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Abstract
6DOF Pose tracking is useful in many contexts, e.g.,
in augmented reality (AR) applications. In particular,
we seek to assist visually impaired persons by provid-
ing them with an auditory interface to their environment
through sonification. For this purpose, accurate head
tracking in mixed indoor/outdoor settings is the key en-
abling technology. Most of the work to date has concen-
trated on single-camera systems with a relatively small
field of view, but this presents a fundamental limit on the
accuracy of such systems. We present a multi-camera
pose tracker that handles an arbitrary configuration of
cameras rigidly fixed to the object of interest. By us-
ing multiple cameras, we increase both the robustness
and the accuracy by which a 6-DOF pose is tracked.
However, in a multi-camera rig setting, earlier methods
for determining the unknown pose from three world-to-
camera correspondences are no longer applicable, as
they all assume a common center of projection. In this
paper, we present a RANSAC-based method that copes
with this limitation and handles multi-camera rigs. In
addition, we present quantitative results to serve as a
design guide for full system deployments based on multi-
camera rigs. Our formulation is completely general, in
that it handles an arbitrary, heterogeneous collection of
cameras in any arbitrary configuration.

1. Introduction
Pose tracking is useful in augmented reality (AR) appli-
cations where accurate head pose over time is required.
We are especially interested in wide-area, markerless
tracking using computer vision, which is well-suited to
both indoor and outdoor environments. In particular,
we seek to assist visually impaired persons by provid-
ing them with an auditory interface to their environment
through sonification. For this purpose, accurate 6DOF
head tracking is the key enabling technology.

Most of the work to date has concentrated on single-
camera systems with a relatively small field of view. Us-
ing a single camera presents a fundamental limit on the
accuracy of such systems, because features are only ob-

Figure 1: PCB layout for the miniature camera rig we
have designed and are testing now. The octagonal board
can support up to 4 CMOS cameras (mount holes can be
seen on every other side) and the board has room for an
Xscale processor and a Xilinx field-programmable gate
array (FPGA), which will handle the feature detection in
parallel for all cameras.

served in a single viewing direction. While wide-angle
lenses or mirror-based systems are possible solutions,
these systems typically suffer from low resolution which
makes detecting and tracking landmarks difficult.

We present a multi-camera pose tracker that can han-
dle an arbitrary configuration of cameras rigidly fixed
to the object of interest. By using multiple cameras, we
can detect and track landmarks in different directions at
high resolution, and hence increase both the robustness
and the accuracy by which a 6-DOF pose can be tracked.
However, since there is no longer a single center of pro-
jection, traditional three-point algorithms to determine
pose from landmark observations are not applicable. To
remedy this, we developed a RANSAC-based method



that handles multi-camera rigs using a fast non-linear
minimization step in each RANSAC round. In this re-
spect, we address the same problem as the algebraic so-
lution method developed concurrently by [20]. As a sec-
ond contribution, we present the results of a thorough
quantitative evaluation of the method in a realistic mark-
erless tracking scenario, to serve as a design guide for
full system deployments based on multi-camera rigs.

1.1. Related Work
One of the fundamental tasks in AR applications is
tracking pose, see for example [14] or [3]. Klein and
Drummond [13] note that augmentation results using vi-
sion are generally more accurate than with other sen-
sors. Traditionally, vision-based trackers have relied
upon fiducial markers, but this is often undesirable for a
number of obvious reasons (cost, maintenance, accessi-
bility), and there has been a move toward markerless vi-
sion based tracking. Several types of features have been
used, including line segments, groupings of edges, re-
gions [23], and point-based features [23, 26, 24, 13].

The vision community recently noted the superiority
of affine invariant features in object recognition, match-
ing, and indexing [22, 15, 18, 19, 6]. These features pro-
vide robustness against partial occlusion, nearby clut-
ter, illumination and viewpoint changes, and object pose
variations. However, using these features induces a non-
trivial computational burden [24]. We note however, that
recently impressive frame rates have been demonstrated
in vision using high end programmable hardware [1],
and we are in the process of developing an FPGA-based
solution to quickly detect affine invariant features (Sec-
tion 3) which should alleviate these concerns.

The key computational step in vision-based tracking
with a single camera is determining the pose of the cam-
era from a set of correspondences between 3D reference
points and their images. This is one of the oldest and
most important problems in computer vision and pho-
togrammetry [21]. Fast closed-form methods to accom-
plish this (see [9, 21] for an overview) are typically used
within a random sample consensus (RANSAC) scheme
[7] to reject spurious correspondences proposed in a pu-
tative matching step. Alternatively, recursive estimation
methods such as extended Kalman filters [4, 25] can be
used in conjunction with validation gates.

The usefulness of omni-directional video for tracking
has been noted in the robotics literature [16, 12]. Hence,
below we propose a tracking system consisting of an ar-
bitrary configuration of cameras rigidly attached to the
object whose pose is of interest. [20] has very recently
presented an algebraic solution method, developed con-
currently and independently from us. Our approach is
arguably slower but considerably simpler to implement.

Figure 2: Multi-camera rig example.

2. Multi-Camera Pose Tracking
In a multi-camera rig setting, the minimal number
of correspondences between image measurements and
known world landmarks is still three, but these three cor-
respondences no longer imply viewing directions from
a common camera center. To cope with this much more
difficult situation, we propose to use a fast non-linear
minimization step in each RANSAC round, that accu-
rately models the viewing geometry.

2.1. Multi-Camera Rig Geometry
We assume a measurement model whereby n previ-
ously surveyed landmarks {Pj}

n
j=1, with Pj ∈

� 3 , are
observed by a multi-camera rig consisting of m cam-
eras, as illustrated in Figure 2. This yields n mea-
surements {(ij , pj)}

n
j=1, each consisting of a camera

index ij ∈ 1..m and a 2D landmark image pj ∈
� 2 . Also assumed known is the calibration of the rig
KR

∆
= {(Ki, Ri, ti)}

m
i=1, with m the number of cam-

eras. Hence, given the global pose (R, t) of the entire
rig in a given reference frame, we obtain the following
measurement equations for each 3D to 2D correspon-
dence (P, i, p):

p = Πi(Ki, Ri(R(P − t) − ti) + ni

where

• P ′
∆
= R × (P − t) are the rig-centered 3D coordi-

nates of the landmark P .

• P (i) ∆
= Ri × (P ′ − ti) are the camera-centered 3D

coordinates of the landmark P in camera i.

• y
∆
= Π(Ki, P

(i)) is the ideal projection of the
camera-centered point P (i) into 2D image coordi-



nates of camera i, according to intrinsic calibration
parameters Ki.

• ni is an additive 2D noise vector whose density is
assumed known in all cameras

• p = y+ni is the final observed 2D image measure-
ment

The formulation above is completely general in that it
handles heterogeneous camera rigs with arbitrary rela-
tive poses. For example, it can model a mix of standard
perspective cameras with a centered omni directional
catadioptric camera. In the results below we concentrate
on a set of identical perspective cameras symmetrically
arranged in a ring. The formulation above is still needed
in its full generality, however, to model the differences
in calibration and mounting inaccuracies inevitable in a
real (low-cost) system.

For the common case of perspective cameras, the cal-
ibration parameters Ki for each rig consist of the 5 usual
intrinsic parameters

K =





fx s u0

fy v0

1





and the projection function Πis given by

Π([X, Y, Z]T ) = [fx x + s y + u0, fy y + v0]
T

Radial distortion is easily incorporated but the details
are omitted here, see e.g. [11].

2.2. Pose from Known Correspondences
Given a list of n correspondences {(Pj , ij , pj)}

n
j=1, we

can optimally estimate the rig pose (R, t) by maximum
a posteriori (MAP) estimation:

(R, t)∗ = argmax
R,t







P (R, t)

n
∏

j=1

P (Pj , ij , pj |R, t)







where we applied Bayes law and assumed conditional
independence of all measurements pj given the rig pose.
The prior P (R, t) can be derived from the previous time
step using a motion model, using standard recursive esti-
mation methods. The above is easily extended to incor-
porate rate variables and/or other sensor modalities, as
has been adequately described elsewhere [17]. Hence,
in the following we will assume the prior P (R, t) to be
of known form.

Given an initial estimate (R(0), t(0)), e.g. the mean
of the predictive density P (R, t), we can now optimize
for (R, t) using standard non-linear minimization tech-
niques. The above formulation supports Gaussian as

well as robust, non-Gaussian noise models. However, in
the common case of assumed Gaussian noise, we obtain
the following non-linear minimization problem

(R, t)∗ = argmin
R,t







1

2

n
∑

j=1

J(Pj,ij , pj) − log P (R, t)







where J(Pj,ij , pj) is the objective function contribution
resulting from the jth correspondence, given by

J(P, i, p)
∆
= ‖p − Πi(Ki, Ri(R(P − t) − ti)‖

2
Σi

(1)

Here ‖µ − x‖2
Σ in (1) is the squared Mahalanobis dis-

tance from x to µ and defined as below:

‖µ − x‖2
Σ

∆
= (µ − x)T Σ−1(µ − x)

Minimization is implemented using a standard
Levenberg-Marquardt non-linear optimization scheme
in conjunction with a sparse QR solver. A crucial step
is the computation of the 2n × 6 Jacobian H at every
iteration. H has 2n rows, 2 rows for each measurement,
and 6 columns for each of the 6 degrees of freedoms (3
translation, 3 rotation). We handle rotations in terms of
an incremental Euler parameterization around the cur-
rent estimate. To compute the Jacobian H , we use an in-
house automatic differentiation (AD) framework. AD
is neither symbolic nor numerical differentiation, and
calculates the Jacobian at any given value exactly, ef-
ficiently, and free of numerical instabilities. See [8] for
more details.

2.3. Robust Outlier Rejection
In a tracking context, we then use RANSAC to obtain a
robust pose estimate using the machinery in Section 2.2
as a subroutine. At each step, we assume that a number
of putative 3D to 2D correspondences {(Pj , ij , pj)}

N
j=1

can be obtained, with N � 3. In Section 3 below we
present one way to do this, but any method will do. We
then use RANSAC [7] to obtain a set of inlier corre-
spondences. Briefly, we randomly select minimal sets
of 3 correspondences, obtain the MAP pose, and check
for support among the other inliers. We use an adaptive
threshold version of RANSAC to automatically deter-
mine the number of RANSAC rounds needed, see e.g.
Hartley and Zisserman [11] for a thorough exposition.
As a final step, the basis set of correspondences with the
highest support is then used with its inlier support to re-
fine the MAP pose estimate.

3. A Complete System
3.1. Overview
We implemented a markerless tracking system based on
affine invariant features, popular in object recognition



Figure 3: The database of Features is constructed by finding interest points and their affine invariant descriptors in the
environment. Here we show four images from the environment. The blue crosses denote the location of the interest
point, and the red ellipses the region of the descriptor

[22, 2, 18, 19, 6]. We implemented the run-time pipeline
from images to pose, but were not yet able to test the sys-
tem in real environments as the hardware component is
still under development; the hardware will consist of a
head-mounted miniature camera rig currently under de-
velopment (see Figure 1). We are also developing an
FPGA-based solution to detect affine invariant features
in real time for up to 4 cameras in parallel.

As explained above, the system estimates pose by
finding 2D to 3D point correspondences between the im-
ages captured from the rig and survey features in the en-
vironment. RANSAC is then used to robustly estimate
the true pose of the rig. To deploy or test the system, we
need a surveying phase to create known 3D landmarks,
after which we can run the pose-tracking at run-time.

3.2. Landmark Surveying

In the surveying phase the system detects affine invariant
features in the environment and logs them in a database
along with their locations. The location estimation for
the features can be done completely automatically us-
ing well-known structure from motion approaches [11].
Affine invariant features are found using the method out-
lined in [2]. We first find scale-space features in the im-
ages by detecting Harris features [10] at a number of
scales, ordering them according to their strength and
picking the top n features. Next we calculate a de-
scriptor for each feature based on an affine invariant re-
gion around it. To compress the database and enable
faster comparisons between features we perform princi-
pal component analysis (PCA) on the descriptors, keep-
ing only the first 20 eigenvectors. Descriptors are re-
duced from 625 bytes per feature to 80 bytes, reducing
the storage cost and comparison time per feature.

3.3. Run-time Tracking
In the tracking step we estimate at each frame the ab-
solute pose of the rig relative to the environment. We
first detect affine invariant features in the images from
the rig, as outlined in Section 3.2. These features are
then projected into the eigenspace of the database. Puta-
tive correspondences are obtained by finding the closest
feature in the database for each image feature, rejecting
those with a large error. To estimate the pose of the rig
using RANSAC we need initial estimate, which can be
calculated in two ways: (a) if we know that the pose of
the rig is almost planar then we can use the quick lin-
ear estimate outlined in [5]; (b) we can also use the pose
estimate obtained at the previous frame.

4. Results
To demonstrate the quality of the proposed system we
conducted extensive experiments in a synthetic environ-
ment using real human motion. The environment con-
sists of texture mapped planes, see figure 3. Affine
invariant features are detected in all the textures and
their 3D locations are derived from the positions of the
planes. Note that although we use only planes in our ex-
periments for ease of building the database, our method
is not restricted to them and can in fact work on arbi-
trarily complex environments. In all experiments the
movement was obtained using Motion Capture of real-
istic human motions. Data was captured at a rate of 120
frames per second with translational units of millime-
ters. The data was converted into head poses for each
frame and scaled down to fit the dimensions of the syn-
thetic environment. The poses at each frame were used
to capture images from a synthetic rig in our environ-
ment, and estimates of the poses were generated from
these images according to the method outlined in sec-
tion 3. These estimates were then scaled up appropri-
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Figure 4: RT: 515 frames. Average deviations from ground truth for a varying number of cameras.
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Figure 5: I1: 800 frames.Average deviations from ground truth for a varying number of cameras.

ately to ensure that all results were in millimeters. All
experiments were done on an Intel Pentium 4 machine
running at 2.80 GHz. Below we present results from
four of the sequences:

1. RT: a small sequence (515 frames) in which the
subject makes a right turn.

2. I1: a medium sized sequence (800 frames) of a sub-
ject looking around an environment

3. I2: a large sequence (1172 frames) of a subject
looking around an environment

4. SS1:a large sequence (3386 frames) with large mo-
tion and relatively large out of plane rotations.

4.1. different number of cameras
Tables 1 to 4 show the mean translational and rotational
errors from the ground truth for each of the four se-

# fps pan tilt roll x y z
1 19 0.20 0.11 0.22 13.6 15.1 20.5
2 12 0.02 0.05 0.03 4.03 4.36 2.43
4 11 0.02 0.02 0.02 2.61 2.31 1.80

Table 1: RT: 515 frames. Average deviations from
ground truth for a varying number of cameras. The ro-
tational errors are in degrees and the translational errors
are in mm

quences. Errors are calculated by summing the absolute
difference of the real and estimated poses at each frame
and dividing by the total number of frames. In Figures
4 to 8 we show these translational and rotational errors
graphically.

These results convincingly demonstrate the advan-
tage of using a multi-camera rig tracker over a single,
limited field of view camera. Both translational and ro-
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Figure 6: I2:1172 frames. Average deviations from ground truth for a varying number of cameras.
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Figure 7: SS1:3386 frames. Average deviations from ground truth for a varying number of cameras

# fps pan tilt roll x y z
1 14 0.21 0.21 0.16 1.78 1.30 1.88
2 13 0.03 0.04 0.04 0.36 0.40 0.22
4 12 0.03 0.02 0.02 0.26 0.31 0.14

Table 2: I1: 800 frames.Average deviations from ground
truth for a varying number of cameras. The rotational
errors are in degrees and the translational errors are in
mm

tational errors decrease substantially as the number of
cameras is increased, and this happens consistently over
all types of of mocap sequences.

The average error for the SS1 sequence is dramat-
ically higher for the one-camera case, which warrants
closer examination. Therefore, in Figure 9 (a) and (b)
we have plotted the time-series of both translation along

# fps pan tilt roll x y z
1 8 0.57 0.41 0.31 2.83 2.15 2.10
2 9 0.05 0.05 0.04 0.26 0.30 0.14
4 9 0.03 0.02 0.02 0.22 0.26 0.12

Table 3: I2:1172 frames. Average deviations from
ground truth for a varying number of cameras. The ro-
tational errors are in degrees and the translational errors
are in mm

the X-axis and the tilt, for 1 camera and 4 cameras, re-
spectively. From the figures one can see that, especially
when the tilt angles were large, a considerable number
of catastrophic failures occurred. Our hypothesis is that
in the one camera case, when the subject looks up or
down the number of correct putative correspondences
falls below three, but we have not yet been able to very
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Figure 8: SS1:3386 frames. Average deviations from ground truth for a varying number of frames
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Figure 9: Time series for SS1 showing the real and estimated translations along x and real and estimated tilt.

verify that. The problem disappears for 2 or 4 cameras
as they are able to acquire a large number of correctly
matched features.

4.2. Varying frame rates

# fps pan tilt roll x y z
1 4 2.58 6.70 1.61 266.8 604.4 115.0
2 6 0.05 0.07 0.06 4.73 4.55 2.63
4 8 0.04 0.04 0.03 2.75 2.45 1.52

Table 4: SS1:3386 frames. Average deviations from
ground truth for a varying number of cameras. The ro-
tational errors are in degrees and the translational errors
are in mm

To demonstrate the robustness of the proposed sys-
tem to errors in the initial estimate we conducted ex-
periments with different frame rates. In table 5 and fig-
ure 8 we show the results obtained by changing the in-
put frame rate. To generate sequences with lower frame
rates we sampled the 120 frames per second sequence
at appropriate intervals. These down sampled sequences
were then used in tracking and errors were calculated
in a similar manner to section 4.1. The results show
that for frame rates as low as 5 frames a second we get
very good quality results for both translational and rota-
tional pose variables even though the initial estimate is
of much lower quality than at 120 fps.



Fps pan tilt roll x y z
120 0.031 0.024 0.022 0.223 0.255 0.117
60 0.031 0.024 0.022 0.226 0.256 0.110
40 0.031 0.023 0.024 0.227 0.258 0.119
30 0.032 0.025 0.023 0.228 0.254 0.108
20 0.030 0.024 0.024 0.226 0.262 0.115
15 0.032 0.025 0.023 0.228 0.265 0.116
12 0.032 0.024 0.022 0.221 0.220 0.111
10 0.031 0.024 0.025 0.224 0.253 0.110
8 0.030 0.026 0.024 0.214 0.208 0.113
5 0.028 0.022 0.027 0.219 0.256 0.126

Table 5: SS1:3386 frames. Average deviations from
ground truth for varying frame rates. The rotational er-
rors are in degrees and the translational errors are in mm

5. Discussion
We introduced a pose tracking method that can be used
with arbitrary multi-camera configurations, in either
fiducial or markerless tracking settings. In the context
of the markerless tracking system we developed, it has
the potential to outperform single-camera systems by a
wide margin. We tested the system in software on re-
alistic image sequences, using motion capture data to
guarantee realistic motion.

Clearly, the complete system now has to be validated
in real-time on real image sequences rather than syn-
thetic ones. To that end, we are developing a FPGA-
based miniature camera rig that will be able to perform
the detection of affine invariant features in real time, for
multiple cameras in parallel.
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