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Abstract

A novel method for the simultaneous modeling and track-
ing (SMAT) of a feature set during motion sequence is pro-
posed. The method requires no prior information. Instead
the a posteriori distribution of appearance and shape is built
up incrementally using an exemplar based approach. The
resulting model is less optimal than when a priori data is
used, but can be built in real-time. Data in any form may be
used, provided a distance measure and a means to classify
outliers exists. Here, a two tier implementation of SMAT
is used: at the feature level, mutual information is used to
track image patches; and at the object level, a structure
model is built from the feature positions. As experiments
demonstrate, the tracker is robust and operates in real-time
without requiring prelearned data.

1. Introduction

The goal of this work was to robustly track objects in
cluttered scenes without a prelearned model of appearance
or structure. Despite much research, modeling and tracking
features as they vary in shape and appearance is still diffi-
cult. Appearance based online tracking is generally solved
by using a priori learning, by tracking large information
rich regions, or by tracking groups of small patches. (The
position of features within the object was important, pre-
cluding contour tracking.)

The use of a priori data is avoided, since it is often diffi-
cult to obtain (e.g. manual ground-truthing, photographing
subjects). Also, preprocessing may be required (e.g. boost-
ing to build hockey player models by Okuma et al [8]), re-
stricting one to a particular application. Tracking objects
can be effective without a priori data, e.g. the trackers of
Jepson et al [4] and Collins & Liu [2]. However for [2],
features within the object cannot be matched, since it is as-
sumed that the object is contained by the central region of a
rectangle. Likewise for [4], which tracks large objects well,

but is then too slow for real-time use.
Hence this work focusses on tracking small patches. The

method presented: Simultaneous Modeling and Tracking
(SMAT), overcomes the need for a priori data while still
maintaining the desirable properties of being robust and op-
erating in real-time. This is achieved by a generalisation
and improvement of the work in [3] to a model selection
framework, where the focus is on tracking single features
based on appearance only. While tracking, a mixture model
is fitted to the exemplar appearances and structures obtained
from the sequence. A semi-optimal component for tracking
is (greedily) selected online based on the confidence value
of each component. Given sufficient samples the model be-
comes as close to optimal as available data allows.

SMAT is related to Jepson et al’s work [4], where objects
are tracked using a three component model: a stable, wan-
dering and lost component. This elegant blend of a 2-frame
tracker and an alpha filter performs well for large objects
but tends to drift for small patches. SMAT attempts to over-
come drift directly and is more closely related to the work
on the template update problem by Matthews et al [7] and
Kaneko & Hori [5].

The remainder of the paper is organized as follows. After
some background, the SMAT method is presented in Sec-
tion 2. Section 3 describes the implementation of the pro-
posed approach. Section 4 presents the experiments com-
paring SMAT to other approaches and the results obtained,
followed by the conclusion in Section 5.

1.1. Background

One of the earliest attempts to locate a representative
feature in an image was made by Lucas and Kanade [6].
They limited the processing by using a Newton-Raphson
method to traverse the search space. Although only trans-
lations were considered, they mentioned how the method
could easily be adapted to optimize other transforms such
as rotation. Indeed, later research extended this method to
consider rotation, scale, and affine transforms [1]. Also new



minimization methods have been applied, which have faster
convergence and greater likelihood of finding the global
minimum, such as the Levenberg-Marquardt method.

It is natural to extend feature detection to tracking a fea-
ture over a motion sequence. This leads to a further prob-
lem: how and when to update the template. If the template
is never updated, tracking will only work as long the tem-
plate closely represents the current appearance of the fea-
ture. This assumption is generally safe for several frames
after the one from which the feature was extracted. Even-
tually however, the template does not represent the feature
sufficiently well and a catastrophic failure ensues: i.e. the
error suddenly becomes very large. One alternative to this
is to update the template after every frame. However, sub-
pixel errors inherent to each match are stored in each up-
date. These drift errors gradually accumulate and the tem-
plate drifts off the original feature.

Two recent approaches to overcome the problem of drift,
include those by Matthews et al in [7], and Kaneko and Hori
in [5]. Matthews strategic update approach is a simple but
effective extension of the naive update algorithm, where the
first template from the frame is retained and used to correct
location errors made by the updated template. If the size
of the correction is too large, the algorithm acts conserva-
tively by not updating the template from the current frame.
Kaneko on the other hand trades off between accumulated
drift error and misrepresentation error. In Kaneko’s algo-
rithm the template is updated just before a catastrophic error
occurs. Each of these errors is estimated from the boundary
of the maximum error for possible templates.

Although [7] was perhaps not intended in the context of
matching small patches, the single drawback to Matthews
approach, is that the appearance of the feature could even-
tually change enough that the distance between the two
matches will always differ by a large amount. This will
result in no further updates being made, and failure due
to misrepresentation. Kaneko’s approach attempts to min-
imize the number of updates, but eventually sub-pixel er-
rors accumulate sufficiently for drift to occur. Both of these
methods also rely on the first template being a good repre-
sentation of the feature.

The SMAT approach grew out of attempts to overcome
the problems of drift and misrepresentation errors, by stor-
ing as many exemplars as required to fully describe a fea-
ture. Updates required could theoretically be reduced to
zero, while the feature should never be misrepresented.

2. Simultaneous Modeling and Tracking

It is useful to begin by formalizing the problem of track-
ing an object in an image given a template. Given a motion
sequence of � images, where ����� represents the pixel
intensity at position � in the frame ��, a transformation or

warp � is sought that minimizes some distance function �
between the template �� and ��:

������
��

� ������� ���� ������	 (1)

where � contains the parameters of the warp. Distance
functions that increase with greater similarity may be triv-
ially converted to the above form by a multiplication by �
.

No assumptions about the object appearance and struc-
ture are made. Instead a probabilistic model that describes
variations in the object is built on the fly, in an approach
inspired by [10]. Nothing is known about the object appear-
ance before operation except for the single exemplar �� ex-
tracted from ��, which on its own would be an inadequate
description. Simplistic updates serve only to move the po-
sition of the model in feature space rather than expanding it
to properly describe �’s occupation. To overcome this, the
distribution function � ������ � � � ��� is constructed incre-
mentally. The model � is represented as a mixture of �
components:

� ���� �

��
���

	�
��� � ��� (2)

where	� is the weight parameter of the th component and
satisfies the condition

�
�� 	� � 
. In the distribution

of the th component: 
��� � ���, �� is the median kernel
and � is some parameter(s) of the distribution. The distance
from the median is calculated by the distance function �.

Considering templates as points in some probability
space, similar templates will tend to cluster together. These
clusters are what each component in the mixture represents.
Overly large components could result in misrepresentation
of the object, so some discrimination between inliers and
outliers is required. The membership ��� of a particular
exemplar �� to a component 
� is determined by its prox-
imity to the component’s representative exemplar, which is
also its median, i.e. �� � ��:

�� �

�

 ����� ��� � �����
� otherwise

(3)

where � is the threshold. Of course if a Gaussian distri-
bution was assumed, � would simply be a set number of
standard deviations to explicitly choose what percentage of
data was outlier data. The use of a median rather than a
mean could result in an expanded component if the median
and mean are far apart. However, this should not occur if the
exemplars are correctly clustered, and if it does, a tighter in-
lier threshold will counteract this effect.

Components that are sufficiently close together may
overlap, so a template may belong to more than one compo-
nent. � will generally be some small number greater than
one, since although more than � clusters may be required



to fully describe an object over all poses, the clusters update
themselves to describe the object for the poses that have re-
cently been relevant.

To obtain the median, the standard approach of con-
structing a matrix of distances between each pair of tem-
plates, is used:

� �

�
��

����� ��� ����� ��� � � � ����� �� �
...

...
���� � ��� ���� � ��� � � � ���� � �� �

�
��
(4)

The sum of each column in � is found and the exemplar
corresponding to the column with the lowest sum is cho-
sen as the median. The cluster is limited to � samples,
to limit computation time. � can be large since it is cheap
to compute incrementally, so each component is representa-
tive of the local cluster of templates. When � is exceeded,
the most outlying exemplar is replaced, i.e. �����������
. The median rather than the mean of each component is
used, since a mean in image space results in blurring and
a loss of feature representation. Moreover a mean is less
robust to outliers.

In general, newly created components are less reliable
than older ones, since they have fewer samples and the vari-
ation in structure and appearance may be due to transient
environmental effects. To model the effect of a particular
component gaining “trust”, its weight is increased each time
a region in the image is located that is an inlier. The increase
is at the expense of the other components:
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(5)

where 	 � is the index of the successfully matched com-
ponent and � is the learning rate such that � � ��� ��.
��� defines the time constant of change. The learning pa-
rameter sets the rate at which component rankings change,
how rapidly outmoded representations are removed, and the
speed at which “trust” in new representations gained.

Using all 	 components to search for an object in each
frame is time-consuming and unnecessary. In practice, a
representation that is within the threshold 
� of the current
component is adequate. So, a greedy algorithm is employed
that uses the components in descending order of weight�� .
If a successful match is made, no further components are
checked and the new exemplar is incorporated into the suc-
cessfully matching cluster.

Initially only one component exists. The first outlier ��
to this component is used to seed a new component. A
basic assumption is made that components explaining the
first � percent of the model (say 80%) are inliers and the
remaining components are outliers. This means that any
new components need to gain sufficient weight before they
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Figure 1. Schematic of 2 tier SMAT

may be used. For this reason, when traversing the mixture
model, the “untrusted” components, may still have exem-
plars added to them, however they are not used to update
the warp parameters. After sufficient matches have been
made the component is treated as inlying data and used to
track the object normally.

When all	 components are populated, it is still conceiv-
able that the feature can take on an appearance outside of
the existing model. When this occurs, the lowest weighted
component is destroyed and a new one is created in its place,
allowing obsolete representations to be aged out.

SMAT may be applied to any type of data, be it a sparse
set of point positions, an image or a contour, so long as
some means exists to describe the data and some distance
measure exists that inliers and outliers may be classed dif-
ferentiated, as is shown in the next section on the proposed
implementation of an object tracker.

3. Implementation

It was decided to use SMAT in two tiers: at the low level
for modeling individual features on an object based on ap-
pearance, and at a higher level for modeling the structure
of the object as it deforms. The data at the appearance and
structure levels was treated semi-independently. Updates
to individual appearance models were sometimes prevented
based their disparity with the structure model. This ties
the models together sufficiently to improve robustness. A
schematic of the two tier approach is presented in Figure 1.

A strong dependence between models (e.g. by concate-
nating the appearance and structure vectors) was avoided
for two reasons. Firstly, different distance metrics were
used to measure the similarity between the object feature
appearance and structure: mutual information and Maha-
lanobis distance respectively. Secondly, when appearance
and structure are dependent, many more exemplars would
be required for the model to become reliable implying an
increased likelihood of failure early on for dependent ap-
pearance and structure.



3.1. Modeling Appearance

The appearance model was built from image patches
of the features being tracked in the sequence. Numerous
methods exist for comparing image patches, such as Sum
of Squared Difference (SSD), normalized SSD and Mutual
Information (MI). SSD is probably the most wide spread,
since it is simple to implement, fast and easy to differenti-
ate analytically. However, Mutual Information was chosen
to measure the distance between appearance models, due
to its robustness to environmental lighting conditions, ro-
bustness to noise, pronounced maxima and similar compu-
tational cost to SSD.

MI quantifies information shared between two sets of
data, � and � :

����� � � � ���� ���� ������ � � (6)

In this case � is a region in the image and � is the template.
���� is the entropy of the probability distribution function
as defined by Shannon in [9]:

���� � �
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��
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����� �� � �� ���� � �� � (8)

where ����� is the probability that a random pixel in � has
intensity �. In this case the the PDF’s ���� are estimated
from the histogram of intensity values in images � and � .
In the 2D case, ���� � � is simply the joint entropy and is
obtained from the 2D joint histogram of the two datasets.

The MI of an image patch and the median exemplar is
limited to values between zero and some maximum value.
This maximum is the entropy of the median, and is an in-
trinsic property of MI[9]. This complicates the selection of
the threshold 	 for deciding whether a point is an inlier or
not. The approach taken was to make the threshold propor-
tional to the second moment of the MI values 
��� in the
column corresponding to the median of the correspondence
matrix � given in equation (4):

	 � ���� � ������ � ��� �� ������ (9)

���� �

� �

���

��� � ���d (10)

where �� may be used to change the number of inliers, but
is generally set to 1.

With the above distance measure and inlier threshold a
feature tracker based on appearance alone may be imple-
mented. In testing this implementation outperformed other
methods for solving the template update problem, as shown
in the Section 4. When tracking groups of features, the ro-
bustness could be improved further by modeling their posi-
tion dynamics as well and constraining their motion relative

to each other. The next section details a proposed approach
to modeling structure using the SMAT framework.

3.2. Modeling Structure

To form a model of structure, the positions of each fea-
ture are concatenated together to form a �� � � vector (as-
suming � features). In this case a mixture of Gaussians was
assumed. It should be emphasized that a mixture of any
type of distribution could have been assumed. However,
if the distribution was not representative of the underlying
data in local regions, more components would be required
for SMAT to track successfully.

Since a Gaussian distribution is assumed in this case it
is convenient to use Mahalanobis distance to compute the
distance between structure vectors:

�� ��� � ����
� �

�

��
�
�
�����

� �
�

��	
�	�

where� is the covariance matrix of the data in the a particu-
lar component. �� � � ��
 is the structure extracted from
the current frame with the inter-point mean �
 removed.

�
�

is the median of component �, with its inter-point mean
also removed. In practice� will often be non-invertible, so
singular value decomposition (SVD) is applied to obtain the
eigenvectors� and eigenvalues� from
, and the equation
below is used:

�� ��� � �������
� �

�

�	 �����	� (11)

where ���� is the pseudo-inverse of �, with values close
to zero being zeroed for numerical stability.

Unlike the MI distance value, the Mahalanobis distance
is already normalized to the standard deviation (or second
moment) of the data. Hence the threshold may be set to
some real number �� , independent of other parameters:

	 � �� � � (12)

Like equation (9)), �� was set 1. Varying �� corresponds
directly to the number of standard deviations away at which
exemplars are classed as inliers.

3.3. Linking Structure and Appearance

The structure model described above may be used to im-
prove the robustness of individual appearance based feature
trackers, by constraining their positions. The positions of
all the features are concatenated to form an unconstrained
structure vector��, which is whitened to form a constrained
vector ��

�
as follows:

��

�
� �������� ����

� �
�

�����	�� � �
�

(13)
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Figure 2. Positions during “Claire” sequence

For features where the disparity between �� and ��

�
is larger

than Æ pixels the update to the appearance model of that fea-
ture is blocked. A conservative approach is also taken for
the formation of new components in the structure model.
For a new structure component to be created less than 25%
of the feature trackers must have created new components
(which indicates possible failure), and all of these possible
failures must be within Æ pixels of their constrained posi-
tion. The feature trackers are always initialized to start their
feature search from their constrained position.

This conservative approach was taken, because the out-
put from the feature trackers tends to be noisy especially
when drift or misrepresentation errors start to occur. The
result was a more robust tracker, that recovers from such
errors, as is shown in Section 4.

4. Experiments and Results

Several experiments were undertaken to test the pro-
posed 2 tier SMAT approach. The six sequences tested
ranged in size from 60 to 500 frames and in quality from
uncompressed CIF sequences to highly compressed DivX
and XviD sequences with all the associated artifacts and
noise. Demo’s of the test sequences are obtainable from
www.ee.surrey.ac.uk/Personal/n.dowson.

First, SMAT was implemented at the feature level only,
based on appearance modeling with no additional dynam-
ics or constraints. The results of these experiments were
compared to other methods for template tracking, namely:
the strategic update[7], a naive update and never updating
at all. A typical sequence from these experiments is shown
in Figure 2. For clarity only one feature is displayed: the
left-hand corner of the newscaster’s mouth. The error plots
in Figure 3 details the tracking performance of each algo-
rithm. For this and all other error plots shown the ground
truth was obtained by hand labelling.
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Figure 3. Error plot for “Claire” sequence
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Figure 4. Error plot for “Sign” sequence

The non-updating algorithm successfully tracks the fea-
ture well, until it becomes partially occluded at Frame 95.
A misrepresentation error occurs and the tracker fails . The
strategic update method tracks successfully for several more
frames, until it too starts to drift off at Frame 100 due to
misrepresentation error. The correction between the origi-
nal and new template is greater than the threshold, prevent-
ing further updates. At frame 105 failure occurs, since the
feature changes its appearance too much. The naive up-
date steadily drifts away from the original feature due to an
accumulation of sub-pixel errors. Unlike its competitors,
the proposed algorithm tracks the feature throughout the se-
quence, despite changes in the appearance of the feature and
its partial occlusion during the sequence.

Figure 4 shows error plots from the “signing” (a differ-
ent) sequence. (Frames from the “signing” sequence are
shown in Figure 7, although the points shown do not cor-
respond to the error plots). As shown similar results were
obtained. The non-updating algorithm fails early (frame 25)
due to the rapid change in feature appearance. The strategic
update algorithm and the SMAT algorithm have drifted off
slightly by frame 60, but by frame 90 SMAT has recovered.
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Figure 5. Positions during “Rhino” sequence.
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Figure 6. Error plot for “Rhino” sequence

The naive update algorithm has drifted off target by this
time and continues to do so until the end of the sequence.
The strategic approach partly recovers near the end due the
retention of the initial appearance and because its tolerance
value was increased. This increase made the strategic up-
date approach less prone to misrepresentation failure but
more prone to drift. In these and all the other sequences
tested, the single tier SMAT tracker performed as well as,
or better than its competitors, especially in sequences with
large amounts of noise and feature deformation.

Next the two tier approach modeling both structure and
appearance was tested and compared to the single tier track-
ers. A noisy sequence with large amounts of occlusion was
chosen for this purpose, to make failure without a struc-
ture model more likely. Some excerpts from the sequence
are given in Figure 5, where pre- and post-whitening indi-
cate positions before and after whitening using the structure
model and equation (13). Frame 1 shows the initial exem-
plar of structure and features. The single tier SMAT trackers
are mostly still on target by frame 60. The exception is the
tracker on the Rhino’s back, which has drifted slightly, due
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Figure 7. Positions during “Sign” sequence.

to the weakness of the feature. By frame 120, all the sin-
gle tier trackers have failed, except for the tracker on the
ear, which is a strong feature. These failures are primarily
due to occlusions by the grass in the foreground. At frame
180 the 2 tier SMAT algorithm is still tracking successfully.
Frames 120 and 180 also show how the structure model at-
tempts to “pull” the features into a known shape, and how
error is distributed between the features.

Data was ground-truthed (by hand) at five frame intervals
for the “Rhino” sequence. The mean feature position error
is shown in Figure 6. The performance when using a pre-
learned model from the ground-truth data was also plotted.
The improvement for the prelearned model was substantial,
since in this sequence, the structural variations were lim-
ited and the ground truth data was less noisy than the input
from the appearance based feature trackers. As shown, the
two tier SMAT approach had a lower and more stable mean
error than single tier trackers. In all the sequences tested,
using a two tier approach served to improve the robustness
of the tracking algorithms. Again, this was particularly evi-
dent in the noisy sequences with large deformations.

Figure 7 shows the signing sequence, where the struc-
ture model was used to constrain feature position. Frame 1
shows the initial position. By Frame 249 some of the ap-
pearance trackers have drifted slightly, creating some bias
in the structure, since the structure model distributes the er-
ror amongst the features. The feature positions are “pulled”
back towards a known structure as shown in Frame 273,
which allows for a better recovery by Frame 295.

4.1. Note on Parameters and Performance

In this set of experiments a learning rate of 0.05 was
used, the number of exemplars per component� was lim-
ited to 60, and the number of components in each mixture
model� was limited to 5. Depending on the features sizes
in the sequences, the image patch size was set to either ���



or ��� pixels. To compensate, the threshold for appearance
�� was adjusted from 1.0 to 0.7 for the larger patches. Apart
from these changes, to deal with the scale of features, the al-
gorithm demonstrated consistent performance across all six
sequences tested without any parameter optimization.

The proposed method operated at near real-time frame
rates despite the structure model being partly implemented
in Matlab. When 5 features were being tracked with a ���
�� kernel frames, framerates of 9fps were obtained. When
no structure model was applied, framerates of 59fps were
obtained on a Pentium 4 2.6GHz processor.

The computational cost of an MI based appearance
tracker when using SMAT compared to the cost evaluat-
ing to the distance �� , � times is �� ���������������,
where � is a value between 1 and � (the number of tem-
plates), � is the number of pixels and � is number of ex-
emplars in each component. With representative features �
should remain somewhere between 1 and 2, so the cost is
comparable to a standard template update method.

5. Conclusion

A new framework called Simultaneous Modeling and
Tracking (SMAT) has been proposed for tracking objects
through motion sequences. The framework is based upon
a library of exemplars being built up, to which a mixture
model is incrementally fitted. Any type of data may be used,
whether image patches, contours or point coordinates, pro-
vided some distance measure exists as well as a method of
classifying inliers and outliers. Likewise, any distribution
may be used, dependent on the distance measure.

SMAT was formulated to deal with the problem of track-
ing an object through a motion sequence robustly, in real-
time, without any a priori data on noisy sequences. To the
authors’ knowledge no other approach exists that manages
that achieves all these objectives successfully.

SMAT was applied in a two tier approach to model
the appearance and structure of an object during a num-
ber of motion sequences. Robust performance was obtained
when tracking features individually and based on appear-
ance alone. As such this is a novel solution to the tem-
plate update problem that outperforms all other solutions
of this type that were tested. Modeling structure served
to further improve robustness when tracking multiple fea-
tures, by making the detection of tracking failure simpler
and applying some constraints to the object structure as it
deforms. Different distance measures were used for each
tier, namely: Mutual Information for appearance and Ma-
halanobis distance for the structure. The SMAT framework
applied equally well at each of these levels.

Significantly, without any prior data, the proposed
method performs as well as a priori model based tracking
methods and outperforms all the existing methods with no

a priori information. In fact, the ability of the proposed
method to build up a model on the fly means that the longer
it successfully tracks, the more robust it becomes. The ad-
ditional computational cost of building the appearance and
structure model is not much greater than that required for
tracking features normally, so the proposed two tier SMAT
algorithm operates at near real-time, despite being imple-
mented partly in Matlab.

Currently features are selected manually. Whether these
points are optimal for tracking (when using MI) is still an
open question, which is being examined. The method is
also being extended to be affine invariant, for which a multi-
dimensional global optimization method will be required.
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