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Abstract

We address the detection of vehicles in a video stream @utdhom a moving airborne plat-
form. Our approach is based on robust optical flow algoritippliad on stabilized frames.
Stabilization of the frames compensates for gross affinkgraand motion prior to running

robust optical flow to compute dense residual flow. Based eriltiwv and the previous back-
ground appearance model, the new frame is separated inkgrband and foreground oc-
clusion layers using an EM-based motion segmentation. Togoged framework shows that
ground vehicles can be detected and segmented from airbolae sequences while building
a mosaic of the background layer.

Keywords. motion estimation, background mosaicking, tracking, agtflow, airborne im-
agery.






1 Introduction

Detecting moving ground vehicles from airborne video is ffialilt problem because all pixels
in the image are moving due to the self motion of the camerahigpaper we present a tech-
nique to detect moving vehicles by segmenting dense opticfikdds into background and oc-
clusion layers. Figure 1 illustrates the method. The robesise optic flow algorithm is run on
motion-compensated image pairs, yielding flow fields regmméag background residual flow and
foreground object motion. Since the residual flow of the iitaal background should be smaller
in magnitude than the foreground object motion, estimaseace of the residual flow magnitude
can be used in a statistical test to determine the likelitbateach pixel is from the background
or foreground, providing an ownership weight to the layegnsentation process. The result of
layer segmentation is a background mosaic plus an ownenghght representing the probability
of each pixel belonging to either the background or movingcidayer.

We propose a Bayesian framework for estimating dense ogibea over time that explicitly
estimates a persistent model of background appearanceappineach assumes that the scene can
be described by background and occlusion layers, estiméthoh an Expectation-Maximization
framework. The mathematical formulation of the paper isx®resion of the work in [13] where
motion and appearance models for foreground and backgitayears are estimated simultaneously
in a Bayesian framework.

Figure 1: (a) I;_; and KLT sparse flow, (0J;, () |I; — I;_1| , (d) |I; — I7 |, (I, : stabilized frame) (e)
horizontal optic flow and background (f) ownership weighd &) mosaic.

There are several contributions of this paper. First, wentdate a Bayesian framework for
detecting and segmenting moving objects from the backgtammthe basis of dense residual
flow. The flow estimation contributes to background appesgastimation by providing a cue for
differentiating between motion of background and foregibtegions.

Second, We combine sparse flow results with dense opticalrlsults to separate video se-
guences into background and occlusion layers. Sparse fltwrés are used in two stages of the



approach. First, they provide an initial coarse stabitinaif successive video frames. After stabi-
lization, residual sparse flow motion statistics are usembmputing motion priors when updating
layer ownership weights.

Finally, computing optical flow between stabilized frame$s to cope with large background
motion and accelerate the convergence of the robust oflizal Even when the optical flow
algorithm incorporates a coarse-to-fine resolution pydame see improved optical flow results
on stabilized frames. This is so because stabilized seggamnform better to the implicit motion
prior of zero flow in typical optical flow computations.

Section 2 reviews related work on background stabilizagioth moving object detection from
aerial video. In Section 3 we describe our approach to twmératabilization, based on robust
estimation of an affine transformation from sparse cornertmorrespondences. The heart of the
paper is Section 4, which details the Bayesian backgroum@gfound layer estimation procedure.
Section 5 presents experimental results on two aerialitrgdequences, showing both estimated
background mosaics and detected foreground object regions

2 Related Work

This section reviews related work where background stadiitin is used in detect multiple moving
ground vehicles from airborne video. The recent “MTT” tracky Alphatech [1] stabilizes video
subsequences by aligning N frames to one reference framg asi8-parameter planar perspective
warp. As frames are aligned, background color statistiesecursively estimated at each pixel
to form a statistical background model. Moving objects atedted by thresholding against the
background Mahalanobis color distance and forming comaecomponent blobs from flagged
foreground pixels.

Bell et.al. [3] perform affine motion stabilization betweadjacent pairs of frames based on
a sparse set of corner matches. Intensity-based image s&gioe of individual frames is per-
formed, and the residual translation of each segmenteti pabomputed using an iterative Lucas-
Kanade approach. Candidate moving regions are detectegl thsesholding and connected com-
ponents on the magnitude of residual translation. Medibal.¢10] also stabilize adjacent frames
using affine transformations computed over sparse coraturies. Motion regions are detected by
thresholding the magnitude of residual normal flow and appglgonnected components.

Tao et.al. [11] develop a practical, layer-based algoriwithin a rigorous Bayesian framework
that specifies data terms and priors for object appeararat@mand shape cues. The novelty that
distinguishes this work from other layer-based approahegposition of shape constraints on the
foreground object regions (the vehicles) by specifyingpgtial shape priors that guide the layer
segmentation to produce compact foreground regions.

Layered models of optical flow have been one of the key panaslifipr simultaneously seg-
menting the scene and estimating its motion [2, 8, 12]. Ini@aar, mixture model frameworks
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make a soft assignment of pixels to layers. Unfortunatblg,segmentation does not typically en-
force spatial coherence between neighboring pixels and hegge, be quite sparse. Additionally,
these methods are typically limited to parametric motiordeis. An exception is [13], where a
Bayesian framework is presented for estimating motion gpearance models of layers based on
dense optical flow.

3 Stabilization

Two-frame stabilization is achieved by establishing cgpmdences between adjacent video frames
and estimating an affine or higher order transformationweaps the images into alignment. We
estimate image alignment by fitting a global parametric orothodel to sparse optic flow. The
Kanade-Lucas-Tomasi (KLT) feature tracker [4] is used toamaorner features between adjacent
pairs of video frames to obtain a sparse estimate of the fiptidield. For each corner feature, the
method solves for a subpixel translational displacemectiovehat minimizes the sum of squared
intensity differences between an image patch centereceatdimer and a patch in the next frame
centered at the estimated translated position.

A six parameter affine motion model is fit to the observed dispinent vectors between two
frames to approximate the global flow field induced by camen#ion and a rigid ground plane.
Higher order motion models such as planar projective coeldided, however the affine model
has been adequate in our experiments due to the large séasdof distance, narrow field of
view, and nearly planar ground structure in aerial sequente use a Random Sample Consensus
(RANSAC) procedure [7] to robustly estimate affine paramseteom the observed displacement
vectors. The benefit of using a robust procedure such as RANSAhat the final least squares
estimate is not contaminated by erroneous displacemetdrgepoints on moving vehicles in the
scene, and scene points with large parallax.

4 DenseMotion Estimation and Background M osaicking

In this section, we model dense motion estimation and backgt mosaicking in a Bayesian
framework. To model the complexity of natural images whdmgcts move and occlude each
other, we introduce the notion of occlusion layer into thes#eflow formulation. In particular,
we introduce a background layer with appearance model and@usion layer and estimate these
from an image sequence. The background appearance mogés agiar time, and the probabilis-
tic formulation can be used to provide a segmentation of dwerse into background/occlusion
regions.



4.1 Bayesian Framework

Simultaneous background mosaicking and motion estima@orbe formulated as the maximiza-
tion of the posterior probability
arg max P(Bt,ut|BtS_1,]t,[ts_1,ut_l) (1)
whereu, = (u,(x), v4(x)) is the horizontal and vertical flow at a pixe] and B, is thebackground
appearance model (intensity-based model) at timtewhich serves as a “memory” of the observed
region.
Using Bayes’ rule, we rewrite the posterior probability as

P(By,w|By I, 17 1, wq) o< P(By|By .y, Iy, I} |, uy)
P(ut|ut_1)
P(uguy(Gx)).

whereg, is the set of four neighbors for pixel, P(B,|BY |, I;, I? |, u,) is the likelihood term,
and P(u¢|u;—,) and P(u;|u(Gyx)) are the temporal and spatial coherence of motion respéctive
The posterior holds at every pixe] but we omitx in the rest of the text for the sake of simplicity.

The goal here is to incrementally estimate the appearandelBpand the dense motian by
taking into account the observed image, the past appearandehe motion. As for the previous
estimations and observations, we use stabilized backdrappearance modeBf |) and image
observation [ ,) from the previous time instant.

Assuming that each image in the sequence can be separateohirkground and occlusion
layers, the likelihood of observing imadecan be represented as a mixture model

P(B|BY |, I, I [, u)) = m® Py(By|I, 17 |, uy)
+ mocc POCC(-Bt‘Bf_lu Itu If—h ut)
+ m°. (2)
The probability of each pixel belonging to different layergiven by the mixture probabilities?,
m°“ andm?. These mixing probabilities sum to 1, wheré is a fixed outlier probability. In our

experimentsyn®=0.
For any pixel in the current image, the likelihood for the kground layer is

By(Bi|I, I up) = P(By|L) - P(L)IE |, w). (3)

This likelihood simply enforces that the successive imagethe sequence look similar when
aligned using the motion, and that background appearandelrbe similar to the current image
in regions with high background mixing probability.
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The likelihood for the occlusion layer is
Poce(Bi|BY 1, I I, w) = P(By| By, wy) - P(L|L,w). (4)

This likelihood enforces that successive background ajppea layers look similar, even when
they are occluded.

The temporal termP(u,|u,_;) simply enforces that the flow at the current instant is simila
to the flow at the previous instant. The spatial tefu,|u;(Gx)) is a standard one based on the
difference between neighboring horizontal and verticabflalues. All these terms are repre-
sented with a robust likelihood function [5]. For optimimat, we minimize the negative log of the
posterior and these terms become robust error terms. Batailprovided below.

4.2 Optimization

Given images in a sequence as well as a flow field and backgappehrance model at time- 1,
we seek the appearance modk)] optical flow fieldu,, and the mixture probabilities’ andm
that provide a maximum likelihood fit to the data set. Thishpean can be considered by maxi-
mizing the posterior probability. At every new time instawe need to estimate the background
appearance model and the motion. We use the Expectatiomitation (EM) algorithm [6] to
solve for the( By, u;) pairs.

According to the generalized EM algorithm, a local optimalsion can be achieved by itera-
tively optimizing the following function with respect t8, andu,

L(By,w,) = log P(B,|B ,I,,I° |, w,)
+log P(ugu_y)
+log P(uuy(Gy))
+A(1 = m°® —mb — m°) (5)
Note that the constraint that the mixing probabilities somne is imposed with a Lagrange mul-

tiplier.
At a local extremum it can be shown that the paramet€rsn°<, m°, B, andu, must satisfy

0 0
av - 0B, (log P(Bt|1t)) + oce - OB, (509 P(Bt|BtS—1a ut)) =0 (6)

and

0 0 0
(@0 + toee) 5 (log PALIEE 1 00)) + 550 (log Pludfug)) + 5= (log Plwfuy(G)) = 0. (7)

Hereq, represents thbackground ownership probability, that is the probability that the observed
image valuel; belongs to the background layer. Similarly,. represents thecclusion layer
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ownership probability. The ownership weights are defined by

m’ - P(Bi|I;) - P(L]I |, w,)
P(Bt|Big—17 It7 ItS—17 ut)

(8)

qy =

and

oo — m* - P(By|BYy,w) - P(L|LE ) )
. P(Bt|B£g—17]t7]£g—1>ut) .

These equations for a maximum likelihood fit have been preshoderived by requiring that the
partial derivative ofL(B;, u;) with respect to the parametefs, u, must vanish [8, 9]. Derivation
details are in Appendix.

We first estimate the ownership probabilitigsandg,.. for each layer. This is the expectation
step. Given these ownership probabilities, we compute dle&kdround appearance model and the
motion that optimizes Eq. 6 and 7 in the maximization step.

The likelihoods and priors are modeled bt aistribution of degree 3. The robust error func-
tion is given by the negative log:

SR [ w0

(02 + x2

whereq is a parameter that determines the relative importanceabf ebthe likelihood and prior
terms. We define the derivative of this function@as:;, o, «)

d —4x

U(z,0,0) = —p(x,0,0) = R

dx
After the derivations, the actual equations in the M-stepfaund to be

w@)"™ = u(@)" = (@ + Goee) - U(L(x) — Iy (x — wy), 077, aupp)

- ?/)(Ut(x) - Ut_l(l'), Otemp) atemp)

- Z ’(/)(Ut(l') - ut(:u)v Osps asp)

1eGy
and
Bt@)nﬂ = Bt(ﬁ)n — () - Y(By(x) — Ii(x), 018, a1B)
- qocc<x) ‘¢(Bt($) - Bts_l(fc - Ut), OBB; aBB)

wherea;;, app, aemp, sy are thea parameters for the image likelihood, appearance prior, and
temporal and spatial motion priors respectively. We usddviing parameterso;; = 10, a5 =

5,043325,043p=2.5,04t6mp:2,0'11220,0'13:30,O'BB=20,O'SP=20,O'temp=10.
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Intuitively, the above equations (derived from Eg. 6 andaf) be interpreted as follows: there
are two terms that contribute to the background appearamnckinn the M-step for appearance
optimization. The first term indicates that the backgrouppearance model should adapt to the
new information in the current image, change appearancecéssary, and that regions with high
background layer ownership weights are more likely to beotethto the current image since the
whole term is multiplied byy,. For regions of high occlusion layer ownership weight, tbeond
term dominates and associates successive backgroundappeanodels using the dense motion.
Simply, this term suggests that, in regions of occlusion,lihckground appearance model from
the previous time instant should be maintained after beiaigpad by the layer motion.

The M-step for motion optimization is identical to standawtical flow formulation since
the brightness constancy term (first term) is valid in botbkigagound and occlusion regions. The
second and the third terms suggest that the motion at a pigald be similar to that of neighboring
pixels in space and time.

4.3 Updating mixing probabilities

In our formulation, the mixing probabilities are simply tbesnership weights. Yet, we expect
these mixing probabilities, which represent the assigriroithe pixels to layers, to be stable over
time. To model this, we gradually update them as the owngsfoibabilities change.

We initially setm$ = mg« = 0.5 and then the mixing probabilities for the next time instant
are updated by a linear combination of ownership weightsnaotion priors as follows

m?+1 =aqQy - mi’ + g g+ as - (1 —pluy)) (11)

mgj_cl = Qg mgcc + Qg - Goce + az - p(Ut) (12)

wherep(u:) = exp(||ut||, Omotion_prior). The motion prior variance,otion_prior iS Obtained using
EM on sparse flow computations after stabilization. In thesywwe use the motion statistics
computed through stabilization to distinguish backgroand occlusion layers. We expect the
residual background motion to be slower than the motion efumting foreground regions, and
adding a prior that models this assumption helps separatgbaund and occlusion layers. The
mixing probabilities of each layer act as a prior on everyepiepresenting the probability of each
pixel belonging to that layer. In our experimenis,= a; = a3 = 1/3.

5 Experimental Results

The flow diagram of our approach is illustrated in Figure 2.aiSp flow features obtained via

KLT are computed at two different stages of the algorithmsti-sparse flow features are used for
obtaining the affine transformation matrix for stabilipati Once the previous frame is stabilized
towards the current frame, a second set of sparse flow fesveecomputed, and a two-component
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Gaussian mixture model is fit to them using the EM algorithins €xpected that component with
the higher mixing weight represents the residual motiomefdcene background, and the motions
statistics of this Gaussian component are used for congptiti@ motion priors when updating
background and occlusion layer mixing probabilities.

After stabilization, dense optical flow and background @paece model are estimated. Com-
puting optical flow between stabilized frames as opposediteent and previous frames helps
to cope with large background motion and accelerate theergence of the robust optical flow,
resulting in improved optical flow results.

+ compute sparse flow btw It—l and It

« compute affine matrix (a,) from sparse flow via RANSAC
- stabilize I, ;and B,_ by a, : If_l Bf_l

« compute sparse flow btw If_l and It

« compute mixture parameters from this sparse flow via EM

+ estimate dense motion & background appearance : U, Bt
+ update mixing probabilities

Figure 2: Flow diagram of the approach.

We experimented with our approach on two video sequencgsirds 3-4 illustrate the sparse
flow features, stabilized frames, dense optical flow fiel@dgkiground ownership weight and the
appearance of the occlusion layer and the background mosaic

Initially, we assume that the steady regions after stadiittm belong to the background layer.
Hence, we set the regions with no motion as the initial bamkgd appearance model and some re-
gions in the background appearance model appear as blackeisfurther frames are processed,
these regions are gradually recovered since the occludgoinse (regions with low background
ownership weight) are disoccluded and filled in with the veakpppearance model from the pre-
vious time instant. Regions with high background ownersiepght are updated from the current
image.

From the figures, we see the ownership weights clearly dstienthe moving ground vehicles.
In particular, note how the shape of vehicles partially odeld by trees is extracted. This is possi-
ble because dense optical flow yields a pixel-level labelvag is more faithful to the image data
than simple frame differencing on stabilized image frames.

6 Conclusions

In this paper, we presented an approach for detecting \e=hiol airborne video imagery while
estimating a background mosaic from the video stream. Opiroagh is based on robust optical
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Figure 3: Results of our approach for the first sequence. KLT sparselfefare and after stabilization
(column 1). Stabilized frames and EM results (column 2).ittortal and vertical components of the robust
optical flow (column 3). Background layer ownership weightl dahe occlusion layer appearance (column

4). Background mosaic (column 5).
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Figure 4: Results of our approach for the second sequence. KLT spamdéfore and after stabilization
(column 1). Stabilized frames and EM results (column 2).ittortal and vertical components of the robust
optical flow (column 3). Background layer ownership weightl ahe occlusion layer appearance (column
4). Background mosaic (column 5).
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flow algorithm applied on stabilized frames. Stabilizatminthe frames compensates for gross
affine background motion prior to running robust optical flawcompute dense residual flow.
Based on the flow and the previous background appearancel,nloelenew frame is separated
into background and foreground occlusion layers using anldakktd motion segmentation. The
preliminary results presented here show that ground vehadn be detected and segmented from
airborne video sequences while building a mosaic of the dpackd layer.
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7 Appendix

According to the generalized EM algorithm, a locally optirealution can be achieved by itera-
tively optimizing Eq. 5 wrt to paramete8, andu,. Taking derivative ofL(B;, u;) wrt B;, we
get

0L(Bt, ut) _ aP(Bt|B£9_17 ]t> Its—b ut)/aBt
8Bt P(Bt|Bz§—17]t7ItS—17ut)
_om o (Pb(BtutaItS—lv ut))
P(Bt|B£S—17]t7]£S—17ut)
meee . aiBt (Pocc(Bt|B£9—17 It7 ItS—17 ut))
P(Bt|B£9—17 It7 Its—b Ut)

Replacingd Py (B:|I;, I, u;) /9B, by

)
Py(Bille I w) - 5 (log Po(Bil1;, I 1, wy))
t

and@POCC(Bt|Bf_1, [t7 Its_l, ut)/aBt by

Pocc(Bt|B£9_1a ]ta Its—la ut) lOg Pocc(Bt|Bf—17 Ita ]ts—la ut))

0
95,
Since the likelihoods are defined as in equation 3 ar«iij(élog Py(By|I;, 172 |, ut)) /OBy is simpli-
fied asd (log P(Bi|1,)) /0B, andd (log Pace(Bi| BY 1, 1, IS 1, w,) ) /0B, is simplified as

0 (log P(B|B; 1, w)) /0B,

and rewriting the equation with these changes, we get

8L(Bt, ut) - mb - Pb<Bt‘It7 Iffg—b ut) ) aiBt (lOg P(Bt‘lt)) +
0B, P(Bt|BtS—1a]t>ItS—1>ut)
meoee - Pocc(Bt|B£g—1> I, Its—lv w) - aiBt (509 P(Btlfts_l, ut))
P(Bt|BtS—1a[t,Its—1aut)
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The replacement trick above and further simplifications legt define
q o mb'Pb<Bt‘It,ItS_1,ut)
—
P(Bt|Bz§—1>It>ItS—17ut)
mb-P(BtIIt)-P(Itlfil,ut)
P(Bt|BtS—1a]t>ItS—1>ut)

and
moeee - Pocc(Bt|B£9—17 It’ Its—l’ ut)

P(By| By I, If 1, uy)
m* - P(B|BY ,, wy) - (LIS, wy)
P(Bt|BiS—17 It7 Its—lv ut)

qOCC

Hereq, (g...) represents thewnership probability, that is the probability that the observed imdge
belongs to background (occlusion) layer. Given values fotiom and the background appearance

model, these ownership weights are computed as the exjpectat E-step.
Then, the M-step is formulated in compact form as

3L(Bt,ut) . 0 0 S
T oA v - oB, (log P(Bi[1})) + Goce - OB, (log P(Bt|Bt—1>ut)) :

At a local extremum, the right hand side of the above equatitifbe equal to zero

9
(log P(By|11)) + Goce - 5 (log P(Bu|BY 1, w,)) = 0.

© 5B, OB,

Similarly if we take derivative of (B, u;) wrt u;, the M-step for motion optimization will be

0
(@0 + oce) - 5 (109 P(LII . )

u;

0
+8—ut (log P(uu;_1))

+8% (log P(u,u(Gy))) = 0.
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