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Abstract

We propose an approach to incorporating dynamic models into the human body tracking process that yields full
3–D reconstructions from monocular sequences.

We formulate the tracking problem is terms of minimizing a differentiable criterion whose differential struc-
ture is rich enough for successful optimization using a single-hypothesis hill-climbing approach as opposed to a
multi-hypotheses probabilistic one. In other words, we avoid the computational complexity of multi-hypotheses
algorithms while obtaining excellent results under challenging conditions.

To demonstrate this, we focus on monocular tracking of a golf swing from ordinary videos. It involves both
dealing with potentially very different swing styles, recovering arm motions that are perpendicular to the camera
plane and handling strong self-occlusions.

1 Introduction

In spite of having received considerable attention in recent years, monocular tracking of human motion remains a
difficult problem, especially in the presence of self-occlusions and movements perpendicular to the image plane.

Most current approaches rely on multi-hypotheses optimization techniques [11, 9, 8, 6, 20] to resolve the inher-
ent ambiguities of this problem and to escape the local-minima that are usually involved. They have been shown to
be effective but require ever increasing computational burdens as the number of degrees of freedom in the model
increases.

In earlier work [22, 23], we have advocated the use of temporal motion models based on Principal Component
Analysis (PCA) and inspired by those proposed in [17, 19] to formulate the tracking problem as one of minimizing
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Figure 1: Tracking a driving swing in a 45 frames sequence. First two rows: The skeleton of the recovered
3–D model is projected into a representative subset of images. Middle two rows: Volumetric primitives of the
recovered 3-D model projected into the same views. Bottom two rows: Volumetric primitives of the 3-D model
as seen from above.

differentiable objective functions when using stereo data. The differential structure of these objective functions is
rich enough to take advantage of standard hill-climbing optimization methods, whose computational requirements
are much smaller than those of multiple-hypotheses ones and can nevertheless yield very good results.

Here, as shown in Figs. 1, 10, and 11, we extend this approach to monocular tracking, and demonstrate its
ability to track such a complex fully 3–D motion as a golf swing. Unlike some recent approaches to incorporating
dynamic models in 2–D [2], we recover full 3–D from a single fixed camera. As shown in the bottom rows of
Fig. 1, this is important for golf because, at the top of the swing, the arm motion perpendicular to the camera plane
is both large and very significant.

Of course, it could be argued that by using a strong motion model, we constrain the problem to the point where it
becomes almost trivial. We will show that this is most definitely not the case and that our model still has sufficient
flexibility not only to model very different golf swings, such as those of Figs. 1 and 11, but also to produce totally
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meaningless results if the image data is not properly exploited. In other words, our implementation embodies
a happy middle ground between an over-constrained model that is too inflexible and one that is so loose that it
makes the optimization very difficult. In our experience [23] with walking, running, and jumping, we found these
activities to be amenable to the kind of modeling we use here. We therefore believe our approach to be applicable
not only to golf but also to many other motions, in particular athletic ones, that involve predictable movements.

In the remainder of this paper we first discuss related approaches and introduce our deterministic motion model.
We then show how we use it to incorporate the kind of image information that can actually be extracted from video
sequences acquired on golf courses under uncontrolled circumstances. Finally, we discuss our results in more
detail and propose avenues for future research.

2 Related Work

Modeling the human body and its motion is of enormous interest in the Computer Vision community, as attested
by recent, exhaustive, and already dated surveys [15, 14]. However, existing techniques remain fairly brittle for
many reasons: Humans have a complex articulated geometry overlaid with deformable tissues, skin and loose
clothing. They move constantly, and their motion is often rapid, complex and self-occluding. Furthermore, the
3–D body pose is only partially recoverable from its projection in one single image. Reliable 3–D motion analysis
therefore requires reliable tracking across frames, which is difficult because of the poor quality of image-data and
frequent occlusions. Recent approaches to handling these problems can roughly be classified into those that

• Detect: This implies recognizing postures from a single image by matching it against a database and has
become increasingly popular recently [1, 10, 16, 21] but requires very large sets of examples to be effective.

• Track: This involves predicting the pose in a frame given observation of the previous one. This can easily
fail if errors start accumulating in the prediction, causing the estimation process to diverge. This is usually
mitigated by introducing sophisticated statistical techniques for a more effective search [11, 9, 8, 6, 20] or
by using strong dynamic motion models as priors [17, 19, 2].

Neither technique is proven as superior, and both are actively investigated. However, the tracking approach is
the most natural one to use when a person is known a priori to be performing a given activity, such as walking,
running, or jumping. Introducing a motion model becomes an effective means to constrain the search and increase
robustness. Furthermore, instead of a separate pose in each frame, the output are the parameters of the motion
model, which allow for further analysis and are therefore potentially more useful.

Models that represent motion vectors as linear sums of principal components are of particular interest to us
and have been used effectively to produce realistic computer animations [3, 5, 4]. The PCA components are
computed by capturing as many people as possible performing a specific activity, for example by means of an
optical motion capture system, representing each motion as a temporally quantized vector of joint angles, and
performing a Principal Component Analysis on the resulting set of vectors.

This representation has already been successfully used in our community [17, 19], but almost always in a sta-
tistical context and without exploiting the fact that this parameterization allows the formulation of the tracking
problem as one of minimizing differentiable objective functions, which allows for a lower computational com-
plexity.

3 Motion Model

We represent the body of the golfer as a set of volumetric primitives attached to an articulated 3-D skeleton, as
shown in the bottom rows of Fig. 1. Its pose is given by the position and orientation of its root node and a set of
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Figure 2: Key postures. From top left: Beginning of upswing, end of upswing, ball hit, and end of downswing.

joint angles. To build a motion model, we used the ten golf swing motions of the CMU database [7]. We identified
the 4 key postures depicted by Fig. 2 in each motion and time warped the swings so that the key postures are all
reached at the same time. We then sampled them at regular time intervals using quaternion spherical interpolation
so that each swing can be treated as N = 200 samples of a motion starting at normalized time 0 and ending at
normalized time 1.

A swing is then represented by an angular motion vector Ψ of size N ∗ NDofs, where NDofs = 72 is the
number of angular degrees of freedom in the body model. Ψ is a line vector of the form:

Ψ = [ψµ1
, · · · , ψµN

] (1)

where the ψµi
are line vectors representing the joint angles at normalized time µi. The posture at a given time

0 ≤ µt < 1 is estimated by interpolating the values of the ψµi
corresponding to postures immediately before and

after µt.
Assuming our set to be representative, a motion vector Φ can be approximated as a weighted sum of the mean

motion Θ0 and the eigenvectors Θi of the covariance matrix:

Ψ ≈ Θ0 +
m
∑

i=1

αiΘi (2)

where the αi are scalar coefficients that characterize the motion, m ≤ M controls the percentage of the database
that can be represented in this manner and M = 10 is the number of examples. For the small database we use, we
have foundm = 4 to be an appropriate value to use. As will be discussed in Section 5.2, the database is clearly too
small and we plan to augment it. However, based on previous experience with walking, running and jumping [23],
we do not expect the required value of m to grow dramatically for the specific purpose of modeling golf swings,
or more generally constrained athletic motions.

As will be discussed in Section 4, our tracking is defined as the least-squares minimization [18] of an objective
function F with respect to the motion model parameters αi, µt and the global motion Gt of the skeleton’s root
node, defined at the level of the sacroiliac, that is not included in the motion model. This involves computing the
Jacobian of F . Assuming that ∂F

∂θj
is differentiable, i.e. that the derivatives of F with respect to the individual joint

angles θj exist, this can be readily computed as follows:

∂F

∂αi
=

ndof
∑

j=1

∂θj

∂αi
·
∂F

∂θj
(3)

∂F

∂µt
=

ndof
∑

j=1

∂θj

∂µt
·
∂F

∂θj
, (4)

where ∂θj

∂αi
and ∂θj

∂µt
are computed as in [22].
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4 Least Squares Framework

Given that we operate outdoors in an uncontrolled environment and want to track golfers who are wearing their
normal clothes, we cannot rely on any one image clue to give us all the information we need. Instead, we take
advantage of several sources of information, none of which is perfect, but that together have proved sufficient for
our purposes.

More specifically, we sequentially fit our motion model over sliding groups of f frames. For such a set of f
frames, we take the state vector S, to be

S = [α1, . . . , αM , µ1, . . . , µf , G1, . . . , Gf ] , (5)

where the αi are the PCA weights of Section 3 common to the set of f frames, the µt are the normalized time
associated to each frame, and theGt represent the corresponding absolute position and orientation of the root node
that vary in every frame.

We use the image data to write nobs observation equations of the form

Obs(xi,S) = εi , 1 ≤ i ≤ nobs , (6)

where xi is a data point, Obs a differentiable function whose value is zero for the correct value of S and com-
pletely noise free data, and εi is treated as an independently distributed Gaussian error term. We then minimize
vTPv, where v = [ε1, . . . , εnobs

] is the vector of residuals and P is a diagonal weight matrix associated with the
observations. Our system must be able to deal with observations coming from different sources that may not be
commensurate with each other. We therefore associate to each data point xi an observation type typei and to each
type a weight wtype corresponding to the importance of the observation type.

Because the image data is noisy, we add a regularization term ED that forces the motion to remain smooth. The
total energy that we minimize therefore becomes:

ET =
nobs
∑

i=1

wtypei
∥

∥Obstypei(xi,S)
∥

∥

2
+ ED , (7)

ED = wG(Gt − Ĝt) + wµ(µt − µ̂t)

+wα

m
∑

i=1

(αi − α̂i)

where Obstype is the function that corresponds to a particular observation type, Ĝt and µ̂t are predicted values for
the position and orientation of the root node and the predicted normalized time, and wG, wµ and wα are scalar
weights. We take Ĝt to be Gt−1 + ∆Gt−1 and µ̂t to be µt−1 + ∆µt−1, where ∆Gt−1,∆µt−1are the speeds
observed in the previous set of frames.

We now turn to the description of the Obstype functions for the data types we use and conclude the section by
describing their complementarity.

4.1 Foreground and Background

Given an image of the background without the golfer, we can extract rough binary masks of the foreground such
as those of Fig. 3. Note that because the background is not truly static, they cannot be expected to be of very
high quality. Nevertheless, they can be exploited as follows. We sample them and for each sample x we define
a Background/Foreground function Obsfg/bg(xi,S) that is 0 if the line of sight defined by x intersects the model
and is equal to the distance of the model to the line of sight otherwise. In other words, Obsfg/bg is a differentiable
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Figure 3: Poor quality foreground binary mask extracted from the images of Fig. 10.

Figure 4: 2-D tracking of the ankles, knees, and vc2, using the WSL appearance-based tracker.

function that introduces a penalty for each point in the foreground binary mask that does not backproject to the
model. That penalty increases with the 3–D distance of the model to the corresponding line of sight.

Minimizing Obsfg/bg in the least squares sense tends to maximize the overlap between the model’s projection
and the foreground binary mask. This prevents the pose estimates from drifting, potentially resulting in the model
eventually projecting at the wrong place and tracking failure.

4.2 Projection Constraints

To further constrain the location of six key joints—knees, ankles and wrists —and the head, we track their approx-
imate image projections across the sequence.

As shown in Fig. 4, for the ankles, knees and head, we use the WLS tracker [12] to take advantage of the
slow dynamics of changes in image patches. WSL is a robust, motion-based 2–D tracker that maintains an online
adaptive appearance model. The model adapts to slowly changing image appearance with a natural measure of
the temporal stability of the underlying image structure. By identifying stable properties of appearance the tracker
can weight them more heavily for motion estimation, while less stable properties can be proportionately down-
weighted.

For the wrists, because the hand tends to rotate during the motion, we have found it more effective to use a
club tracking algorithm [13] that takes advantage of the information provided by the whole shaft. It is depicted by
Fig. 5 and does not require any manual initialization. It is also very robust to mis-detections and false alarms and
has been validated on many sequences. Hypotheses on the position are first generated by detecting pairs of close
parallel segments in the frames, and then robustly fitting a 2D motion model over several frames simultaneously.
From the recovered club motion, we can infer the 2–D hand trajectories of Fig. 6.
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Figure 5: Detected club trajectories for the driving swing of Fig. 1 and the approach swing of Fig. 10. Note that
one trajectory is much more extended than the other.
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Figure 6: Detected hand trajectories for drive and approach swings. The left and right hands are represented in
black and red respectively. Trajectories in the sequence of (a) Fig. 1. (b) Fig. 10. (c) Fig. 11. Note the difference
between the last one that corresponds to an approach swing and the first two that correspond to driving swings.

For joint j, we therefore obtain approximate 2–D positions x
j
t in each frame. Given that the joint’s 3–D

position and therefore its projection are a function of S, we simply take the corresponding joint projection function
Obsjoint(xj

t,S) to be the Euclidean distance between the joint projection and its estimated 2-D location.

4.3 Point Correspondences

We use 2–D point correspondences in pairs of consecutive images as an additional source of information: We
project the 3–D model into the first image of the pair, sample the projection, and establish correspondences for
those samples in the second one using a simple correlation-based algorithm. Given a couple xi = (p1

i , p
2
i ) of

corresponding points found in this manner , we define a correspondence function Obscorr(xi,S) as follows: We
backproject p1

i to the 3–D model surface and reproject it to the second image. We then take Obscorr(xi,S) to be
the Euclidean distance in the image plane between this reprojection and p2

i .

4.4 Complementarity of the Objective Function Terms

As discussed above the foreground/background observations of Section 4.1 stop the estimates from drifting by
guaranteeing that the model keeps on projecting roughly at the right place. The projection observations of Sec-
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Figure 7: Tracking using only joint constraints vs using the complete objective function. (a) Using only joint
constraints the problem is under-constrained and a multiple set of solutions are possible. (b) The set of solutions
is reduced using correspondences.

Figure 8: Mean motion used for initialization.

tion 4.2 more precisely constrain the projections of the ankles, knees, wrists and head.
However, as shown in the top row of Fig. 7, these two sets of constraints are not sufficient by themselves.

The correspondences of Section 4.3 are required to fully constrain the motion of both the lower and upper body.
Of course, the correspondences by themselves would not be enough either: They are too noisy to be used alone
because the golfer is wearing untextured clothing and the wrinkles produce correspondence motion that does not
necessarily follow the golfer’s true motion.

The example of Fig. 7 is significant because it shows that the model has sufficient flexibility to do the wrong
thing given insufficient image data. In other words, even though we use a motion model, the problem is not so
constrained that we are guaranteed to get valid postures or motions without using the images correctly.

5 Tracking

In this section, we first discuss the initialization of our tracking procedures, which only requires a minimal amount
of manual intervention. We then present our results in more detail.
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Figure 9: Assigning normalized times to the frames of Fig. 1. (a) We use the automatically detected club positions
to identify the key postures of Fig. 2. (b) The corresponding normalized times are denoted by red dots. Spline
interpolation is then used to initialize the µt parameter for all other frames in the sequence.

5.1 Initialization

For each sequence, we first run the golf club tracker [13] discussed in Section 4.2. As shown in Fig. 9(a), the
detected club positions let us initialize the µt parameters by telling us in which four frames the key postures of
Fig 2 can be observed. As discussed in Section 3, the corresponding normalized times were defined upon creating
the database. We can therefore assign a normalized time to all other frames in the sequence by spline interpolation,
as shown in Fig. 9(b). As not everybody performs the motion at the same speed, this time is only a guess and will
be refined during the actual optimization.

We then roughly position the root node of the body so that it projects approximately at the right place in the
first frame and specify in that first frame the locations of the five joints to be tracked by WSL [12]. Note that all
of this only requires a few mouse clicks and could easily be automated using posture detection techniques, given
the fact that the position at the beginning of a swing is completely stereotyped.

We can now start the tracking algorithm by setting all the PCA weights to zero and minimizing in a fully
automated fashion the criterion of Eq. 7 three frames at a time. Note that, as shown in Figure 8, the mean motion
and the interpolated values of µt, do not yield an initially correct motion. The style of the swing is different, the
speed of the motion varies between different golfers, and optimization of the criterion of Eq. 7 is truly required.

5.2 Results

Figs. 1 and 10 depict complete driving swings performed by two different subjects whose motions were not
recorded in the CMU database [7]. In both cases, we show projections of the recovered 3D model in a repre-
sentative subset of the images. In Fig. 1, we also display the recovered 3D model, first projected in the original
view and then as seen from above. Note the quality of the tracking in spite of the facts that the golfers are wearing
relatively untextured clothing, their sizes are unknown and the cameras uncalibrated. To perform our computation,
we used rough estimates of both the subjects size and the cameras focal length. In practice, this information could
be made available to the system, thereby simplifying its task.

Fig 11 depicts a much shorter approach swing, where the club does not go as high as in a driving swing, as
evidenced by the hand trajectories of Fig. 6. This is challenging for our system because the CMU database only
contains driving swings. Our model nevertheless has sufficient flexibility to generalize to this new motion. Note,
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Figure 10: Tracking another driving swing. The skeleton of the recovered 3–D model is projected onto the images.

Figure 11: Tracking an approach swing during which the club goes much less high than in a driving swing. The
skeleton of the recovered 3–D model is projected onto the images.

however, that the right leg bends slightly too much at the end of the motion, which is a reflection of the small size
of the database and of the fact that all the exemplars in it bend their legs in this particular fashion. The obvious
cure for this problem is to use a much more complete database, which we intend to build in the very near future
using a VICONtm optical motion capture system we have access to.

6 Conclusion

We have presented an approach to incorporating strong motion models that yields full 3–D reconstructions from
monocular sequences using a single-hypothesis hill-climbing approach, which results in much lower computa-
tional complexity than current multi-hypotheses techniques.

We have demonstrated it for monocular tracking of a golf swing from ordinary videos, which involves dealing
with potentially very different swing styles, recovering arm motions that are perpendicular to the camera plane,
and handling strong self-occlusions. The major limitation of the current implementation stems from the small size
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of the motion database we used, which we will remedy in the coming months.
We have obviously placed ourselves in a relatively constrained context, which is nevertheless far from simple

and makes perfect sense in terms of potential industrial applications. Furthermore, we believe there is also ample
scope for broadening this approach given a ”library” of models such as the ones we have used here or those we
developed in our earlier walking, running and jumping work [22, 23]: In a broader context, with specific motion
models, we have traded the complexity of tracking for the complexity of knowing which model to apply. This
might mean keeping several models active at any one time and selecting the one that fits best. This brings us back
to multiple hypotheses tracking, but the multiple hypotheses are over models and not states. This might be much
more effective than what many particle filters do because it ensures that the multiple hypotheses are sufficiently
different to be worth exploring. This is an avenue of research we intend to pursue in future work.
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