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Abstract

Matrix factorization has many applications in computer
vision. Singular Value Decomposition (SVD) is the standard
algorithm for factorization. When there are outliers and
missing data, which often happen in real measurements,
SVD is no longer applicable. For robustness Iteratively
Re-weighted Least Squares (IRLS) is often used for factor-
ization by assigning a weight to each element in the mea-
surements. Because it uses L2 norm, good initialization in
IRLS is critical for success, but is non-trivial. In this paper,
we formulate matrix factorization as a L1 norm minimiza-
tion problem that is solved efficiently by alternative convex
programming. Our formulation 1) is robust without requir-
ing initial weighting, 2) handles missing data straightfor-
wardly, and 3) provides a framework in which constraints
and prior knowledge (if available) can be conveniently in-
corporated. In the experiments we apply our approach to
factorization-based structure from motion. It is shown that
our approach achieves better results than other approaches
(including IRLS) on both synthetic and real data.

1 Introduction
In many vision or other sensor data interpretation prob-

lems, measurements or observation data often lie in a lower
dimensional subspace within the original high dimensional
data space. Such a subspace, especially the linear subspace,
has many important applications in computer vision, such as
Structure from Motion (SFM) [24], motion estimation [11],
layer extraction [14], object recognition [25], and object
tracking [4].

Representing each measurement as a d-vector mi, the
d×n measurement matrix M is the stack of all such column
vectors: M = [mij ] = [m1,m2, · · · ,mn]. The subspace
can then be estimated by the following matrix factorization:

Md×n = Ud×kV
�
k×n (1)

Here d is the dimension of the input data space; n is the
number of input data items; and k is the dimension of the
linear subspace. The k columns of the matrix U are the ba-
sis of the linear subspace. In the following of this paper,
the terms matrix factorization and subspace estimation are
interchangeably used.

With real measurement data that contains noise, the fac-
torization in Eq. (1) can only be approximated. Assuming
Gaussian noise in the measurement, the maximum likeli-
hood estimation (MLE) of the subspace (U and V) is equiv-
alent to minimizing the following L2 norm cost function:

E(U, V) = ‖M− UV�‖2L2
=

d∑
i=1

n∑
j=1

(mij − u�
i vj)2 (2)

where u�
i is the i-th row of U, and vj is the j-th column of

V�. For a matrix A, ‖A‖2L2
=

∑
i

∑
j a2

ij . Note that both
ui and vj are k-vectors. The global minimum of Eq. (2) is
provided by the Singular Value Decomposition (SVD) algo-
rithm [8]. However, it is known that SVD is sensitive to out-
liers, and can not handle missing data. Various approaches
have been proposed to deal with the above two problems, to
cite a few [24, 21, 13, 18, 12, 5, 7, 1, 10]; See [7] for an ex-
tensive review. The most often used approach is to replace
the squared error function in Eq. (2) with some robust ρ-
function such as Geman-McClure function [3], which leads
to a weighted L2 norm cost function where the contribu-
tion of each item is weighted according to its fitness to the
subspace:

E(W, U, V) = ‖W⊗(M−UV�)‖2L2
=

d∑
i=1

n∑
j=1

wij(mij−u�
i vj)2

where ⊗ denotes the component-wise multiplication, and
wij ≥ 0 is the weight (wij = 0 if mij is missing).

E(W, U, V) is a convex function only if rank(W) = 1,
which is the case studied in [12]. In general, we have
rank(W) > 1, and the above cost function E(W, U, V) be-
comes non-convex [22]. To find an approximated optimal
solution, Iteratively Re-weighted Least Squares (IRLS) is
often used. Starting from some initialization of (W, U, V),
IRLS alternatively fixes two unknowns and computes the
third one until converges. At each iteration, U or V is derived
by solving a weighted least squares problem respectively,
and W is computed based on the current estimate of (U, V)
using the weighting function derived from the robust M-
estimator [3]. It is obvious that the weight matrix W depends
on (U, V) which are unknown at the beginning. Trivial and
usually adopted initialization of W is to assign wij = 1 for



all (i, j) except those for missing data. But it often leads to
undesired local solutions when there are many outliers. The
reason is that IRLS uses L2 norm metric. While L2 norm
leads to a simple least squares problem for each alternative
step in IRLS, it is, however, sensitive to outliers. It is there-
fore important for IRLS to start with good initial weights
that down-weight the outliers at the beginning, which is of
course non-trivial since that is indeed the goal.

Croux et al. [6] robustified the factorization by replacing
the L2 norm with L1 norm. However, their minimization
requires the weight wij to be separable: wij = wiwj . In
other words, the weight matrix W = ww�, which is a rank-
1 matrix. This formulation can not be used in measurements
where missing data and outliers are presented at arbitrary
locations in the measurement matrix. If mij is missing, for
example, wij must be 0 for which wi or wj must be 0. If
wi is set to 0, then wij’s for all j become 0 even their cor-
responding measurements are inliers.

In this paper, we formulate the robust L1 norm matrix
factorization as alternative convex programs that can be ef-
ficiently solved by linear or quadratic programming. Our
formulation 1) can handle outliers and missing data that
present at arbitrary locations in the matrix, 2) does not re-
quire initial weighting as in IRLS, and 3) provides a frame-
work where constraints and prior knowledge (if available)
can be conveniently incorporated. In the experiments we
apply our approach to factorization-based structure from
motion. It is shown that our approach achieves better re-
sults than other approaches (including IRLS) on both syn-
thetic and real data.

2 L1-norm based subspace estimation
In this section, we formulate the subspace estimation as

a L1 norm minimization problem, and then present alterna-
tive convex programming to minimizing the L1 norm.

2.1 MLE via L1 norm minimization

The subspace estimation problem can be formulated as
a maximum likelihood estimation (MLE) problem [23]. In
general, the observed datum mj , a d-dimensional column
vector, is the measurement of some unknown variable µj :

mj = µj + εj j = 1, · · · , n (3)

where εj is the noise in the measurement. µj resides in a k
dimensional linear subspace (k < d) such that:

µj = Uvj (4)

where vj is the projection of mj on the subspace defined
by the k columns of U.

Assuming the n measurements m1:n are independent,
the log likelihood of the total n measurements is:

l(µ1:n;m1:n) = log p(m1:n |µ1:n) =
n∑

j=1

log p(mj |µj)
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Figure 1. Fit a line to 10 given data points. The two data points
on upper-left are outliers.

The goal of subspace estimation is thus to find the values
of µj’s that maximize the likelihood of the measurements
l(µ;m), subject to the condition that these µj’s reside in a
low dimensional subspace defined by U in Eq. (4).

If we model the noises ε1:n by i.i.d. Laplacian distri-
bution, and also assume that the components in the noise
vector εj are independent, we have:

p(m1:n |µ1:n) ∼ exp{−
n∑

j=1

‖mj − µj‖1/s} (5)

where ‖x‖1 is the L1 norm of vector x: ‖x‖1 =
∑

i |xi|,
and s is the scale parameter. The maximum log likelihood
of the observed data is therefore given by minimizing the
following L1 norm cost function:

EL(µ) =
n∑

j=1

‖mj − µj‖1 (6)

Substituting Eq. (4) into Eq. (6) and re-written in matrix
format:

EL(U, V) = ‖M− UV�‖L1 (7)

where M is the measurement matrix with mj its j-th column.
For a matrix A, ‖A‖L1 =

∑
i

∑
j |aij |.

It is well known that L1 norm is much more robust to
outliers than L2 norm. Figure 1 shows a simple example of
computing the 1D subspace (the straight line) from ten 2D
input data points, two of which are outliers. While L2 norm
gives erroneous line fitting, L1 norm gives correct result.

2.2 Alternative convex minimization

The L1-norm cost function defined in Eq. (7) is in gen-
eral non-convex. But if one of the unknowns, either U or V,
is known, the cost function w.r.t. the other unknown be-
comes a convex function (see following section) and the
global solution to Eq.(7) can be found. This fact suggests a
scheme that minimizes the cost function alternatively over U
or V, each time optimizing one argument while keeping the
other one fixed. The alternative optimization can be written



as:

V(t) = arg min
V
‖M− U(t−1)V�‖L1 (8a)

U(t) = arg min
U
‖M− UV(t)�‖L1 (8b)

Here (t) indicates the solution at time t during the iter-
ation. In the following, we show how to solve Eq. (8a)
using convex programming, including linear programming
and quadratic programming. Eq. (8b) can be solved in the
same way.

2.2.1 Linear programming

The cost function of Eq. (8a) can be written as:

E(V) = ‖M− U(t−1)V�‖L1 =
n∑

j=1

‖mj − U(t−1)vj‖1 (9)

where mj is the j-th column of M , vj is the j-th column of
V�. The problem of Eq. (8a) is therefore decomposed into
n independent small sub-problems, each one optimizing vj :

vj = arg min
x

‖U(t−1)x−mj‖1 (10)

The global optimal solution of Eq. (10) can be found by the
following linear program (LP):

min
x,t

1�t

s.t.− t ≤ U(t−1)x−mj ≤ t (11)

where 1 is a column vector of ones. In other words, the LP
finds the minimum bound t, such that the feasible region
defined by −t ≤ U(t−1)x−mj ≤ t is non-empty.

The computational cost of linear programming depends
on the number of unknown variables and linear constraints.
In recent years, efficient algorithms have been developed
for large scale linear programs. In [2], linear programming
has been used in minimizing point-to-line absolute distance
(also a L1 metric) to compute 2D image motions in real
time. In practice, the complexity of linear programming
is known to be quasi-linear in terms of number of con-
straints. Note that in our case, each of the n sub-problems
in Eq. (11) is a small scale linear program. The n sub-
problems share the same matrix U(t−1). The computational
cost can therefore be further reduced by sharing intermedi-
ate results among the n linear programs.

2.2.2 Quadratic programming

The L1 norm minimization can also be solved by quadratic
programming. To do this, the following Huber M-estimator
cost function is used to approximate the L1 norm [16]:

ρ(e) =
{

1
2e2, if |e| ≤ γ
γ|e| − 1

2γ2, if |e| > γ

where γ is some positive number. Huber M-estimator has
similar robustness to the L1 norm, i.e., it deemphasizes out-

liers as the L1 norm does. Each of the n independent sub-
problem (Eq. (10)) now becomes:

vj = arg min
x

ρ(U(t−1)x−mj) (12)

Since Huber M-estimator is a differentiable convex func-
tion, Eq. (12) can be converted to a convex quadratic pro-
gramming (QP) problem whose global minimum can be
computed efficiently [17]:

min
x,z,t

1
2
‖z‖22 + γ1�t

s.t.− t ≤ U(t−1)x−mj − z ≤ t (13)

When γ → 0+, the L1 norm estimator is achieved. Effi-
cient algorithm for Eq. (13) has been developed for large
scale quadratic programming using CPLEX software pack-
age [17].

2.3 Handling missing data

It is straightforward to handle missing data in our al-
ternative convex programming formulation. In contrast to
other approaches (e.g., [24, 20]) that handle missing data by
explicitly recovering them, our approach just simply drops
the constraint for each missing datum when solving Equa-
tion (11) or (13). Once the subspace has been derived, the
missing data can be recovered by UV�.

To see the reason, we rewrite Eq. (9) as:

E(V) =
d∑

i=1

n∑
j=1

|mij − u�
i vj | (14)

If mij is missing, then we discard the corresponding cumu-
lative item of |mij − u�

i vj |. For the convex programming
algorithm, discarding one such item removes one constraint
in Eq (11) or Eq (13). In general, the original dimensions d
is much larger than the subspace dimension k, which allows
large number of missing data in each column of M.

2.4 Algorithm summary

In Fig. 2 we summarize the algorithm for subspace esti-
mation by minimizing the L1 norm using alternative convex
programming. The normalization step is for numerical sta-
bility purpose. Once the basis of the subspace U is obtained,
we can use QR-factorization to orthonormalize the basis if
desired by the application. In the following we give more
details on the initialization step, and on the convergence of
the algorithm.

2.4.1 Initialization

Like other iterative algorithms, our algorithm requires the
initialization of U at the beginning. We use a simple random
initialization. In practice we find our algorithm is not sen-
sitive to the initialization. Another initialization approach
is to first fill each missing datum with its corresponding
column-mean, and then apply the SVD algorithm onto the



1. Initialization: U(0), Σ0 = I.
2. For t = 1, · · · , convergence:

• V(t) = arg min
V
‖M− U(t−1)Σ(t−1)V�‖L1

• U(t) = arg min
U
‖M− UΣ(t−1)V(t)�‖L1

• Normalization:




Nv = diag(V(t)�V(t))
Nu = diag(U(t)�U(t))
V(t) ← V(t)N−1

v

U(t) ← U(t)N−1
u

Σ(t) ← NuΣ(t−1)Nv

3. Output: U← UΣ1/2, V← VΣ1/2

Figure 2. Algorithm: Subspace estimation via L1 norm mini-
mization using alternative convex programming. Here I in the
initialization step is the identity matrix.

filled matrix to initialize U. We found such approach is not
necessary better than the simple random initialization, when
there are many outliers and missing data.

2.4.2 Convergence

The cost function E(U, V) decreases at each alternative min-
imization step. Since the cost function E(U, V) is lower
bounded (≥ 0), the alternative minimization procedure will
converge.

The convergence is achieved when the difference of the
parameters between adjacent iterations is small enough.
More specifically, the algorithm will stop if for each sub-
space base, the following holds:

θ(u(t)
i ,u(t−1)

i ) < α

Here θ(a,b) denotes the angle between the two vectors a
and b; ui is the i-th column in U or V; and α is a small
positive number.

2.5 Weighted L1 norm

In many applications, L1 norm is robust enough since the
measurements are bounded, which in turn means the mea-
surement errors are bounded too. In other words, the out-
liers are usually not strong enough to break the robustness
of L1 norm in many vision applications. For example, in
structure from motion, the measurements are the locations
of feature points which lie inside the boundary of the im-
ages. In face recognition using subspace the measurements
are the intensity which are bounded by the maximum inten-
sity value (e.g., 255 in CCD sensors).

We can therefore use L1 norm minimization to derive a
good initial subspace estimation. A good initial weight can
then be computed for each element in the measurements,
which enables us to use weighted L1 norm to further reduce
the influence of the outliers in order to increase the robust-

ness of our subspace estimation. The weighted L1 norm is:

E(U, V) = ‖W⊗ (Md×n − Ud×kV
�
k×n)‖L1 (15)

Here W contains the weight for each element in the matrix
(M − UV�), and ⊗ denotes the component-wise multiplica-
tion. In each alternative minimization step, we have:

E(V) =
n∑

j=1

‖wj ⊗ (mj − U(t−1)vj)‖1 (16)

Here wj is the j-th column of the weight matrix W, with
each component computed by:

wij =
1
c

exp
(
− (mij − u�

i vj)2

2σ2

)
(17)

Here c is a normalization constant such that
∑

i,j wij =
1, and σ can be robustly estimated using median absolute
deviation (MAD) [19]. If mij is missing, then wij = 0. W is
recomputed at each iteration. Note that we do not have any
special requirement on W, therefore we can handle outliers
and missing data presenting at arbitrary locations in M.

The problem in Eq. (16) can be decomposed into n inde-
pendent small sub-problems:

vj = arg min
x

‖w ⊗ (U(t−1)x−mj)‖1 (18)

The above problem can be solved by the following linear
program:

min
x,t

w�t

s.t.− t ≤ U(t−1)x−mj ≤ t (19)

Compared to equation (11), the only difference is the cost
function which is weighted by w. The linear constraints
remain the same. Therefore the weighted and un-weighted
L1 norm minimization can be easily integrated together into
the algorithm in Fig. 2 with little overhead.

3 Experimental results

3.1 Synthetic data with ground truth

We use a synthetic 30× 30 matrix M (with rank(M) = 3)
to evaluate our algorithm, and to compare with other ex-
isting algorithms including: stand SVD, PCA with miss-
ing data (PCA-MISS), iteratively re-weighted least squares
(IRLS). PCA-MISS assigns weight zero to missing ele-
ments and one to others. The IRLS uses the weight func-
tion derived from Geman-McClure M-estimator to compute
the continuous weights, except for each missing datum the
weight is zero. To generate the rank-3 matrix M, we first
create a 30 × 30 matrix A whose elements are randomly
drawn from the uniform distribution over [−100, 100]. We
then apply SVD to A, i.e., A = UΣV�. The matrix M is then
constructed by: M = U(:,1:3)Σ(1:3,1:3)V

�
(:,1:3). To simulate

the missing data elements, we cut off 55 elements in the
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Figure 3. Factorizing a synthetic 30 × 30 matrix. (a): Missing
data (o) and outliers (×) in synthetic matrix; (b): Initial weights
from least L1 norm via alternative convex programming. Darker
means lower weights; (c): Final weights after weighted L1 norm
minimization.
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Figure 4. The histogram of squared errors (in base-10 logarithm)
for all elements in (M− UV�). The last bin is for all errors larger
than 80. (a): Standard SVD; (b) PCA with missing data; (c):
Iterative re-weighted least squares; (d) L1 norm with convex pro-
gramming.

bottom-left corner of matrix. Then we randomly pick up
10% of the elements in M and transform them into outliers
by assigning them a value in the range of [−2000, 2000].
Figure 3(a) shows the missing data (o) and outliers (×) in
the matrix. The original un-corrupted matrix A is saved as
ground truth for comparison purpose.

We use trivial initialization where wij = 0 for miss-
ing data, and wij = 1 for others. We apply our alterna-
tive convex programming to minimizing the L1 norm for
rank-3 matrix factorization, from which we re-compute the
initial weights for each element (using Eq. (17)), which are
shown in Figure 3(b), where darker means lower weights.
All of the outliers are correctly assigned near-zero weights.
Figure 3(c) shows the final weights after we applied the
weighted L1 norm matrix factorization.

For quantitative comparison, we repeat the same experi-
ment for 20 times, with different matrix M but same initial-
ization scheme. Our approach converges to the right solu-

tion in all of these 20 runs in less than 10 iterations, while
the IRLS converges to the right solution only in 7 out of the
20 runs, with an average of about 40 iterations of alternative
minimization. We also use reconstruction errors (averaged
from the 20 runs) to compare different algorithms. The er-
ror matrix is defined as: E = M − M̂, where M is the ground
truth and M̂ is its rank-3 approximation M̂ = U30×3V�3×30.
We plot the histogram of the squared errors (elements in E)
in Figure 4 (note that the count is in 10-based log scale).
As we can see, the reconstruction errors from our algorithm
are all near to zero. It finds the true subspace, recovers the
true values of the missing data and outliers. PCA-MISS per-
forms marginally better than SVD, but can not recover the
correct subspace. IRLS performs better than PCA-MISS,
but worse than our approach.

3.2 Application: structure from motion

Structure from motion (SFM) with affine camera model
is first formulated by Tomasi and Kanade [24] as a rank-
3 matrix factorization problem. In an affine camera, a 3D
scene point Xj = (X,Y,Z, 1)� and its projection on the i-
th camera imaging plane xj = (x, y)� is related by a 2× 4
affine projection matrix Pi:

xj = PiXj

Given F images and n scene points, we have:


x1
1 · · · xn

1
...

. . .
...

x1
F · · · xn

F


 =



P1

...
PF


 [

X1 · · · Xn
]

⇔ M = PX (20)

where P ∈ 
2F×4 and X ∈ 
4×n. When the measure-
ment matrix M is subtracted by its column-wise mean, the
rank of the resulted matrix ∆M is reduced to three, and we
can obtain the Euclidean camera motion matrix and 3D of
the scene points by rank-3 matrix factorization followed by
metric enforcement on the camera motion matrix [24]:

∆M = R2F×3S3×n (21)

where R is the camera motion matrix and S is the recovered
3D of the scene points.

When there are outliers and missing data, we can not
directly compute the column-wise mean of M. Instead, we
first use subspace estimation to compute the rank-4 matrix
factorization indicated by Eq. (20), which gives us a rank-4
approximation M̂ = U2F×4V�4×n of the measurement matrix
M. We then recovered the motion and 3D from M̂ by sub-
tracting its column-wise mean and then applying Eq. (21).

Even we can correctly estimate the 4-D subspace in
Eq. (20), we should be cautious when we try to use Eq. (21)
to recover the 3D of some outlier measurement m. The
factorization algorithm simply picks the closest point in the
subspace to approximate m. In the extreme case, when the



2D feature positions of a scene point are all outliers, such
subspace approximation is no long valid, and we simply do
not have enough cue to infer its 3D position. But we can
use the subspace to detect such outlier track. To do so, we
compute the re-projection errors of each recovered 3D point
across all the frames:

ej
i = ‖xj − x̂j‖2 = ‖xj − PiXj‖2

where ej
i is the re-projection error of the j-th point on

the i-th frame. We assume that the x-component and y-
component of a 2D point are independent. ej

i then follows
χ2 distribution with 2 degrees of freedom. xj

i is marked as
an outlier if its corresponding ej

i is outside the 95% con-
fidence interval of the χ2 distribution. A 3D point is kept
only if its corresponding 2D track contains enough inliers.
In our experiments, we require a valid 3D point contain at
least 5 inliers in its 2D track.

We applied both our approach and IRLS to factoriza-
tion based SFM for two image sequences from CMU VASC
public image database 1: the Pingpong ball sequence and
House sequence. In order to test the robustness of the algo-
rithms, in the feature tracking phase we intentionally relax
the error threshold, which means that some features with
larger tracking errors (the intensity residuals) are still kept.

3.2.1 Pingpong ball

We use twenty frames of the Pingpong ball sequence to test
our algorithm. The ball underwent a rotational motion while
the images were taken. Figure 5(a) and (b) show the first
and last frame, with tracked features super-imposed on them
as white dots. About 42% of the features are missing in the
last frame. Due to specular reflections, some of the feature
points become outliers. The arrow in Figure 5(b) shows one
of them.

We successfully recovered the 3D of almost all of the
feature points appeared in the first frame, except four fea-
ture points that are detected and removed as outliers due to
specular reflection. Figure 5(c) shows a side view of the 3D
points recovered by our approach. The smooth circle-shape
contour indicates correct shape recovery. We also applied
IRLS to this sequence for comparison purpose. Figure 5(d)
plots the mean re-projection errors. As we can see our ap-
proach has less re-projection errors. For visualization, Fig-
ure 5(e) shows the recovered 3D (texture-mapped) using our
approach, and Figure 5(f) shows the same view of texture-
mapped 3D recovered by IRLS. Note the jagged surface in
(f) due to errors which does not appear in (e).

3.2.2 House

We use 40 frames of the house sequence where the house in
the image has two visible perpendicular walls. Figure 6(a)
and (b) shows the first and last frame in the sequence, with

1http://vasc.ri.cmu.edu/idb/
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Figure 5. Structure from motion of the pingpong image sequence.
(a): The first frame with all feature points (marked by white dots);
(b): The 20th frame where about 42% feature points from the first
frame are missed; (c): One view of 3D points recovered by our ap-
proach; Note the smooth circle shape boundary; (d): Reprojection
errors of all recovered 3D points; (e): Texture-mapped 3D recov-
ered by our approach; (f): 3D recovered by IRLS; Note the jagged
surface marked by the eclipse;

feature points (marked by white dots) superimposed. About
38% percent of the feature points from (a) are missed in (b).
The eclipse in (b) shows some points with large tracking
errors. Figure 6(c) shows top-down view of the 3D points
recovered by our approach. Notice the perpendicular angle
between the two walls. Figure 6(d) shows the same view
of the 3D points recovered by IRLS, where the two walls
are not perpendicular. Figure 6(e) shows the re-projection
errors. Our approach contains less errors than that of IRLS.

4 Incorporating prior knowledge
In many applications prior knowledge or constraints

about the subspace are available. Our formulation of
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Figure 6. Structure from motion of the house image sequence. (a): The first frame with 248 feature points (marked by white dots); (b): The
40th frame where about 38% of the points from the first frame are missed; (c): Top-down view of 3D points recovered by our approach;
Note the perpendicular angle between the two walls; (d): Top-down view of 3D points recovered by IRLS; Note the angle between the two
walls is not perpendicular; (e): Re-projection errors of all recovered 3D points. Our approach contains fewer errors than IRLS.

L1 norm subspace estimation via alternative convex pro-
gramming provides a framework where constraints or prior
knowledge can be conveniently incorporated.

4.1 Smoothness constraint

Smoothness constraint is often used in motion and shape
estimation. For example, in structure from motion via fac-
torization [24], we can enforce the temporal smoothness of
camera motion [9] as well as the 3D scene smoothness.

Smoothness is often enforced by penalizing the disconti-
nuities between neighbored elements. Such discontinuity is
usually measured by first or second order derivatives. The
L1 norm based cost function with smoothness constraints
can be written as:

E(U, V) = ‖M− UV�‖L1 + δ‖D1U‖L1 + η‖D2V‖L1 (22)

Here δ ≥ 0 and η ≥ 0 are used to control the smoothness of
the solution. D1 and D2 are the differentiate matrices. Their
values depend on the neighbor relationship among the ele-
ments in M. Figure 7 is an example that shows a neighbor-
hood relationship and the corresponding 1st order differen-
tiate matrix D. In the application of structure from motion,
the neighborhood relationship can be established by Delau-
nay triangulation of 2D feature points.

We use alternative minimization to minimize Eq. (22):

V(t) = arg min
V
‖M− U(t−1)V�‖L1 + η‖D2V‖L1 (23a)

U(t) = arg min
U
‖M− UV(t)�‖L1 + δ‖D1U‖L1 (23b)

We can decompose the above optimization into smaller in-
dependent sub-problems, each sub-problem corresponding
to one maximum connected subgraph in the neighborhood
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Figure 7. A 4-connected neighborhood and its corresponding dif-
ferentiation matrix. ‖DX‖1 = Σ4

i=1|x0 − xi|.

graph. We can also solve it as one single problem. For ex-
ample, Eq. (23a) can be converted to the following linear
program:

min
{xj ,tj ,hj}

∑
j

(1�tj + η1�hj) (24)

s.t.− tj ≤ U(t−1)xj −mj ≤ tj

− hj ≤ Dxj ≤ hj

j = 1, ..., n

Here xj is the j-th column of V. Note that we can en-
force different degree of smoothness on different elements
by changing η‖DX‖1 to ‖Y ⊗ (DX)‖1. The matrix Y spec-
ifies the degree of smoothness for each element. We can
avoid smoothness constraints at discontinuous locations by
assigning their weights to zero in Y. Automatic estimation
of Y is out of the scope of this paper. We can also extend the
Eq. (23) to weighted L1 norm, as done in Section 2.5.

4.2 Non-negative matrix factorization

Non-negative matrix factorization [15] has many appli-
cations in computer vision. Adding non-negative constraint
is straightforward in our formulation. We can simply add
the non-negative constraints U ≥ 0 and V ≥ 0 to the set
of linear constraints in the convex program (e.g., x ≥ 0 in
Eq. (11),(13), or (24)).

4.3 Experiment: smoothness constraint

When a 2D track contains too many outliers, we would
not be able to recover its 3D. As an example, Fig. 8(a) shows
the texture-mapped 3D points recovered in Section 3.2.1,
including the four outliers that were previously detected by
the subspace model. The arrows show the incorrect 3D po-
sitions of those outliers. If we can apply prior knowledge,
we may still have enough constraints to recover their correct
3D positions. For example, once we know that the surface
of the ball is smooth, we can apply the smoothness con-
straint in the matrix factorization. Fig. 8(b) shows the result
after the smoothness constraint is enforced. The position of
the four previously detected outliers are now correctly re-
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Figure 8. Recovering the 3D of some very noisy points using
smoothness constraints. (a): Texture-mapped 3D points recov-
ered without enforcing smoothness constraints, including the four
very noisy points due to reflection, as indicated by the arrows; (b):
Texture-mapped 3D points recovered with smoothness constraints.
Note that the 3D of the noisy points are correctly recovered.

covered. The intuition is that when the re-projection errors
are large for some data items, their corresponding weights
become very small, and the smoothness penalty plays an
important role in determining their 3D positions (in the fac-
torization).

5 Conclusion
We have presented a new subspace estimation algorithm

that minimizes the (weighted) L1 norm based cost func-
tion using alternative convex programming. Our algorithm
is robust without requiring initial weighting, handles miss-
ing data straightforwardly, and provides a framework for in-
corporating prior knowledge/constraints. Compared to ex-
isting approaches that use L2 norm or weighted L2 norm
(SVD, PCA-MISS, IRLS), our approach achieves better es-
timations in fewer iterations. One might argue that L1

norm has lower breakpoint than some other robust estima-
tors (e.g., M-estimators with redescending influence func-
tion, see [3]). However, the fact that many applications have
bounded measurements makes L1 norm robust enough to
obtain a reasonable solution in practice. Moreover, starting
from the solution derived by L1 norm minimization, we can
confidently initialize the weights for each element, which
enables us to perform weighted L1 norm minimization to
increase the robustness of the final subspace estimation.

Both the L1 norm and weighted L1 norm are minimized
by alternative convex programming, including linear pro-
gramming and quadratic programming. Efficient imple-
mentation of linear/quadratic programming in commercial
package can achieve quasi-linear complexity. In the fu-
ture we plan to customize the linear/quadratic program-
ming for our purpose, especially to reduce the computa-
tional cost by sharing the information among the decom-
posed linear/quadratic sub-programs.
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[1] H. Aanæs, R. Fisker, K. Åström, and J. M. Carstensen. Ro-

bust factorization. IEEE Trans. PAMI, 24(9), 2002.
[2] M. Ben-Ezra, S. Peleg, and M. Werman. Real-time motion

analysis with linear programming. In ICCV, 1999.
[3] M. Black and A. Rangarajan. On the unification of line

processes, outlier rejection, and robust statistics with appli-
cations in early vision. International Journal of Computer
Vision, 19(1):57–92, 1996.

[4] M. J. Black and A. D. Jepson. Eigentracking: Robust match-
ing and tracking of articulated objects using a view-based
representation. In ECCV (1), pages 329–342, 1996.

[5] G. Q. Chen. Robust point feature matching in projective
space. In CVPR 2001, pages 717–722.

[6] C. Croux and P. Filzmoser. Robust factorization of a data
matrix. In COMPSTAT, Proceedings in Computational Sta-
tistics, pages 245–249, 1998.

[7] F. de la Torre and M. Black. A framework for robust sub-
space learning. IJCV, 54(1):117–142.

[8] G. Golub and C. V. Loan. Mattrix Computation. Johns Hop-
kins University Press, 2nd edition, 1989.

[9] A. Gruber and Y. Weiss. Factorization with uncertainty and
missing data: Exploiting temporal coherence. In Advances
in Neural Information Processing Systems 16.

[10] D. Q. Huynh, R. Hartley, and A. Heyden. Outlier correction
in image sequences for the affine camera. In ICCV, 2003.

[11] M. Irani. Multi-frame optical flow estimation using sub-
space constraints. In ICCV, 1999.

[12] M. Irani and P. Anandan. Factorization with uncertainty. In
ECCV (1), pages 539–553, 2000.

[13] D. Jacobs. Linear fitting with missing data. In CVPR 1997,
pages 206–212.

[14] Q. Ke and T. Kanade. A subspace approach to layer extrac-
tion. In CVPR 2001, pages I:255–262.

[15] D. Lee and H. Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 1999.

[16] W. Li and J. Swetits. The linear l1 estimator and the huber
m-estimator. SIAM J. Optimization, 8:457–475, 1998.

[17] O. L. Mangasarian and D. R. Musicant. Robust linear and
support vector regression. IEEE Trans. on PAMI, 22(9):950–
955, 2000.

[18] D. D. Morris and T. Kanade. A unified factorization algo-
rithm for points, line segments and planes with uncertainty
models. In ICCV, pages 696–702, 1998.

[19] P. Rousseeuw and A. Leroy. Robust Regression and Outlier
Detection. John Wiley and Sons, New York, 1987.

[20] S. Roweis. EM algorithms for pca and spca. In NIPS, 1997.
[21] H.-Y. Shum, K. Ikeuchi, and R. Reddy. Principal component

analysis with missing data and its application to polyhedral
object modeling. IEEE Trans. on PAMI, 17(8):854–867.

[22] N. Srebro and T. Jaakkola. Weighted low-rank approxima-
tions. In Proc. of Int. Conf. on Machine Learning, 2003.

[23] M. E. Tipping and C. M. Bishop. Probabilistic principal
component analysis. Journal of the Royal Statistical Society,
Series B, 6(3):611–622, 1999.

[24] C. Tomasi and T. Kanade. Shape and motion from image
streams under orthography: A factorization method. IJCV,
9(2), 1992.

[25] M. Turk and A. Pentland. Eigenfaces for recognition. Jour-
nal of Cognitive Neuro Science, 3(1):71–86, 1991.


