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Abstract
We address the detection of vehicles in a video stream obtained from a moving airborne plat-
form. Our approach is based on robust optical flow algorithm applied on stabilized frames.
Stabilization of the frames compensates for gross affine background motion prior to running
robust optical flow to compute dense residual flow. Based on the flow and the previous back-
ground appearance model, the new frame is separated into background and foreground oc-
clusion layers using an EM-based motion segmentation. The proposed framework shows that
ground vehicles can be detected and segmented from airbornevideo sequences while building
a mosaic of the background layer.

Keywords: motion estimation, background mosaicking, tracking, optical flow, airborne im-
agery.





1 Introduction

Detecting moving ground vehicles from airborne video is a difficult problem because all pixels

in the image are moving due to the self motion of the camera. Inthis paper we present a tech-

nique to detect moving vehicles by segmenting dense optic flow fields into background and oc-

clusion layers. Figure 1 illustrates the method. The robustdense optic flow algorithm is run on

motion-compensated image pairs, yielding flow fields representing background residual flow and

foreground object motion. Since the residual flow of the stabilized background should be smaller

in magnitude than the foreground object motion, estimated variance of the residual flow magnitude

can be used in a statistical test to determine the likelihoodthat each pixel is from the background

or foreground, providing an ownership weight to the layer segmentation process. The result of

layer segmentation is a background mosaic plus an ownershipweight representing the probability

of each pixel belonging to either the background or moving object layer.

We propose a Bayesian framework for estimating dense optical flow over time that explicitly

estimates a persistent model of background appearance. Theapproach assumes that the scene can

be described by background and occlusion layers, estimatedwithin an Expectation-Maximization

framework. The mathematical formulation of the paper is an extension of the work in [13] where

motion and appearance models for foreground and backgroundlayers are estimated simultaneously

in a Bayesian framework.

Figure 1: (a) It−1 and KLT sparse flow, (b)It, (c) |It − It−1| , (d) |It − I
S
t−1|, (IS

t−1 : stabilized frame) (e)

horizontal optic flow and background (f) ownership weight and (g) mosaic.

There are several contributions of this paper. First, we formulate a Bayesian framework for

detecting and segmenting moving objects from the background on the basis of dense residual

flow. The flow estimation contributes to background appearance estimation by providing a cue for

differentiating between motion of background and foreground regions.

Second, We combine sparse flow results with dense optical flowresults to separate video se-

quences into background and occlusion layers. Sparse flow features are used in two stages of the
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approach. First, they provide an initial coarse stabilizaton of successive video frames. After stabi-

lization, residual sparse flow motion statistics are used incomputing motion priors when updating

layer ownership weights.

Finally, computing optical flow between stabilized frames helps to cope with large background

motion and accelerate the convergence of the robust opticalflow. Even when the optical flow

algorithm incorporates a coarse-to-fine resolution pyramid, we see improved optical flow results

on stabilized frames. This is so because stabilized sequences conform better to the implicit motion

prior of zero flow in typical optical flow computations.

Section 2 reviews related work on background stabilizationand moving object detection from

aerial video. In Section 3 we describe our approach to two frame stabilization, based on robust

estimation of an affine transformation from sparse corner point correspondences. The heart of the

paper is Section 4, which details the Bayesian background / foreground layer estimation procedure.

Section 5 presents experimental results on two aerial tracking sequences, showing both estimated

background mosaics and detected foreground object regions.

2 Related Work

This section reviews related work where background stabilization is used in detect multiple moving

ground vehicles from airborne video. The recent “MTT” tracker by Alphatech [1] stabilizes video

subsequences by aligning N frames to one reference frame using an 8-parameter planar perspective

warp. As frames are aligned, background color statistics are recursively estimated at each pixel

to form a statistical background model. Moving objects are detected by thresholding against the

background Mahalanobis color distance and forming connected component blobs from flagged

foreground pixels.

Bell et.al. [3] perform affine motion stabilization betweenadjacent pairs of frames based on

a sparse set of corner matches. Intensity-based image segmentation of individual frames is per-

formed, and the residual translation of each segmented patch is computed using an iterative Lucas-

Kanade approach. Candidate moving regions are detected using thresholding and connected com-

ponents on the magnitude of residual translation. Medioni et.al. [10] also stabilize adjacent frames

using affine transformations computed over sparse corner features. Motion regions are detected by

thresholding the magnitude of residual normal flow and applying connected components.

Tao et.al. [11] develop a practical, layer-based algorithmwithin a rigorous Bayesian framework

that specifies data terms and priors for object appearance, motion and shape cues. The novelty that

distinguishes this work from other layer-based approachesis imposition of shape constraints on the

foreground object regions (the vehicles) by specifying elliptical shape priors that guide the layer

segmentation to produce compact foreground regions.

Layered models of optical flow have been one of the key paradigms for simultaneously seg-

menting the scene and estimating its motion [2, 8, 12]. In particular, mixture model frameworks
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make a soft assignment of pixels to layers. Unfortunately, this segmentation does not typically en-

force spatial coherence between neighboring pixels and may, hence, be quite sparse. Additionally,

these methods are typically limited to parametric motion models. An exception is [13], where a

Bayesian framework is presented for estimating motion and appearance models of layers based on

dense optical flow.

3 Stabilization

Two-frame stabilization is achieved by establishing correspondences between adjacent video frames

and estimating an affine or higher order transformation thatwarps the images into alignment. We

estimate image alignment by fitting a global parametric motion model to sparse optic flow. The

Kanade-Lucas-Tomasi (KLT) feature tracker [4] is used to match corner features between adjacent

pairs of video frames to obtain a sparse estimate of the opticflow field. For each corner feature, the

method solves for a subpixel translational displacement vector that minimizes the sum of squared

intensity differences between an image patch centered at the corner and a patch in the next frame

centered at the estimated translated position.

A six parameter affine motion model is fit to the observed displacement vectors between two

frames to approximate the global flow field induced by camera motion and a rigid ground plane.

Higher order motion models such as planar projective could be used, however the affine model

has been adequate in our experiments due to the large sensor standoff distance, narrow field of

view, and nearly planar ground structure in aerial sequences. We use a Random Sample Consensus

(RANSAC) procedure [7] to robustly estimate affine parameters from the observed displacement

vectors. The benefit of using a robust procedure such as RANSAC is that the final least squares

estimate is not contaminated by erroneous displacement vectors, points on moving vehicles in the

scene, and scene points with large parallax.

4 Dense Motion Estimation and Background Mosaicking

In this section, we model dense motion estimation and background mosaicking in a Bayesian

framework. To model the complexity of natural images where objects move and occlude each

other, we introduce the notion of occlusion layer into the dense flow formulation. In particular,

we introduce a background layer with appearance model and anocclusion layer and estimate these

from an image sequence. The background appearance model adapts over time, and the probabilis-

tic formulation can be used to provide a segmentation of the secene into background/occlusion

regions.
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4.1 Bayesian Framework

Simultaneous background mosaicking and motion estimationcan be formulated as the maximiza-

tion of the posterior probability

arg max
Bt,ut

P (Bt,ut|B
S
t−1, It, I

S
t−1,ut−1) (1)

whereut = (ut(x), vt(x)) is the horizontal and vertical flow at a pixelx, andBt is thebackground

appearance model (intensity-based model) at timet, which serves as a “memory” of the observed

region.

Using Bayes’ rule, we rewrite the posterior probability as

P (Bt,ut|B
S
t−1, It, I

S
t−1,ut−1) ∝ P (Bt|B

S
t−1, It, I

S
t−1,ut)

P (ut|ut−1)

P (ut|ut(Gx)).

whereGx is the set of four neighbors for pixelx, P (Bt|B
S
t−1, It, I

S
t−1,ut) is the likelihood term,

andP (ut|ut−1) andP (ut|ut(Gx)) are the temporal and spatial coherence of motion respectively.

The posterior holds at every pixelx, but we omitx in the rest of the text for the sake of simplicity.

The goal here is to incrementally estimate the appearance modelBt and the dense motionut by

taking into account the observed image, the past appearance, and the motion. As for the previous

estimations and observations, we use stabilized background appearance model (BS
t−1) and image

observation (IS
t−1) from the previous time instant.

Assuming that each image in the sequence can be separated into background and occlusion

layers, the likelihood of observing imageIt can be represented as a mixture model

P (Bt|B
S
t−1, It, I

S
t−1,ut) = mb Pb(Bt|It, I

S
t−1,ut)

+ mocc Pocc(Bt|B
S
t−1, It, I

S
t−1,ut)

+ mo. (2)

The probability of each pixel belonging to different layersis given by the mixture probabilitiesmb,

mocc andmo. These mixing probabilities sum to 1, wheremo is a fixed outlier probability. In our

experiments,mo=0.

For any pixel in the current image, the likelihood for the background layer is

Pb(Bt|It, I
S
t−1,ut) = P (Bt|It) · P (It|I

S
t−1,ut). (3)

This likelihood simply enforces that the successive imagesin the sequence look similar when

aligned using the motion, and that background appearance model be similar to the current image

in regions with high background mixing probability.
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The likelihood for the occlusion layer is

Pocc(Bt|B
S
t−1, It, I

S
t−1,ut) = P (Bt|B

S
t−1,ut) · P (It|I

S
t−1,ut). (4)

This likelihood enforces that successive background appearance layers look similar, even when

they are occluded.

The temporal termP (ut|ut−1) simply enforces that the flow at the current instant is similar

to the flow at the previous instant. The spatial termP (ut|ut(Gx)) is a standard one based on the

difference between neighboring horizontal and vertical flow values. All these terms are repre-

sented with a robust likelihood function [5]. For optimization, we minimize the negative log of the

posterior and these terms become robust error terms. Details are provided below.

4.2 Optimization

Given images in a sequence as well as a flow field and backgroundappearance model at timet−1,

we seek the appearance modelBt, optical flow fieldut, and the mixture probabilitiesmb andmocc

that provide a maximum likelihood fit to the data set. This problem can be considered by maxi-

mizing the posterior probability. At every new time instant, we need to estimate the background

appearance model and the motion. We use the Expectation-Maximization (EM) algorithm [6] to

solve for the(Bt,ut) pairs.

According to the generalized EM algorithm, a local optimal solution can be achieved by itera-

tively optimizing the following function with respect toBt andut

L(Bt,ut) = log P (Bt|B
S
t−1, It, I

S
t−1,ut)

+log P (ut|ut−1)

+log P (ut|ut(Gx))

+λ(1 −mo −mb −mocc) (5)

Note that the constraint that the mixing probabilities sum to one is imposed with a Lagrange mul-

tiplier.

At a local extremum it can be shown that the parametersmb,mocc,mo, Bt andut must satisfy

qb ·
∂

∂Bt

(log P (Bt|It)) + qocc ·
∂

∂Bt

(

log P (Bt|B
S
t−1,ut)

)

= 0 (6)

and

(qb + qocc) ·
∂

∂ut

(

log P (It|I
S
t−1,ut)

)

+
∂

∂ut

(log P (ut|ut−1)) +
∂

∂ut

(log P (ut|ut(Gx))) = 0. (7)

Hereqb represents thebackground ownership probability, that is the probability that the observed

image valueIt belongs to the background layer. Similarly,qocc represents theocclusion layer
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ownership probability. The ownership weights are defined by

qb =
mb · P (Bt|It) · P (It|I

S
t−1,ut)

P (Bt|BS
t−1, It, I

S
t−1,ut)

(8)

and

qocc =
mocc · P (Bt|B

S
t−1,ut) · P (It|I

S
t−1,ut)

P (Bt|B
S
t−1, It, I

S
t−1,ut)

. (9)

These equations for a maximum likelihood fit have been previously derived by requiring that the

partial derivative ofL(Bt,ut) with respect to the parametersBt,ut must vanish [8, 9]. Derivation

details are in Appendix.

We first estimate the ownership probabilitiesqb andqocc for each layer. This is the expectation

step. Given these ownership probabilities, we compute the background appearance model and the

motion that optimizes Eq. 6 and 7 in the maximization step.

The likelihoods and priors are modeled by at- distribution of degree 3. The robust error func-

tion is given by the negative log:

ρ(x, σ, α) = −log

[(

2σ3

π(σ2 + x2)2

)α]

(10)

whereα is a parameter that determines the relative importance of each of the likelihood and prior

terms. We define the derivative of this function asψ(x, σ, α)

ψ(x, σ, α) =
d

dx
ρ(x, σ, α) = α

−4x

σ2 + x2
.

After the derivations, the actual equations in the M-step are found to be

u(x)n+1 = u(x)n − (qb + qocc) · ψ(It(x) − IS
t−1(x− ut), σII , αII)

− ψ(ut(x) − ut−1(x), σtemp, αtemp)

−
∑

µεGx

ψ(ut(x) − ut(µ), σsp, αsp)

and

Bt(x)
n+1 = Bt(x)

n − qb(x) · ψ(Bt(x) − It(x), σIB, αIB)

− qocc(x) · ψ(Bt(x) −BS
t−1(x− ut), σBB, αBB)

whereαII , αBB , αtemp, αsp are theα parameters for the image likelihood, appearance prior, and

temporal and spatial motion priors respectively. We used following parameters:αII = 10 ,αIB =

5 ,αBB = 5 ,αsp = 2.5 ,αtemp = 2 ,σII = 20 ,σIB = 30 ,σBB = 20 ,σsp = 20 ,σtemp = 10 .
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Intuitively, the above equations (derived from Eq. 6 and 7) can be interpreted as follows: there

are two terms that contribute to the background appearance model in the M-step for appearance

optimization. The first term indicates that the background appearance model should adapt to the

new information in the current image, change appearance if necessary, and that regions with high

background layer ownership weights are more likely to be adapted to the current image since the

whole term is multiplied byqb. For regions of high occlusion layer ownership weight, the second

term dominates and associates successive background appearance models using the dense motion.

Simply, this term suggests that, in regions of occlusion, the background appearance model from

the previous time instant should be maintained after being warped by the layer motion.

The M-step for motion optimization is identical to standardoptical flow formulation since

the brightness constancy term (first term) is valid in both background and occlusion regions. The

second and the third terms suggest that the motion at a pixel should be similar to that of neighboring

pixels in space and time.

4.3 Updating mixing probabilities

In our formulation, the mixing probabilities are simply theownership weights. Yet, we expect

these mixing probabilities, which represent the assignment of the pixels to layers, to be stable over

time. To model this, we gradually update them as the ownership probabilities change.

We initially setmb
0 = mocc

0 = 0.5 and then the mixing probabilities for the next time instant

are updated by a linear combination of ownership weights andmotion priors as follows

mb
t+1 = α1 ·m

b
t + α2 · qb + α3 · (1 − p(ut)) (11)

mocc
t+1 = α1 ·m

occ
t + α2 · qocc + α3 · p(ut) (12)

wherep(ut) = exp(||ut||, σmotion prior). The motion prior varianceσmotion prior is obtained using

EM on sparse flow computations after stabilization. In this way, we use the motion statistics

computed through stabilization to distinguish backgroundand occlusion layers. We expect the

residual background motion to be slower than the motion of occluding foreground regions, and

adding a prior that models this assumption helps separate background and occlusion layers. The

mixing probabilities of each layer act as a prior on every pixel representing the probability of each

pixel belonging to that layer. In our experiments,α1 = α2 = α3 = 1/3.

5 Experimental Results

The flow diagram of our approach is illustrated in Figure 2. Sparse flow features obtained via

KLT are computed at two different stages of the algorithm. First, sparse flow features are used for

obtaining the affine transformation matrix for stabilization. Once the previous frame is stabilized

towards the current frame, a second set of sparse flow features are computed, and a two-component
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Gaussian mixture model is fit to them using the EM algorithm. It is expected that component with

the higher mixing weight represents the residual motion of the scene background, and the motions

statistics of this Gaussian component are used for computing the motion priors when updating

background and occlusion layer mixing probabilities.

After stabilization, dense optical flow and background appearance model are estimated. Com-

puting optical flow between stabilized frames as opposed to current and previous frames helps

to cope with large background motion and accelerate the convergence of the robust optical flow,

resulting in improved optical flow results.

Figure 2: Flow diagram of the approach.

We experimented with our approach on two video sequences. Figures 3-4 illustrate the sparse

flow features, stabilized frames, dense optical flow fields, background ownership weight and the

appearance of the occlusion layer and the background mosaic.

Initially, we assume that the steady regions after stabilization belong to the background layer.

Hence, we set the regions with no motion as the initial background appearance model and some re-

gions in the background appearance model appear as blacked out. As further frames are processed,

these regions are gradually recovered since the occluded regions (regions with low background

ownership weight) are disoccluded and filled in with the warped appearance model from the pre-

vious time instant. Regions with high background ownershipweight are updated from the current

image.

From the figures, we see the ownership weights clearly delineate the moving ground vehicles.

In particular, note how the shape of vehicles partially occluded by trees is extracted. This is possi-

ble because dense optical flow yields a pixel-level labelingthat is more faithful to the image data

than simple frame differencing on stabilized image frames.

6 Conclusions

In this paper, we presented an approach for detecting vehicles in airborne video imagery while

estimating a background mosaic from the video stream. Our approach is based on robust optical
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Figure 3: Results of our approach for the first sequence. KLT sparse flowbefore and after stabilization
(column 1). Stabilized frames and EM results (column 2). Horizontal and vertical components of the robust
optical flow (column 3). Background layer ownership weight and the occlusion layer appearance (column
4). Background mosaic (column 5).
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Figure 4: Results of our approach for the second sequence. KLT sparse flow before and after stabilization
(column 1). Stabilized frames and EM results (column 2). Horizontal and vertical components of the robust
optical flow (column 3). Background layer ownership weight and the occlusion layer appearance (column
4). Background mosaic (column 5).
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flow algorithm applied on stabilized frames. Stabilizationof the frames compensates for gross

affine background motion prior to running robust optical flowto compute dense residual flow.

Based on the flow and the previous background appearance model, the new frame is separated

into background and foreground occlusion layers using an EM-based motion segmentation. The

preliminary results presented here show that ground vehicles can be detected and segmented from

airborne video sequences while building a mosaic of the background layer.
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7 Appendix

According to the generalized EM algorithm, a locally optimal solution can be achieved by itera-
tively optimizing Eq. 5 wrt to parametersBt andut. Taking derivative ofL(Bt,ut) wrt Bt, we
get

∂L(Bt,ut)

∂Bt

=
∂P (Bt|B

S
t−1, It, I

S
t−1,ut)/∂Bt

P (Bt|BS
t−1, It, I

S
t−1,ut)

=
mb · ∂

∂Bt

(

Pb(Bt|It, I
S
t−1,ut)

)

P (Bt|BS
t−1, It, I

S
t−1,ut)

+

mocc · ∂
∂Bt

(

Pocc(Bt|B
S
t−1, It, I

S
t−1,ut)

)

P (Bt|B
S
t−1, It, I

S
t−1,ut)

Replacing∂Pb(Bt|It, I
S
t−1,ut)/∂Bt by

Pb(Bt|It, I
S
t−1,ut) ·

∂

∂Bt

(

log Pb(Bt|It, I
S
t−1,ut)

)

and∂Pocc(Bt|B
S
t−1, It, I

S
t−1,ut)/∂Bt by

Pocc(Bt|B
S
t−1, It, I

S
t−1,ut) ·

∂

∂Bt

(

log Pocc(Bt|B
S
t−1, It, I

S
t−1,ut)

)

Since the likelihoods are defined as in equation 3 and 4,∂
(

log Pb(Bt|It, I
S
t−1,ut)

)

/∂Bt is simpli-

fied as∂ (log P (Bt|It)) /∂Bt and∂
(

log Pocc(Bt|B
S
t−1, It, I

S
t−1,ut)

)

/∂Bt is simplified as

∂
(

log P (Bt|B
S
t−1,ut)

)

/∂Bt

and rewriting the equation with these changes, we get

∂L(Bt,ut)

∂Bt

=
mb · Pb(Bt|It, I

S
t−1,ut) ·

∂
∂Bt

(log P (Bt|It))

P (Bt|BS
t−1, It, I

S
t−1,ut)

+

mocc · Pocc(Bt|B
S
t−1, It, I

S
t−1,ut) ·

∂
∂Bt

(

log P (Bt|I
S
t−1,ut)

)

P (Bt|B
S
t−1, It, I

S
t−1,ut)
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The replacement trick above and further simplifications lets us define

qb =
mb · Pb(Bt|It, I

S
t−1,ut)

P (Bt|BS
t−1, It, I

S
t−1,ut)

=
mb · P (Bt|It) · P (It|I

S
t−1,ut)

P (Bt|BS
t−1, It, I

S
t−1,ut)

and

qocc =
mocc · Pocc(Bt|B

S
t−1, It, I

S
t−1,ut)

P (Bt|B
S
t−1, It, I

S
t−1,ut)

=
mocc · P (Bt|B

S
t−1,ut) · P (It|I

S
t−1,ut)

P (Bt|B
S
t−1, It, I

S
t−1,ut)

Hereqb (qocc) represents theownership probability, that is the probability that the observed imageIt
belongs to background (occlusion) layer. Given values for motion and the background appearance
model, these ownership weights are computed as the expectation, or E-step.

Then, the M-step is formulated in compact form as

∂L(Bt,ut)

∂Ai
t

= qb ·
∂

∂Bt

(log P (Bt|It)) + qocc ·
∂

∂Bt

(

log P (Bt|B
S
t−1,ut)

)

.

At a local extremum, the right hand side of the above equationwill be equal to zero

qb ·
∂

∂Bt

(log P (Bt|It)) + qocc ·
∂

∂Bt

(

log P (Bt|B
S
t−1,ut)

)

= 0.

Similarly if we take derivative ofL(Bt,ut) wrt ut, the M-step for motion optimization will be

(qb + qocc) ·
∂

∂ut

(

log P (It|I
S
t−1,ut)

)

+
∂

∂ut

(log P (ut|ut−1))

+
∂

∂ut

(log P (ut|ut(Gx))) = 0.

15


