
specify it, two problems must be addressed. First, the
growth function n = g(t) that defines the set U, of n top-
ranked correspondences that is sampled after ¢ trials must
be selected. Second, a stopping criterion giving guarantees
similar to RANSAC about the optimality of the obtained so-
lution must be found. We propose a growth function g(t)
guaranteeing that PROSAC is at least equally likely to find
the optimal solution as RANSAC. However, we have not
been able to prove analytically that PROSAC and RANSAC
have the same performance for the worst-case situation, i.e.
when the correspondences are ordered randomly. Neverthe-
less, the comparison of PROSAC and RANSAC on randomly
ordered sets of correspondences showed that their perfor-
mance was effectively identical.

The PROSAC algorithm has two other desirable features.
The size N of the set of tentative correspondences has lim-
ited influence on its speed, since the solution is typically

found early, when samples are taken from a smaller set.
One parameter of the matching process is thus effectively
removed. Instead, the user controls the behavior of PROSAC
by specifying the time when the sampling distribution of
PROSAC and RANSAC become identical. For the growth
function ¢(t) selected according to the above-mentioned
criteria, PROSAC can be interpreted as a process running
RANSAC processes in parallel for all U,,n € {m...N}.
In experiments presented in Section 3, PROSAC speed was
close to that of RANSAC that would operate on (the a pri-
ori unknown) set of correspondences with the highest inlier
ratio.

Related work. Tordoff and Murray [14] combine the
MLESAC [15] algorithm with non-uniform (guided) sam-
pling of correspondences. This is the published work clos-
est to PROSAC, that differs in two important aspects. First,
guided sampling requires estimates of the probability of
correctness of individual correspondences while here we
only assume that some quantity monotonically related to
the probability is available. Second, PROSAC dynamically
adapts the sampling strategy to the information revealed
by the sampling process itself. The hypothesize-and-verify
loop is a series of incorrect guesses until the first success.
Each failure decreases the likelihood that the correspon-
dences used to estimate the model parameters are correct.
Gradually, the observed evidence against a priori preferred
correspondences should result in the reduction of their pref-
erence. PROSAC can be viewed as an instance of a process
that starts by deterministically testing the most promising
hypotheses and than converging to uniform sampling as the
confidence in the “quality” of the a priori sorting declines
after unsuccessful tests.

The objective of PROSAC is to find inliers in the set of
all tentative correspondences Uy in the shortest possible
time and to guarantee, with a certain probability, that all
inliers from Uy are found. Issues related to the precision
of the model that is computed from the set of inliers are not
discussed since they are not directly related to the problem
of efficient sampling. Bundle adjustment [16] can be per-
formed ex post.

1.1. Notation

The set of IV data points (tentative correspondences) is de-
noted as Uy . The data points in Uy are sorted in descending
order with respect to the quality function ¢

w;,u; €Un 1< j=q(u;) > q(uy).

A set of n data points with the highest quality is denoted U4, .
A sample M is a subset of data points M C Uy, |[M| =m
where m is the size (cardinality) of the sample. The quality
function on samples is defined as the lowest quality of a data




point included in the sample

qg(M) = min q(u;).

u;EM

2. Algorithm

The structure of the PROSAC algorithm is similar to
RANSAC. First, hypotheses are generated by random sam-
pling. The samples, unlike in RANSAC, are not drawn form
all data, but from a subset of the data with the highest qual-
ity. The size of the hypothesis generation set is gradually
increased. The samples that are more likely to be uncon-
taminated are therefore examined early. In fact, PROSAC
is designed to draw the same samples as RANSAC, only in
a different order. The hypotheses are verified against all
data. As in RANSAC, the algorithm is terminated when the
probability of the existence of solution that would be better
than the best so far becomes low (smaller than 5%). Two
important issues, the choice of the size of the hypothesis
generation set and the termination criterion of the sampling
process, are discussed below.

2.1. The growth function and sampling

The design of the growth function defining the I{,, must find
a balance between the over-optimistic reliance on the pre-
sorting by the quality and the over-pessimistic RANSAC ap-
proach that treats all correspondences equally. If the prob-
abilities P{u;} = P{correspondence u; is correct} were
known, it would be in principle possible to adopt a Bayesian
approach. After each sample-and-test cycle, the posterior
probability would be re-computed for all correspondences
included in the sample. The correspondences would be
sorted by their posterior probabilities and samples with the
highest probability would be drawn. We pursued this line
of research, but abandoned it for two reasons. Firstly, prob-
abilities P{u;} of correspondences tested are not indepen-
dent after a test and it is not feasible to represent the joint
probability for all but the simplest models. Secondly, errors
in estimates of P{u;} propagate through the Bayes formula
and are accentuated. So if the initial estimate of P{u;}
based on the similarity of the correspondence is incorrect,
the posterior probability becomes worthless soon.

The alternative, pursued here, is to make minimal as-
sumptions about the link between P{u;} and the similarity
function q(uj). In particular, we assume monotonicity, i.e.

q(u) 2 q(u;) = P{u;} > P{u;}. (1)
Sequences of correspondences satisfying
i <j= P{u;} > P{u;} )

will be called not-worse-than-random.

Note that we are searching for a single growth function.
It seems possible to adapt the growth function to reflect
the result of previous sample-and-test cycles. However, all
PROSAC (and RANSAC) runs are alike: a sequence of fail-
ures followed by a ‘hit’ due to an all-inlier sample. The
history of the sampling process is thus fully captured by ¢,
the number of tests carried so far.

The sampling strategy. Imagine standard RANSAC
drawing Ty samples of size m out of N data points. Let
{Mi}fgl denote the sequence of samples M; C Uy that
are uniformly dawn by RANSAC, and let {M(i)}iT’:Vl be se-
quence of the same samples sorted in descending order ac-
cording to the sample quality

i <j=qMg) = aMg).

If the samples are taken in order M;), the samples that

are more likely to be uncontaminated are drawn earlier.

Progressively, samples containing data points with lower

quality function are drawn. After Tjy samples, exactly all
RANSAC samples { M, }7¥, were drawn.

Let T}, be an average number of samples from { M},

that contain data points from /,, only

(n) m—1

T, =Tn 2 =Ty H

i=0

(m)

Topr  Tn Yy n+l—i 1 N—i  n+4l
N n—i n+l-m

T, Iv g Nt g

n—1
-, then
N —1

Finally, the recurrent relation for 7,4 is

n+1

=—T,. 3
n+1l—m )

Tn+1
There are T), samples containing only data points from
U,, and T, samples containing only data points from
Un41- Since Uy 1 = Uy, U {uy,41}, there are T, — T,
samples that contain a data point u,y; and m — 1 data
points drawn from U,,. Therefore, the procedure that for
n=m...N draws T,,,; —T,, samples consisting of a data
point u,,; and m — 1 data points drawn from U/, at random
efficiently generates samples M ;).
As the values of T}, are not integer in general, we define
T/ =1and

L1 =T+ [Toa = Tnl. “
The growth function is then defined as
g(t) =min{n : T, > t}. (5)
In PROSAC, the t-th sample M, consists of

My = {ug} UM, (6)



where M} C Uy is a set of [M}| = m — 1 data
points drawn from Uy ;) at random. The parameter Ty
defines after how many samples the behavior of PROSAC
and RANSAC becomes identical. In our experiments, the
parameter was set to Ty = 200000.

t:=0,n:=m,n* =N
Repeat until a solution satisfying eqs. (12), (9) is
found.
1. Choice of the hypothesis generation set
t:=t+1
if(t=T))& (n <n*)thenn :=n+1 (see eqn. 4)
2. Semi-random sample M, of size m
if T < t then
The sample contains m — 1 points selected from U, _1
at random and u,,
else
Select m points form 4, at random
3. Model parameter estimation
Compute model parameters p; from the sample M,
4. Model verification
Find support (i.e. consistent data points) of the model
with parameters p;
Select termination length n* if possible according to
Section 2.2

Algorithm 1: Outline of the PROSAC algorithm.

2.2. Stopping criterion

The PROSAC algorithm terminates if the number of inliers
I~ within the set U, satisfies the following conditions:

e non-randomness — the probability that I,,- out of n*
data points are by chance inliers to an arbitrary incor-
rect model is smaller than W (typically set to 5%)

e maximality — the probability that a solution with more
than I« inliers in U4, exists and was not found after
k samples is smaller than 7, (typically set to 5%).

From all such solutions the one that causes the termination
first is chosen.

The non-randomness requirement prevents PROSAC
from selecting a solution supported by outliers that are
by chance consistent with it. The constraint is typically
checked ex-post in standard approaches [1]. The distribu-
tion of the cardinalities of sets of random ‘inliers’ is bino-
mial

T—m

PR =g ™1 ﬂ)””m("m>, 7

where (3 is the probability, that an incorrect model calcu-
lated from a random sample containing an outlier is sup-
ported by a correspondence not included in the sample.

We set (3 pessimistically based on geometric considera-
tions. If needed, the estimate of 3 can be made more precise
during the sampling of PROSAC.

For each n, the minimal number of inliers [g“n is cal-
culated so that the probability of size of such support being
random is smaller than ¥

I =min{j : »_ PRi) < ¥}, (8)

i=j
A non-random solution found on U, must satisfy
I > IR ©9)

A maximality constraint defines how many samples are
needed to be drawn to ensure the confidence in the solution
and is the (only) termination criterion of RANSAC [4].

For a hypothesis generation set U,,, the probability Py
that an uncontaminated sample of size m is randomly se-
lected from a set U,, of n correspondences is

(In> m—1 In 7].
P =0 = - e, (10)
& = 15—

where I,, is the number of inliers in U, and &, = I,,/n is
the fraction of inliers. The probability 7 of missing a set
of inliers of the size I,, on the set U, after k samples of
PROSAC, where g(k) < n, is

n=(1- P )" (11)

The number of samples that have to be drawn to ensure the
probability 7 falls under the predefined threshold 7, is

k= () = log(n,)/log(1 — Pr,..). (12)

The termination length n* is chosen to minimize k., (1, )
subject to I, > I,

3. Experiments

The not-worse-than-random assumption about the order-
ing of correspondences was tested for two different similar-
ity functions.

Matching based on SIFT descriptors [5] was used to ob-
tain tentative correspondences in PLANT and MUG experi-
ments®. The similarity was defined as the ratio of the dis-
tances in the SIFT space of the best and second match.
The threshold for the similarity is set to 0.8 as suggested
in [5]. This setting has been shown experimentally [5, 13]
to provide a high fraction of inliers in the tentative corre-
spondences. However, this thresholding also leads to small
absolute number of tentative correspondences.

2The code was kindly provided by David Lowe, UBC, Vancouver,
Canada.
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Figure 2: The fraction of inliers € among top n correspondences sorted by quality for the GREAT WALL (left), MUG back-
ground (center) and MUG foreground (right) scenes. The circles mark the (average) size of the largest set of correspondences
that PROSAC sampled, i.e. the size it sampled when it stopped. The circles are close to the optimal stopping size.

Figure 3: The PLANT scene. Depth discontinuities, self-
occlusions and repetitive patterns reduce the probability that
a correspondence with high quality (similarity) is indeed an
inlier. RANSAC fails to estimate epipolar geometry on this
image pair.

In the GREAT WALL experiment, the Euclidean distance
of the first fifteen Discrete Cosine Transform (DCT) coef-
ficients was used as a similarity function [9, 2]. The DCT
was computed on normalized, affine invariantly detected,
parallelograms. As tentative correspondences, points with
mutually best similarity were selected.

Figures 2 and 4 show the dependence of the fraction of
inliers € on the order of a tentative correspondence induced
by the similarity function. In all experiments, regardless of
the similarity function used, the assumption of not-worse-
than-random ordering held. The fraction of inliers ¢ de-
creased almost monotonically as a function of the number
of tentative correspondences n.

Comparison of efficiency. The number of samples
drawn by RANSAC and PROSAC as well as wall clock time
of both algorithms were measured on three scenes.

For the GREAT WALL scene (Fig. 1) both PROSAC
and RANSAC algorithms found 57 inliers among the 250
tentative correspondences. RANSAC needed on average
(over hundred runs) 106,534 samples which took 10.76 sec.
PROSAC estimated the 57-inlier epipolar geometry after 9
samples (0.06 sec) on average.

The PLANT scene is challenging due to a large num-
ber of depth discontinuities and the presence of both repet-
itive (floor) and locally similar (leafs) patterns. Tentative
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Figure 4: The dependence of the fraction of inliers € on the
ordering by the SIFT similarity on the PLANT scene. The
first 30 correspondences have similarity below the threshold
0.8. The circle shows the optimal stopping length n* chosen
by PROSAC.

correspondences are obtained by SIFT matching [5] com-
puted on MSERs [6]. For the 0.8 threshold, the tentative
correspondences include only 12 inliers. The epipolar ge-
ometry could not be estimated reliably by either RANSAC
or PROSAC. When the SIFT threshold was set to 0.95, there
were N = 559 tentative correspondences and / = 51 in-
liers. In this case, RANSAC fails due to low fraction of in-
liers e = 9.2%:; on average, RANSAC would need 8.43 - 107
samples to find the solution, which is not realistic. PROSAC,
on the other hand, found all the inliers and estimated the
correct epipolar geometry after 3,576 samples in 0.76 sec
on average (over 100 execution).

The MUG scene, (Fig. 5) is non-rigid. The mug moved
between the acquisition of the two images. Tentative corre-
spondences were obtained matching MSER [6] and affine-
invariant [7] regions using SIFT descriptors. First, epipolar
geometry was estimated on all tentative correspondences.
Then, inliers to the first epipolar geometry were removed
and another EG was estimated to segment the motion in the
scene. The results are summarized in Tab. 1.

In the Fig. 2, the dependency of £ on the ordering is
shown for the background segmentation (center) and the
foreground (the mug) segmentation (right). All the correct
correspondences on the mug are outliers to the background



Figure 5: Motion segmentation. The motion of the background and the foreground (the mug) are denoted by light and black

lines respectively.

Background N =783, =79%
1 k time [sec]
PROSAC | 617 1.0 0.33
RANSAC | 617 15 1.10
Mug N =166, ¢ = 31%
I k time [sec]
PROSAC | 51.6 18 0.12
RANSAC | 52.3 | 10,551 0.96

Table 1: The number of inliers (I) detected, samples (k) and
the time needed in the motion estimation of the background
(top) and the foreground (bottom) in the MUG experiment.

k min k maxk | time [sec]
RANSAC 106,534 | 97,702 | 126,069 10.76
PROSAC 9 5 29 0.06
PROSAC OR | 61,263 1,465 | 110,727 6.28

Table 2: The comparison of the number of samples drawn
by RANSAC, PROSAC, and PROSAC with random ordering
on the GREAT WALL experiment. The values of k are aver-
age, minimum, and maximum over 100 runs respectively.

motion while having high similarity score. This can be ob-
served in Fig. 2(center) as dips in the plot. This also shows
that the probability of a correspondence being an inlier to a
given geometric model depends on other factors besides the
similarity of local descriptors.

Testing robustness to the worst case situation, i.e. to
random ordering of tentative correspondences. To compare
RANSAC and PROSAC in the least favorable situation for
PROSAC, an experiment was carried out on sequences of
randomly permuted correspondences. The 250 correspon-

0 50 100 150 200 250

Figure 6: Histogram of the stopping length n* of PROSAC
for 100 random orderings in the GREAT WALL scene.

dences from the GREAT WALL experiment were used. For
PROSAC, the average number of samples taken over 100 dif-
ferent random permutations was 61, 263 (standard deviation
2.94 - 10%). The number of samples ranged from 1, 465 to
110, 727. For RANSAC, the average and standard deviation
were 130,419 and 6.55 - 10% respectively. The results, to-
gether with results of PROSAC on tentative correspondences
sorted by the similarity function are shown in Tab. 2.

PROSAC drew less samples and was faster than RANSAC
in this experiment. The difference in the average num-
ber of samples can be attributed to the fact that even in a
randomly permuted sequence there are sub-sequences with
higher than average inlier fractions, allowing PROSAC to
terminate earlier. The histogram of PROSAC termination
lengths n* is plotted in Fig. 6. Only a fraction of PROSAC
executions were terminated on the full set of the tentative
correspondences, where RANSAC is terminated. However,
the maximal number of samples drawn are comparable for
PROSAC and RANSAGC, i.e. in the worst case PROSAC be-
haves as RANSAC.

The stopping criterion. In all experiments, the optimal
stopping length n* calculated ex-post was identical with the



length automatically selected by PROSAC. The values of n*
are depicted in Figs 2 and 4 as circles.

4. Conclusions

PROSAC — a novel robust estimator of the hypothesize-and-
verify type was introduced. The PROSAC algorithm ex-
ploits the ordering structure of the set of tentative corre-
spondences, assuming that the ordering by similarity com-
puted on local descriptors is better than random. The as-
sumption held in all our experiment for both quality mea-
sures that were tested.

The sampling on progressively larger subsets consisting
of top-ranked correspondences brings very significant com-
putational savings. In comparison to RANSAC, PROSAC was
more than hundred time faster on non-trivial problems. Us-
ing synthetically generated sequences of correspondences,
we showed that the worst-case behavior of PROSAC and
RANSAC are effectively identical.

PROSAC removes one parameter of the matching pro-
cess — the threshold on the similarity function for selec-
tion of tentative correspondences. Thus robustness against
either having too few correspondences or a large number
of tentative correspondences with high outlier percentage is
achieved. In one tested problem, PROSAC found a solution
of the matching problem that cannot be solved by RANSAC.
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