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Abstract— Autonomous mobile robots will play a major role in
future security and surveillance tasks for large scale environments
such as shopping malls, airports, hospitals and museums. Robotic
security guards will autonomously survey such environments,
unless a remote human operator takes over control. In this
context a 3D model can convey much more useful information
than the typical 2D maps used in many robotic applications today,
both for visualisation of information and as human machine
interface for remote control.

This paper addresses the challenge of building such a model
of a large environment (50× 60m

2) using data from the robot’s
own sensors: a 2D laser scanner and a panoramic camera.
The data are processed in a pipeline that comprises automatic,
semiautomatic and manual stages. The user can interact withthe
reconstruction process where necessary to ensure robustness and
completeness of the model. A hybrid representation, tailored to
the application, has been chosen: floors and walls are represented
efficiently by textured planes. Non-planar structures like stairs
and tables, which are represented by point clouds, can be added
if desired. Our methods to extract these structures include:
simultaneous localization and mapping in 2D and wall extraction
based on laser scanner range data, building textures from
multiple omnidirectional images using multiresolution blending,
and calculation of 3D geometry by a graph cut stereo technique.
Various renderings illustrate the usability of the model for
visualising the security guard’s position and environment.

I. I NTRODUCTION

Robotic research is now in a mature state and ready to
focus on complete mobile robotics applications. The research
in the AASS Learning Systems Lab, for example, is aimed
at building a Robotic Security Guard for remote surveillance
of indoor environments. This robot will learn how to patrol
a given environment, acquire and update maps, keep watch
over valuable objects, recognise known persons, discriminate
intruders from known persons, and provide remote human
operators with a detailed sensory analysis. The system should
enable automation of many security operations and reduce the
risk of injury to human workers. The design philosophy is
based on augmenting remote human perception with super-
human sensory capabilities, including (see also fig. 1):

• omni-directional vision
• hi-resolution pan-tilt-zoom camera
• laser and ultrasonic range-finder sensors
• thermal infrared camera for human detection and tracking
• metal-oxide gas sensors for chemical monitoring.

Fig. 1. Robotic platform for security guard with sensors marked. The laser
range scanner and the omni-directional camera is used to build a 3D model
of the robot’s operation environment.

Part of this large and complex application will be a visu-
alisation and remote control module based upon a 3D model
of the robot’s operation environment. The robot acquires this
model using its own sensors in a training phase (in which, e.g.,
humans can also be presented so that the robot can update its
database of known persons [16]). After deployment, the robot
performs autonomous surveillance tasks unless the remote
human operator takes over control, either by full teleoperation
or by activating behaviours such as person following or point-
to-point navigation. In this context a 3D model can convey
much more useful information than the typical 2D maps used
in many robotic applications today, both for visualisation
of information and as human machine interface for remote
control. By combining vision and 2D laser range-finder data
in a single representation, a textured 3D model can provide the
remote human observer with a rapid overview of the scene,
enabling visualisation of structures such as windows and stairs
that cannot be seen in a 2D model.

In this paper we present our easy to use method to acquire
such a model. The laser range scanner and the panoramic
camera collect the data needed to generate a realistic, visually



convincing 3D model of large indoor environments. Our
geometric 3D model consists of planes that model the floor
and walls (there is no ceiling yet, as the model is constructed
from a set of bird’s eye views). The geometry of the planes is
extracted from the 2D laser range scanner data. Textures for
the floor and the walls are generated from the images captured
by the panoramic camera. Multi-resolution blending is used
to hide seams in the generated textures stemming, e.g., from
intensity differences in the input images. Then, the scene is
further enriched by 3D-geometry calculated from a graph cut
stereo technique to include non-wall structures such as stairs,
tables, etc. An interactive editor allows fast postprocessing of
the automatically generated stereo data to remove outliersor
moving objects.

So our approach builds a hybrid model of the environment
by extracting geometry and using image based approaches
(texture mapping). A similar approach was applied by Früh
and Zakhor [8] for generating a 3D model of downtown
Berkley. A complete review of hybrid techniques is beyond
the scope here and we refer to references in [8] and to the
pioneering work of Debevec [6]. We believe that such hy-
brid techniques will outperform pure image based techniques
like Aliaga’s work [1] that needs advanced compression and
caching techniques and still provides only a limited set of
viewpoints. Free choice of viewpoints and possibilities for
flexible addition of additional content (e.g., for visualising the
robot’s position) are more important in the context considered
here than photo-realistic renderings like in [1].

II. OVERVIEW
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Fig. 2. An overview of our method to build a 3D model of an indoor
environment. Shown is the data flow between the different modules.

This section gives an overview of our method to build a

3D model of an office environment after remotely steering the
mobile robot through it.

At regular intervals, the robot records a laser scan, an
odometry reading and an image from the panoramic camera.
The robot platform is described in section III. From this data,
the 3D model is constructed. Fig. 2 gives an overview of
the method and shows the data flow between the different
modules. Five major steps can be identified as follows (the
second step, data collection, is omitted from Fig. 2 for clarity).

1) Calibration of the robot’s sensors.
2) Data collection.
3) Map generation
4) Texture generation
5) Stereo processing

Our method consists of manual, semi-automatic and au-
tomatic parts. Recording the data and calibration is done
manually by teleoperation, and extraction of the walls is done
semi-automatically with an user interface. Stereo matching is
automatic, but selection of extracted 3D geometry and post-
processing includes semi-automatic and manual parts. Thus
the user can interact with the reconstruction process whereit
is necessary to ensure robustness (which plays a key role for
large real world environments) and completeness of the model
(there should be no holes, etc.).

After describing the hardware platform of our security
guard, the remaining sections cover the mentioned steps. The
paper ends with concluding remarks and of course various
renderings of the resulting model.

III. H ARDWARE PLATFORM

The robot platform is an ActivMedia Peoplebot (see Fig. 4).
It is equipped with a SICK LMS 200 laser scanner and
a panoramic camera consisting of an ordinary CCD cam-
era (interlaced and TV resolution) with an omni-directional
lens attachment (NetVision360 from Remote Reality). The
panoramic camera has a viewing angle of almost 360 degrees
(a small part of the image is occluded by the camera support)
and is mounted on top of the robot looking downwards, at a
height of approximately 1.6 meters above the ground plane. It
has been calibrated before recording data using a calibration
pattern mounted on the wall of the robotics laboratory.

IV. CALIBRATION OF EXTERNAL SENSOR PARAMETERS

All methods in the rest of the paper assume that the laser
scanner and the panoramic camera are mounted parallel to the
ground plane. It is difficult to achieve this in practice with
sufficient precision. While a small slant of the laser scanner
has less effect on the measured range values in indoor envi-
ronments, a slant of the panoramic camera has considerably
more effect. Fig. 3(a) shows one panoramic image along with
the corresponding laser scan mapped onto the ground plane
under the above assumption. Especially for distant walls, the
alignment error is considerable. As a mapping like this is used
to extract textures for walls, we have to correct this error.

A model for the joint relation between panoramic camera,
laser scanner and ground plane using three parameters for the
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Fig. 3. Joint external calibration of laser, panoramic camera and ground
plane tries to accurately map a laser scan to the edge betweenfloor and wall
on the panoramic image. (a) without calibration (b) with calibration (c) zoom

rotation of the panoramic camera turned out to be accurate
enough. The parameters can be recovered automatically using
full search (as the parameters’ value range is small). To geta
measure for the calibration, an edge image is calculated from
the panoramic image. It is assumed that the edge between
floor and wall produces also an edge on the edge image and
therefore we count the number of laser scan samples that
are mapped to edges according to the calibration parameter.
Fig 3(b) shows the result of the calibration: the laser scan is
mapped correctly onto the edges of the floor.

V. BUILDING THE 2D MAP BY SCAN MATCHING

An accurate 2D map is the basis of our algorithm. This map
is not only used to extract walls later, it is also important to
get the pose of the robot at each time step. This pose is used
to generate textures of the walls and floor and provides the
external camera parameters for the stereo processing.

Our approach belongs to a family of techniques where the
environment is represented by a graph of spatial relations
obtained by scan matching [14], [10], [7]. The nodes of the
graph represent the poses where the laser scans were recorded.
The edges represent pairwise registrations of two scans. Such
a registration is calculated by a scan matching algorithm,
using the odometry as initial estimate. The scan matcher
calculates a relative pose estimate where the scan match score
is maximal, along with a quadratic function approximating this
score around the optimal pose. The quadratic approximations
are used to build an error function over the graph, which
is optimized over all poses simultaneously (i.e., we have
3 × nrScans free parameters). Details of our method can
be found in [3]. Fig. 4 shows a part of the map’s graph and
the final map used in this paper.

VI. GENERATION OF GEOMETRY

The geometry of our 3D model consists of two parts: the
floor and the walls. The floor is modeled by a single plane.
Together with the texture generated in the next section, this is
sufficient: the floor’s texture is only generated where the laser
scans indicate free space.

The walls form the central part of the model. Their gen-
eration is a semi-automatic step, for reasons described here.
The automatic part of this process assumes that walls can
be identified by finding lines formed by the samples of the
laser scans. So in a first step, lines are detected in each single

Fig. 4. Part of the graph that the map consists of (top) and final map (bottom)

laser scan using standard techniques. The detected lines are
projected into the global coordinate frame. There, lines that
seem to correspond are fused to form longer lines. Also, the
endpoints of two lines that seem to form a corner are adjusted
to have the same position. In this way, we try to prevent holes
in the generated walls.

This automatic process gives a good initial set of possible
walls. However, the results of the automatic process are
not satisfying in some situations. These include temporarily
changing objects and linear features, which do not correspond
to walls. Doors might open and close while recording data, and
especially for doors separating corridors, it is more desirable
not to classify them as walls. Otherwise, the way would be
blocked for walk throughs. Also, several detected lines were
caused by sofas or tables. Such objects may not only cause the
generation of false walls, they also occlude real walls, which
are then not detected. So we added a manual postprocessing
step, which allows the user to delete, edit and add new lines.
Nearby endpoints of walls are again adjusted to have the
same position. In a final step, the orientation of each wall



is determined. This is done by checking the laser scan points
that correspond to a wall. The wall is determined to be facing
in the direction of the robot poses where the majority of the
points were measured.

VII. G ENERATION OF TEXTURES

The generation of textures for walls and for the floor are
similar. First, the input images are warped onto the planes
assigned to walls and floor. A floor image is then cropped ac-
cording to the laser scan data. Finally, corresponding generated
textures from single images are fused using multi-resolution
blending.

The calibration of the panoramic camera, the joint cal-
ibration of robot sensors and ground plane, and the pose
at each time step allows for a simple basic acquisition of
textures for floor and for walls from a single image. Both
floor and walls are given by known planes in 3D: the floor
is simply the ground plane, and a wall’s plane is given by
assigning the respective wall of the 2D map a height, following
the assumption that walls rise orthogonally from the ground
plane. Then textures can be generated from a single image by
backward mapping (warping) with bilinear interpolation.

The construction of the final texture for a single wall
requires the following steps. First, the input images used to
extract the textures are selected. Candidate images must be
taken from a position such that the wall is facing towards
this position. Otherwise, the image would be taken from the
other side of the wall and would supply an incorrect texture.A
score is calculated for each remaining image that measures the
maximum resolution of the wall in this image. The resolution
is given by the size in pixels that corresponds to a real world
distance on the wall, measured at the closest point on the wall.
This closest point additionally must not be occluded according
to the laser scan taken at that position. A maximum of ten
images is selected for each wall; these are selected in a greedy
manner, such that the minimum score along the wall is at a
maximum. If some position along the wall is occluded on all
images, the nonocclusion constraint is ignored. This constraint
entails also that image information is only extracted from the
half of the image where laser scan data are available (the
SICK laser scanner covers only180◦). Finally, a wall texture
is created from each selected image, then these are fused using
the blending method described as follows.

The generation of a floor texture from a single image is
demonstrated in Fig. 5. The image is warped onto the ground
plane. Then it is cropped according to the laser scanner range
readings at this position, yielding a single floor image. This
entails again that one half of the image is not used. Such a
floor image is generated from each input image. Then, these
images are mapped onto the global 2D coordinate frame.

Both floor and wall textures are fused from multiple input
images (Fig. 6 shows an example). The fusion is faced with
several challenges, among them

• image brightness is not constant,
• calibration and registration may be not accurate enough,

Fig. 5. Generation of floor texture from a single image.

• parts of the input image may be occluded by the robot
or support of the panoramic camera, and

• walls may be occluded by objects in front of them and
thus effects of parallax play a role.

Additionally, the quality along a wall texture degrades with
the distance from the closest point to the robot position (this
effect is due to scaling and can be seen clearly in Fig. 6).
Similar effects can be observed for floor textures. These
problems also exist in other contexts, e.g. [2], [15].

Fig. 6. Final textures of walls are generated by blending multiple textures
generated from single panoramic images. Shown here are three of ten textures
which are fused into a single texture.

We use an adaption of Burt and Adelson multiresolution
blending [5]. The goal of the algorithm is that visible seams
between the images should be avoided by blending different
frequency bands using different transition zones.

The outline is as follows: a Laplacian pyramid is calculated
for each image to be blended. Each layer of this pyramid is
blended separately with a constant transition zone. The result
is obtained by reversing the actions that are needed to buildthe
pyramid on the single blended layers. Typically, the distance
from an image center is used to determine where the transition
zones between different images should be placed. The moti-
vation for this is that the image quality should be best in the
center (consider, e.g., radial distortion) and that the transition
zones can get large (needed to blend low frequencies). To
adapt to the situation here, we calculate a distance field for
each texture to be blended, which simulates this “distance to
the image center”. For the walls, this image center is placedat



(a) One example source image. (b) Winner takes all solution of stereo
matching.

(c) Result of graph cut algorithm. (d) Final disparity map after post-
processing the graph cut results.

Fig. 7. Stereo processing using graph cut algorithm and postprocessing steps (subpixel refinement, epipole removal, floor correction and hole filling).

an x-position that corresponds to the closest point to the robot’s
position (where the scaling factor is smallest). Using sucha
distance field, we can also mask out image parts (needed on
the floor textures as in Fig.5 to mask both the region occluded
by the robot and regions not classified as floor according to
the laser scanner).

VIII. A CQUISITION OF ADDITIONAL 3D GEOMETRY USING

STEREO

Thanks to the available camera positions and the calibrated
camera we are in an ideal setting to apply stereo algorithms
to the input images. A high quality, state-of-the-art stereo
algorithm - namely thegraph cutalgorithm by Kolmogorov
and Zabih - is used to calculate a disparity map for each
panoramic image. Our implementation is based upon the graph
cut implementation of Per-Jonny Käck [11] that extends the
publicly available source code of Kolmogorov and Zabih [12].

A. SSD matching

Our stereo matching pipeline starts with the following stage:
first, for each pixel in the first image the epipolar curve
in the second image is created according to the epipolar
geometry of our panoramic camera. This epipolar curve is
represented by a set of points in image space where each
point denotes a different disparity. These points are used to
construct a rectified window taking zoom into account. Then,
an SSD error value for each disparity on this epipolar curve
is computed and saved. The image that is being processed is
compared both to the next and to the previous image. The
matching costs are then mixed into one big array containing
all matching costs for each pixel, except for those parts of
the image where one curve contains more points than the
other – here only the matching values of the longer curve
are used. These steps provide the data needed by the graph
cut algorithm.

B. Graph Cut

The graph cut algorithm used here follows the work of
Kolmogorov & Zabih [12] and is adapted for omnidirectional
imaging.

The key is formulating the correspondence problem as an
energy minimization problem. This is done by an algorithm
based onα-expansion moves [4]. The minimization is done
iteratively by transforming the energy minimization problem
into several minimum cut problems. These lead to a strong
local minimum of the energy function by computing the
best α-expansion of lowest energy for different values of
α, until convergence is reached. To ensure that eachα-
expansion succeeds, which is key to above correspondence
problem, is its implemented via graph cuts. Kolmogorov &
Zabih [13] investigated the necessary characteristics foran
energy functions of binary values to be optimized by graph
cuts. We use an appropriate energy functionE of the form (in
the notation of [13]):

E(f) = Edata(f) + Eocc(f) + Esmooth(f)

Edata(f) embodies the SSD-based matching cost of corre-
sponding pixels, i.e.

Edata(f) =
∑

<p,q>ǫA(f)

|Ik−1(p) − Ik(q)|2

The occlusion termEocc(f) adds an additional costCp for
each occluded pixel:

Eocc(f) =
∑

pǫP

CpT (|Np(f)| = 0)

Esmooth(f) imposes a penaltyVa1,a2 for neighboring pixels
having different disparity values:

Esmooth(f) =
∑

{a1,a2}ǫN1

Va1,a2T (f(a1) 6= f(a2))

We utilized the graph cut implementation in [11] as the
starting point for our work.

The resulting disparity map is converted into a point cloud
and postprocessed. Disparity values are refined to subpixel
accuracy by finding the optimum of a local quadratic model
built using the original matching cost at the integer disparity
value and its adjacent disparity values. Regions around the
epipoles (there are two epipoles in omnidirectional images,
e.g., [9]) are removed because these typically provide too



few constraints to extract reliable depth information. In a
further step depth values that belong to the floor with high
probability are corrected to be exactly on the floor. The epipole
removal and the graph cut algorithm both mark some pixels
as unknown or occluded. The distance values for these pixels
are interpolated from the surrounding, known distances using
linear interpolation along concentric circles.

Figure 7 shows one source image, the winner takes all
solution based on the SSD score, the result of the graph cut
algorithm and the final disparity map after postprocessing.The
point cloud from this figure (fused with the walls and floor
model) is rendered in Fig. 9.

C. Point cloud postprocessing

Point clouds created by the stereo matcher are combined
applying some heuristics to suppress outliers. For example,
points are only counted as valid if they receive support also
from other point clouds. Points that are already represented
by walls or by the floor are omitted. Finally the point clouds
are combined with the rest of the model. An interactive
point cloud editor and renderer allows the user to select the
objects supposed to be part of the final model and to delete
outliers. Future versions will also allow point cloud filtering
and application of hole filling algorithms.

This tool uses features of modern graphics hardware (vertex
and pixel shader) to allow fast rendering and editing of large
point clouds (several million points). A screenshot of thistool
is shown in figure 9 (while editing a staircase).

IX. RESULTS AND CONCLUSION

A data set of 602 images and laser scans was recorded at
Örebro university by teleoperation, covering parts of a region
of about 60 × 50 meters. The built 2D-map was shown in
Fig. 4. A screen shot of the resulting 3D model without stereo
results can be seen in Fig. 8. This model can be exported as a
VRML model, so that it can be viewed in a web browser with
a VRML plugin. It is also possible to build a VRML model
with point clouds (figures 11 and 12), but there are tight limits
on the number of points such that the frame rate allows real
time walkthroughs. For larger models it is suggested to use a
native visualisation environment based upon our point clouds
editor (which makes heavily use of modern graphics hardware
features like vertex and pixel shaders).

We see our technique as a successful easy to method to
acquire a 3D model that is highly useful for the robotic
security guard. Considerable work has been done also on other
components and with ongoing work to integrate these tech-
nologies we are confident to reach a state where autonomous
mobile robots leave their labs to do useful work in the real
world, based on their own sensor data and in cooperation with
humans.
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Fig. 8. A view of the VRML model - yet without results from stereo
matching.

Fig. 9. A staircase: output of graph cut-algorithm after removing walls and
floor, but before removing outliers manually.
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