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Abstract— Autonomous mobile robots will play a major role in ] . k \ N
future security and surveillance tasks for large scale envdonments *.
such as shopping malls, airports, hospitals and museums. Rotic 3 g
security guards will autonomously survey such environmery, \ O
unless a remote human operator takes over control. In this :
context a 3D model can convey much more useful information : . [
than the typical 2D maps used in many robotic applications tday, . pamzti | )
both for visualisation of information and as human machine Il BN "
interface for remote control. e 4
This paper addresses the challenge of building such a model
of a large environment (0 x 60m?) using data from the robot’s y I _
own sensors: a 2D laser scanner and a panoramic camera. l I !“ i
The data are processed in a pipeline that comprises automatj i
[aSEES [

semiautomatic and manual stages. The user can interact witthe
reconstruction process where necessary to ensure robussgeand
completeness of the model. A hybrid representation, tailad to 2
the application, has been chosen: floors and walls are represted 4
efficiently by textured planes. Non-planar structures like stairs / :
and tables, which are represented by point clouds, can be add
if desired. Our methods to extract these structures include
simultaneous localization and mapping in 2D and wall extration
based on laser scanner range data, building textures from
multiple omnidirectional images using multiresolution blending,
and calculation of 3D geometry by a graph cut stereo technige.
Various renderings illustrate the usability of the model fa

visualising the security guard’s position and environment Part of this large and complex application will be a visu-
alisation and remote control module based upon a 3D model
) _ _ of the robot’s operation environment. The robot acquirés th
Robotic research is now in a mature state and ready fdydel using its own sensors in a training phase (in which, e.g
focus on complete mobile robotics applications. The re$earymans can also be presented so that the robot can update its
in the AASS Learning Systems Lab, for example, is aimeghtapase of known persons [16]). After deployment, the trobo
at building a Robotic Security Guard for remote surveilnGyerforms autonomous surveillance tasks unless the remote
of ir_1door en_vironments. Th_is robot will learn how to patroCEuman operator takes over control, either by full telectena
a given environment, acquire and update maps, keep walyy activating behaviours such as person following or poin
over valuable objects, recognise known persons, discat®ino-point navigation. In this context a 3D model can convey
intruders from known persons, and provide remote humgg\,ch more useful information than the typical 2D maps used
operators with a detailed sensory analysis. The systemidhoy many robotic applications today, both for visualisation
enable automation of many security operations and redece #t information and as human machine interface for remote
risk of injury to human workers. The design philosophy igontrol. By combining vision and 2D laser range-finder data
based on augmenting remote human perception with supgry single representation, a textured 3D model can provide t
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Fig. 1. Robotic platform for security guard with sensors kedr The laser
range scanner and the omni-directional camera is used kb #8D model
of the robot’s operation environment.

|I. INTRODUCTION

human sensory capabilities, including (see also fig. 1):  remote human observer with a rapid overview of the scene,
« omni-directional vision enabling visualisation of structures such as windows aaidsst
« hi-resolution pan-tilt-zoom camera that cannot be seen in a 2D model.
» laser and ultrasonic range-finder sensors In this paper we present our easy to use method to acquire

« thermal infrared camera for human detection and traCkiwch a model. The laser range scanner and the panoramic
« metal-oxide gas sensors for chemical monitoring. camera collect the data needed to generate a realisti@llyisu



convincing 3D model of large indoor environments. OuBD model of an office environment after remotely steering the
geometric 3D model consists of planes that model the floorobile robot through it.
and walls (there is no ceiling yet, as the model is constructe At regular intervals, the robot records a laser scan, an
from a set of bird’s eye views). The geometry of the planes &&lometry reading and an image from the panoramic camera.
extracted from the 2D laser range scanner data. Textures Ttre robot platform is described in section Ill. From thisajat
the floor and the walls are generated from the images captuted 3D model is constructed. Fig. 2 gives an overview of
by the panoramic camera. Multi-resolution blending is usdde method and shows the data flow between the different
to hide seams in the generated textures stemming, e.g., froradules. Five major steps can be identified as follows (the
intensity differences in the input images. Then, the scenesecond step, data collection, is omitted from Fig. 2 forittar
further enriched by 3D-geometry calculated from a graph cut1) Calibration of the robot's sensors.
stereo technique to include non-wall structures such assta 2) Data collection.
tables, etc. An interactive editor allows fast postprocessf 3) Map generation
the automatically generated stereo data to remove outiers 4) Texture generation
moving objects. 5) Stereo processing

So our approach builds a hybrid model of the environment ,r method consists of manual, semi-automatic and au-
by extracting geometry and using image based approach&satic parts. Recording the data and calibration is done
(texture mapping). A similar approach was applied by Frifyanyally by teleoperation, and extraction of the walls inelo
and Zakhor [8] for generating a 3D model of downtowRem;.automatically with an user interface. Stereo matghisn
Berkley. A complete review of hybrid techniques is beyong,;omatic, but selection of extracted 3D geometry and post-
the scope here and we refer to references in [8] and t0 th&,cessing includes semi-automatic and manual parts. Thus
pioneering work of Debevec [6]. We believe that such hyne yser can interact with the reconstruction process witere
brid techniques will outperform pure image based techriqug necessary to ensure robustness (which plays a key role for

like Aliaga's work [1] that needs advanced compression afgye real world environments) and completeness of the ode
caching techniques and still provides only a limited set ((fhere should be no holes, etc.).

viewpoints. Free choice of viewpoints and possibilities fo  afer describing the hardware platform of our security
flexible addition of additional content (e.g., for visualig the guard, the remaining sections cover the mentioned stefs. Th
robot’s position) are more important in the context consde paper ends with concluding remarks and of course various
here than photo-realistic renderings like in [1]. renderings of the resulting model.

Il. OVERVIEW IIl. HARDWARE PLATFORM

) The robot platform is an ActivMedia Peoplebot (see Fig. 4).
Collrmion.... Texure GenerN -1t is equipped with a SICK LMS 200 laser scanner and
: C_Omni images ©a panoramic camera consisting of an ordinary CCD cam-
Selection » - era (interlaced and TV resolution) with an omni-directibna
1 - lens attachment (NetVision360 from Remote Reality). The

© panoramic camera has a viewing angle of almost 360 degrees

Omnicam internal
Omnicam/Laser Scanner
external

Warping

Cropping

Blending

(a small part of the image is occluded by the camera support)
and is mounted on top of the robot looking downwards, at a
height of approximately 1.6 meters above the ground plane. |
has been calibrated before recording data using a cabiprati
pattern mounted on the wall of the robotics laboratory.

Blending

Wall extraction

IV. CALIBRATION OF EXTERNAL SENSOR PARAMETERS

All methods in the rest of the paper assume that the laser
scanner and the panoramic camera are mounted parallel to the
U ———— TR A T - ground plane. It is difficult to achieve this in practice with
j T sufficient precision. While a small slant of the laser scanne

Floor Texturem { WaIITexturesmé

Graphcut

Postprocessing

‘...l has less effect on the measured range values in indoor envi-
ronments, a slant of the panoramic camera has considerably
more effect. Fig. 3(a) shows one panoramic image along with
: ¢ the corresponding laser scan mapped onto the ground plane
et ynder the above assumption. Especially for distant wailks, t
Fig. 2. An overview of our method to build a 3D model of an indoo @lignment error is considerable. As a mapping like this edus
environment. Shown is the data flow between the different utesd to extract textures for walls, we have to correct this error.
A model for the joint relation between panoramic camera,
This section gives an overview of our method to build &ser scanner and ground plane using three parametersefor th
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Fig. 3. Joint external calibration of laser, panoramic camand ground
plane tries to accurately map a laser scan to the edge befioeerand wall
on the panoramic image. (a) without calibration (b) withilmation (c) zoom

rotation of the panoramic camera turned out to be accur: — . . . . . .
enough. The parameters can be recovered automatically us /
full search (as the parameters’ value range is small). Tage
measure for the calibration, an edge image is calculated fr¢ 2000
the panoramic image. It is assumed that the edge betwe
floor and wall produces also an edge on the edge image ¢ .,
therefore we count the number of laser scan samples tl
are mapped to edges according to the calibration parame
Fig 3(b) shows the result of the calibration: the laser ssan 0
mapped correctly onto the edges of the floor.

y [cm]

V. BUILDING THE 2D MAP BY SCAN MATCHING 0o r

An accurate 2D map is the basis of our algorithm. This me
is not only used to extract walls later, it is also importamt t
get the pose of the robot at each time step. This pose is u
to generate textures of the walls and floor and provides t  -3000
external camera parameters for the stereo processing.

Our approach belongs to a family of techniques where tl oA . ) . . . .
environment is represented by a graph of spatial relatio -5000 -4000 -3000 -2000  -1000 0 1000 2000
obtained by scan matching [14], [10], [7]. The nodes of th x [cm]
graph represent the poses where the laser scans were mkcorde _ ,

The edges represent pairwise registrations of two scarch Slﬁlg' 4. Part of the graph that the map consists of (top) andirfiiag@ (bottom)
a registration is calculated by a scan matching algorithm,

using the odometry as initial estimate. The scan matcher

calculates a relative pose estimate where the scan matod séaser scan using standard techniques. The detected lires ar
is maximal, along with a quadratic function approximatihigt projected into the global coordinate frame. There, lines th
score around the optimal pose. The quadratic approximsti@eem to correspond are fused to form longer lines. Also, the
are used to build an error function over the graph, whigtndpoints of two lines that seem to form a corner are adjusted
is optimized over all poses simultaneously (i.e., we have have the same position. In this way, we try to prevent holes
3 x nrScans free parameters). Details of our method cam the generated walls.

be found in [3]. Fig. 4 shows a part of the map’s graph and This automatic process gives a good initial set of possible
the final map used in this paper. walls. However, the results of the automatic process are
not satisfying in some situations. These include templgrari
changing objects and linear features, which do not correpo
The geometry of our 3D model consists of two parts: th® walls. Doors might open and close while recording date, an
floor and the walls. The floor is modeled by a single planespecially for doors separating corridors, it is more dédé
Together with the texture generated in the next sectios,ighi not to classify them as walls. Otherwise, the way would be
sufficient: the floor’s texture is only generated where ttsefa blocked for walk throughs. Also, several detected linesewer
scans indicate free space. caused by sofas or tables. Such objects may not only cause the
The walls form the central part of the model. Their gergeneration of false walls, they also occlude real walls,civhi
eration is a semi-automatic step, for reasons describegl hare then not detected. So we added a manual postprocessing
The automatic part of this process assumes that walls cgtap, which allows the user to delete, edit and add new lines.
be identified by finding lines formed by the samples of thdearby endpoints of walls are again adjusted to have the
laser scans. So in a first step, lines are detected in eacle sifgme position. In a final step, the orientation of each wall
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VI. GENERATION OF GEOMETRY



is determined. This is done by checking the laser scan poi
that correspond to a wall. The wall is determined to be faci
in the direction of the robot poses where the majority of t
points were measured.

VIl. GENERATION OF TEXTURES

The generation of textures for walls and for the floor a
similar. First, the input images are warped onto the planes
assigned to walls and floor. A floor image is then cropped ac-
cording to the laser scan data. Finally, corresponding geed
textures from single images are fused using multi-resmhuti

blending. or support of the panoramic camera, and

i T?_e calflbragop of the pané)ramlc gamlera, thedj(i;?t cal- « walls may be occluded by objects in front of them and
ibration of robot sensors and ground plane, an e Pose < effects of parallax play a role.

at each time step allows for a simple basic acquisition of . . .

textures for floor and for walls from a single image. Bot Adqmonally, the quality along a_twall texture degradgghmt

floor and walls are given by known planes in 3D: the floo e distance from the closest point to the robot positiors (th
ffect is due to scaling and can be seen clearly in Fig. 6).

is simply the ground plane, and a wall's plane is given by. ~
assigning the respective wall of the 2D map a height, foltmyi imilar effects cgn_be observed for floor textures. These
rRjroblems also exist in other contexts, e.g. [2], [15].

the assumption that walls rise orthogonally from the grou
plane. Then textures can be generated from a single imagezh
backward mappingwarping with bilinear interpolation. A
The construction of the final texture for a single wal
requires the following steps. First, the input images used
extract the textures are selected. Candidate images must
taken from a position such that the wall is facing toward
this position. Otherwise, the image would be taken from t
other side of the wall and would supply an incorrect textévre.
score is calculated for each remaining image that measoees
maximum resolution of the wall in this image. The resolution l
is given by the size in pixels that corresponds to a real world
distance on the wall, measured at the closest point on tHe w;
This closest point additionally must not be occluded acegyd
to the laser scan taken at that position. A maximum of te
images is selected for each wall; these are selected in dygree
manner, such that the minimum score along the wall is atF@. 6. Final textures of walls are generated by blendingtipiel textures
maximum. If some position a|0ng the wall is occluded on aﬂer_]erated from s_ingle pa_noramic images. Shown here am dfiten textures
. . L . . which are fused into a single texture.
images, the nonocclusion constraint is ignored. This caimt

entails also that image information is only extracted frdma t We use an adaption of Burt and Adelson multiresolution

half of the image where laser Sfan _data are available (tB‘I%nding [5]. The goal of the algorithm is that visible seams
SICK laser scanner covers onl$0°). Finally, a wall texture oyeen the images should be avoided by blending different
is created from each selected image, then these are fuseygl uﬁ’equency bands using different transition zones
the blending m_ethod described as follows. ) ) . The outline is as follows: a Laplacian pyramid is calculated
The generation of a floor texture from a single image ig each image to be blended. Each layer of this pyramid is
demonstrated in Fig. 5. The image is warped onto the grouglnqed separately with a constant transition zone. Thetres
plane. Then it is cropped according to the laser scanneerangghtained by reversing the actions that are needed to thld
readings at this position, yielding a single floor image.sThiyyramid on the single blended layers. Typically, the disean
entails again that one half of the image is not used. Suchygm an image center is used to determine where the transitio
floor image is generated from each input image. Then, thegg,es petween different images should be placed. The moti-
images are mapped onto the global 2D coordinate frame. \a¢ion for this is that the image quality should be best in the
~ Both floor and wall textures are fused from multiple inpUenter (consider, e.g., radial distortion) and that thasition
images (Fig. 6 shows an example). The fusion is faced Wiflynes can get large (needed to blend low frequencies). To
several challenges, among them adapt to the situation here, we calculate a distance field for
« image brightness is not constant, each texture to be blended, which simulates this “distance t
« calibration and registration may be not accurate enoughe image center”. For the walls, this image center is plated

Fig. 5. Generation of floor texture from a single image.

« parts of the input image may be occluded by the robot




(a) One example source image. (b) Winner takes all solution of stereo (c) Result of graph cut algorithm. (d) Final disparity map after post-
matching. processing the graph cut results.

Fig. 7. Stereo processing using graph cut algorithm andppmsssing steps (subpixel refinement, epipole removaly iorrection and hole filling).

an x-position that corresponds to the closest point to thet® The key is formulating the correspondence problem as an
position (where the scaling factor is smallest). Using sachenergy minimization problem. This is done by an algorithm
distance field, we can also mask out image parts (neededb@sed onn-expansion moves [4]. The minimization is done
the floor textures as in Fig.5 to mask both the region occludédratively by transforming the energy minimization preiul
by the robot and regions not classified as floor according itto several minimum cut problems. These lead to a strong
the laser scanner). local minimum of the energy function by computing the
best a-expansion of lowest energy for different values of
«, until convergence is reached. To ensure that eaech
expansion succeeds, which is key to above correspondence
Thanks to the available camera positions and the calibraig@blem, is its implemented via graph cuts. Kolmogorov &
camera we are in an ideal setting to apply stereo algorithingbih [13] investigated the necessary characteristicsafor
to the input images. A high quality, state-of-the-art stereenergy functions of binary values to be optimized by graph

algorithm - namely thegraph cutalgorithm by Kolmogorov cuts. We use an appropriate energy functtoof the form (in
and Zabih - is used to calculate a disparity map for eaghe notation of [13]):

panoramic image. Our implementation is based upon the graph
cut implementation of Per-Jonny Kack [11] that extends the E(f) = Edata(f) + Eoce(f) + Esmootn(f)
publicly available source code of Kolmogorov and Zabih [12]Ed wa(f)

VIIl. A CQUISITION OF ADDITIONAL 3D GEOMETRY USING
STEREO

embodies the SSD-based matching cost of corre-
sponding pixels, i.e.

Egata(f) = Z [I—1(p) — Ix(9)]?

<p,g>eA(f)

A. SSD matching

Our stereo matching pipeline starts with the following stag
first, for each pixel in the first image the epipolar curve i .
in the second image is created according to the epipoldf® 0cclusion termE..(f) adds an additional cost), for
geometry of our panoramic camera. This epipolar curve §&ch occluded pixel:
represented by a_set of p_omts_ in image space where each Boeelf) = ZCPT(|Np(f)| =0)
point denotes a different disparity. These points are ueed t
construct a rectified window taking zoom into account. Then, ] ) ) )
an SSD error value for each disparity on this epipolar cur\l*esmooth(f) imposes a penalty,, .. for neighboring pixels
is computed and saved. The image that is being processefld¥ing different disparity values:
compared both to the next and to the previous image. The _
matching costs are then mixed into one big array containing Eomootn(f) = Z Vara2T(f(a1) # f(a2))
all matching costs for each pixel, except for those parts of
the image where one curve contains more points than thé/Ve utilized the graph cut implementation in [11] as the
other — here only the matching values of the longer cungarting point for our work.
are used. These steps provide the data needed by the grapthe resulting disparity map is converted into a point cloud

peP

{al,a2}eNy

cut algorithm. and postprocessed. Disparity values are refined to subpixel
accuracy by finding the optimum of a local quadratic model
B. Graph Cut built using the original matching cost at the integer digyar

The graph cut algorithm used here follows the work ofalue and its adjacent disparity values. Regions around the
Kolmogorov & Zabih [12] and is adapted for omnidirectionakpipoles (there are two epipoles in omnidirectional images
imaging. e.g., [9]) are removed because these typically provide too



few constraints to extract reliable depth information. In Michael Wand (GRIS) together with his students for the great
further step depth values that belong to the floor with highoint cloud tool.
probability are corrected to be exactly on the floor. The eleip
removal and the graph cut algorithm both mark some pixg
as unknown or occluded. The distance values for these pi
are interpolated from the surrounding, known distancesgusi
linear interpolation along concentric circles.
Figure 7 shows one source image, the winner takes
solution based on the SSD score, the result of the graph
algorithm and the final disparity map after postprocessiing.
point cloud from this figure (fused with the walls and floo
model) is rendered in Fig. 9.

C. Point cloud postprocessing

Point clouds created by the stereo matcher are combi
applying some heuristics to suppress outliers. For examp
points are only counted as valid if they receive support al
from other point clouds. Points that are already represent®
by walls or by the floor are omitted. Finally the point cloudg;y g
are combined with the rest of the model. An interactiveatching.
point cloud editor and renderer allows the user to select the
objects supposed to be part of the final model and to delete
outliers. Future versions will also allow point cloud filtey
and application of hole filling algorithms.

This tool uses features of modern graphics hardware (vert
and pixel shader) to allow fast rendering and editing ofdarg
point clouds (several million points). A screenshot of tioisl
is shown in figure 9 (while editing a staircase).

A view of the VRML model - yet without results from ster

IX. RESULTS AND CONCLUSION

A data set of 602 images and laser scans was recordec
Orebro university by teleoperation, covering parts of d@aeg
of about60 x 50 meters. The built 2D-map was shown i
Fig. 4. A screen shot of the resulting 3D model without stere
results can be seen in Fig. 8. This model can be exported a
VRML model, so that it can be viewed in a web browser wit
a VRML plugin. It is also possible to build a VRML model
with point clouds (figures 11 and 12), but there are tighttémi
on the number of points such that the frame rate allows re
time walkthroughs. For larger models it is suggested to use a
native visualisation environment based upon our pointd$ourig. 9. A staircase: output of graph cut-algorithm after oging walls and
editor (which makes heavily use of modern graphics hardwdier. but before removing outliers manually.
features like vertex and pixel shaders).

We see our technique as a successful easy to method to
acquire a 3D model that is highly useful for the roboticlll D. Aliaga, D. Yanovsky, and I. Carlbom. Sea of images: Ansie
security guard. Considerable work has been done also on othe sgf;ﬂgg %f)p,&%%fig%,{s ndsegg‘gz;laﬁggl:gdgﬁr SBV'gggmgg;g
components and with ongoing work to integrate these tech- Visualization pages 22-30, Nov/Dec 2003.
nologies we are confident to reach a state where autonomodgb ﬁ]; tBhangfi’t‘iesfg-N‘?e"ifr‘]?ri]gg\if:zg%eé;‘:#éfé‘“éggg23d modelsPhoceedings
mobile robots leave their labs to do useful work in the rea!3] P. Biber and W. Straller. The norma?l distrif)utions transt A new

world, based on their own sensor data and in cooperation with approach to laser scan matching. lnternational Conference on
humans. Intelligent Robots and Systems (IRQZ)03.
[4] Yuri Boykov and Vladimir Kolmogorov. An experimental ggparison
of min-cut/max-flow algorithms for energy minimization irsion. In
ACKNOWLEDGMENTS IEEE Transactions on Pattern Analysis and Machine Intellige pages
Thanks to Henrik Andreasson (AASS) for calibrating the = 1124-1137, 2004. . . o
idirecti | camera and data collection. to Eloriandus [5] P. J. Burt and Edward H. Adelson. A multiresolution splinvith
omni |rec_ |o_na ¢ ) application to image mosaic8CM Transactions on Graphicg(4):217—
(GRIS) his implementation work on the graph cut part and 236, 1983.
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