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Abstract

We present a new contour-based background-subtraction
technique using thermal and visible imagery for persistent
object detection in urban settings. Statistical background-
subtraction in the thermal domain is used to identify the ini-
tial regions-of-interest. Color and intensity information are
used within these areas to obtain the corresponding regions-
of-interest in the visible domain. Within each region, input
and background gradient information are combined to form
a Contour Saliency Map. The binary contour fragments,
obtained from corresponding Contour Saliency Maps, are
then combined. An A* path-constrained search along wa-
tershed boundaries is used to complete and close any bro-
ken contour segments. Lastly, the contour image is flood-
filled to produce silhouettes. Results of our approach are
presented and compared against manually segmented data.

1. Introduction

One of the most desirable qualities of a video surveillance
system ispersistence, or the ability to be effective at all
times (day and night). To meet this ideal, we present a new
background-subtraction technique for object detection that
relies on two complementary bands of the electromagnetic
spectrum, long-wave infrared (thermal) and visible light.

Thermal (FLIR) video cameras detect relative differ-
ences in the amount of thermal energy emitted/reflected
from objects in the scene. These sensors are therefore in-
dependent of illumination, making them more effective than
color cameras under poor lighting conditions. Color sensors
on the other hand are oblivious to temperature differences
in the scene, and are typically more effective than thermal
cameras when objects are at “thermal crossover” (thermal
properties of the object are similar to the surrounding en-
vironment), provided that the scene is well illuminated and
the objects have color signatures different from the back-
ground.

∗Appears inIEEE Workshop on Object Tracking and Classification Be-
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In order to exploit the enhanced potential of using both
sensors, one needs to address the computer vision chal-
lenges that arise in both domains. While color imagery
is beset by the presence of shadows, sudden illumination
changes, and poor nighttime visibility, thermal imagery has
its own unique challenges. The commonly used ferroelec-
tric BST (chopper) thermal sensor yields imagery with a
low signal-to-noise ratio, uncalibrated white-black polarity
changes, and the “halo effect” that appears around very hot
or cold objects. These challenges of thermal imagery have
been largely ignored in the past by algorithms (“hot spot”
techniques) based on the highly limiting assumption that the
object (person) is much hotter than the surrounding environ-
ment. Though this is common in cooler nighttime environ-
ments (or during Winter), it is not always true throughout
the day or for different seasons of the year.

We propose an enhanced contour-based background-
subtraction algorithm using both visible and thermal im-
agery. The approach is well-suited to handle the typical
problems in both domains (e.g., shadows, thermal halos,
and polarity changes). The method does not rely on any
prior shape models or motion information, and therefore
could be particularly useful for bootstrapping more sophis-
ticated tracking techniques. The method is based on our
previous approach [3, 2] for object detection in thermal im-
agery.

The proposed technique assumes that the two image
streams, thermal and visible, are co-registered. Using a
standard background-subtraction technique, we first iden-
tify regions-of-interest (ROIs) in the thermal domain. ROIs
in the visible domain are then obtained by performing color-
and intensity-based background-subtraction within the re-
gions identified in the thermal domain. Within each image
region (thermal and visible treated independently), the in-
put and background gradient information are combined as
to highlight only the boundaries of the foreground object.
The boundaries are then thinned and thresholded to form
binary contour fragments. Contour fragments belonging to
corresponding regions in the thermal and visible domains
are then fused using the combined input gradient informa-
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tion from both sensors. An A* search algorithm constrained
to a local watershed segmentation is then used to complete
and close any contour fragments. Finally, the contours are
flood-filled to make silhouettes (for later use in shape-based
activity analysis).

We demonstrate the approach using a single set of pa-
rameters/thresholds across different thermal and color video
sequences recorded from two different locations on a uni-
versity campus. Based on a set of manually segmented im-
ages, we also quantitatively compare the results obtained by
fusing visible and thermal information against using either
of the two sensors alone.

2. Related Work
Several object detection strategies have been proposed for
the visible domain. Approaches focussing on person de-
tection that do not use background-subtraction methodolo-
gies, include the direct use of wavelets [9], coarse-to-fine
edge matching [5], and motion differencing [16]. Most
of the other object detection methods employ some form
of background-subtraction using a single Gaussian back-
ground model [17] or a multimodal Gaussian formulation
[13]. Other approaches include the three-stage Wallflower
approach [15], a two-stage color and gradient technique [6],
and a Markov chain Monte Carlo approach [19].

Recently, person detection and tracking using thermal
imagery has been explored [1, 8, 18], but these approaches
rely on the highly limiting assumption that the person re-
gion always has a much brighter (hotter) appearance than
the background.

Image fusion techniques have had a long history in vi-
sion. Gradient-based techniques include defining first-order
contrasts in high dimensions [12] and examining gradients
at multiple resolutions [11]. Several region-based multi-
resolution algorithms have been proposed such as the pyra-
mid approaches of [14, 10] and the wavelet-based approach
of [7]. Other biologically motivated techniques [4] have
also been proposed. Most of these fusion techniques aim
at enhancing the information content of the scene, to ease
and enhance human visual analysis. However, the method
we propose is designed specifically to enhance the capabil-
ities of an automatic vision-based detection system.

This paper extends our prior work presented in [3, 2],
and provides a framework for effectively combining infor-
mation from thermal and visible imagery.

3. Initial Region Detection
Since the algorithm requires registered imagery from the
two sensors, we initialize the system by manually selecting
12 corresponding feature points from a pair of thermal and
visible images. A homography matrix created from these

points is used to register the thermal and visible images
(other techniques could also be applied).

We begin the process by identifying localized regions-
of-interest (ROIs) in both domains (thermal and visible).
The background in the thermal domain tends to be more
stable over time (changing slowly with environmental vari-
ations), and standard background-subtraction generally pro-
duces regions that encompass the entire foreground object
(and surrounding halo). Therefore we use the ROIs in the
thermal imagery to cue further processing in both the ther-
mal and visible domains (ROIs in the visible domain will be
extracted within the selected thermal ROIs).

To construct proper mean/variance background models
from images containing foreground objects, we first cap-
ture N images in both the thermal and visible domains.
We begin by computing a median image (Imed from the
N frames) for the thermal images and for the visible in-
tensity images. The statistical background model for each
pixel (in thermal or visible intensity) is created by comput-
ing weightedmeans and variances of theN sampled values

µ(x, y) =
∑N

i=1 wi(x, y) · Ii(x, y)∑N
i=1 wi(x, y)

(1)

σ2(x, y) =
∑N

i=1 wi(x, y) · (Ii(x, y)− µ(x, y))2

N−1
N ·∑N

i=1 wi(x, y)
(2)

where the weightswi(x, y) for a pixel location are used to
minimize the effect of outliers (values far from the median
Imed(x, y)). The weights are computed from a Gaussian
distribution centered atImed(x, y)

wi(x, y) = exp

(
(Ii(x, y)− Imed(x, y))2

−2σ̂2

)
(3)

with a standard deviation̂σ = 5. The fartherIi(x, y) is
from Imed(x, y), the smaller its contribution.

In the thermal domain, once the statistical background
model has been constructed, we obtain the foreground pix-
els for any new input imageI using the squared Maha-
lanobis distance

DT (x, y) =

{
1 (I(x,y)−µ(x,y))2

σ(x,y)2 > 102

0 otherwise
(4)

where the superscriptT denotes the thermal domain.
To extract the thermal ROIs, we apply a 5×5 dilation op-

erator to the background-subtracted imageDT and employ
a connected components algorithm. Any region with a size
less than approximately 40 pixels is discarded.

The image region in the visible domain corresponding
to a thermal ROI might contain object shadows. Hence
color and intensity information are exploitedwithin each

2



(a) (b)

(c) (d)

Figure 1: Contour saliency. (a) Thermal ROI. (b) Input gra-
dient magnitudes. (c) Input-background gradient-difference
magnitudes. (d) CSM.

(thermal) ROI to identify true object regions in the visi-
ble domain (without shadows). The intensity component
is used to identify those regions (DInt) in an input visi-
ble image that are brighter than the background, based on
the squared Mahalanobis distance, with a threshold of 10
SD. The mean/variance model for the intensity component
is computed using Eqns. 1 and 2. The normalized RGB
components are used to detect regions (DCol) in the input
image that are different in color from the background, based
again on the squared Mahalanobis distance with a threshold
of 4 SD. A mean/covariance model of the normalized color-
space is computed directly from the initial set ofN visible
images (without the weights in Eqn. 3). TheDT obtained
from the thermal domain is then used as a mask over the
intensity/color background-subtraction results.

DV = (DInt ∪DCol) ∩DT (5)

where the superscriptV denotes the visible domain. Simi-
lar to the thermal domain, a 5×5 dilation operator is applied
to DV . Having obtainedDV , we make use of only the in-
tensity components of both the thermal and visible domains
for the following contour detection process.

4. Contour Detection
We next examine each ROI in the thermal and visible do-
mains individually in an attempt to extract gradient infor-
mation corresponding only to the foreground object. For
each ROI, we form aContour Saliency Map(CSM) [2],
where the value of each pixel in the CSM represents the
confidence/belief of that pixel belonging to the boundary of
a foreground object.

A CSM is formed by finding the pixel-wise minimum
of the normalized input gradient magnitudes and the nor-

malized input-background gradient-difference magnitudes
within the ROI

CSM = min
(‖〈Ix, Iy〉‖

Max
,
‖〈(Ix −BGx), (Iy −BGy)〉‖

Max

)

(6)
where the normalization factors are the respective max-
imum magnitudes of the input gradients and the input-
background gradient-differences in the ROI. The range of
pixel values in the CSM is [0, 1], with larger values indi-
cating stronger confidence that a pixel belongs to the fore-
ground object boundary.

The motivations for the formulation of the CSM are that
it suppresses 1) large non-object input gradient magnitudes
(as they have small input-background gradient-difference
magnitudes), and 2) large non-object input-background
gradient-difference magnitudes (typically from thermal ha-
los or diffuse visible shadows). Thus, the CSM preserves
the input gradients that are both strongandsignificantly dif-
ferent from the background. The approach is equally appli-
cable to both thermal and visible imagery. We compute the
CSM for all ROIs in both the thermal and visible (intensity)
domains.

We show the CSM construction for a thermal ROI in
Fig. 1. The gradients were calculated using7 × 7 Gaus-
sian derivative masks.

4.1. Thinning
Our next step is to produce a thinned (1-pixel thick con-
tours) representation of the CSM, which we call the tCSM.
As the CSM does not represent a true gradient image, stan-
dard non-maximum suppression methods that look for local
peaks along gradient directions (as used in the Canny edge
detector) cannot be directly applied. However, by the com-
posite nature of the CSM, maxima in the CSM must always
co-occur with maxima in the input gradients. Therefore we
can we use the non-maximum suppression result of thein-
putgradients as a thinning mask for the CSM.

4.2. Thresholding
After thinning, we threshold the tCSM to select the most
salient contour segments. The approach is motivated by ob-
ject properties in the thermal domain, where foreground ob-
ject pixels are either unimodal or multimodal, but the tech-
nique has also shown to be applicable to visible imagery.

Every tCSM is clustered (using K-means) twice, into 2
and 3 saliency groups corresponding to the unimodal and
multimodal cases, and thresholded by setting all pixels in
the lowest cluster to 0 (the remaining pixels are set to 1).
The optimal binary image is then chosen from the two
thresholded tCSMs,B2 andB3. To rank the two binary im-
ages we form a quality measurementQ using theaverage
contour length(ACL) andcoverage(C). The hypothesis
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is that an optimally thresholded tCSM should contain con-
tours of relatively high average length that also “cover” the
ROI sufficiently well.

We compute theACL for a tCSM by averaging the
lengths of the individual contours obtained from a region-
growing procedure applied to the thresholded tCSM. We
use the average distance of the ROI perimeter pixels to the
closest pixel in the thresholded tCSM as a measure of the
coverage (C). Thus the quality of a thresholded imageBi

is evaluated using

Q(Bi) = (1− α) ·
(

ACL(Bi)
max(ACL(B2), ACL(B3))

)

+α ·
(

1− C(Bi)
max(C(B2), C(B3))

)
(7)

The binary image (B2, B3) that maximizesQ is chosen as
the best thresholded result.

The weighting factorα determines the influence of each
factor inQ. Empirically, we found that the weightα should
be a function of the ratio of the twoACLs

r =
min(ACL(B2), ACL(B3))
max(ACL(B2), ACL(B3))

(8)

and, whenr > 0.5, α should be≈ 1, and whenr < 0.5,
α should be≈ 0. We therefore expressα non-linearly as a
sigmoid function centered at 0.5 given by

α =
1

1 + e−β·(r−0.5)
(9)

where the parameterβ controls the sharpness of the non-
linearity (we useβ = 10).

In Fig. 2 (top row) we show a thermal ROI withuni-
modalperson pixels and the competing binary images,B2

and B3, respectively. The resulting quality values are
Q(B2) = 0.993 andQ(B3) = 0.104. Thus, as expected
due to the unimodal nature of the person pixels,B2 was se-
lected as the correct thresholded image. In this example, the
ACL was the dominating factor in the quality evaluation.
In Fig. 2 (bottom row), we show a thermal ROI withmul-
timodalperson pixels and its binary images. The resulting
quality values wereQ(B2) = 0.103 andQ(B3) = 0.255,
and as expected,B3 was correctly selected. The dominant
quality factor here was the coverage, since theACLs were
almost identical.

5. Fusion
We now have binary contour fragments corresponding to the
same image region in both the thermal and the visible do-
mains. Within their respective domains, these contours lie
along pixels with the most salient object gradients. We first

(a) (b) (c)

(d) (e) (f)

Figure 2: Contour selection. Top row: (a) Unimodal ther-
mal ROI. (b)B2 (selected). (c)B3. Bottom row: (d) Multi-
modal thermal ROI. (e)B2. (f) B3 (selected).

combine the information from the two sensors by perform-
ing a simple union of their individual contributions using

tCSMb = tCSMT
b ∪ tCSMV

b (10)

where the subscriptb denotes that the tCSM is binary. Since
our thermal and visible images were registered based on a
limited homography matrix, there is no guarantee that con-
tour fragments belonging to the same edge (extracted indi-
vidually in the two domains) will exactly coincide with each
other. Thus the tCSMb needs to be further aligned such that
only those contour fragments that correspond to gradient
maxima across both domains are preserved.

To achieve this, we first create a combined input gra-
dient map from the foreground gradients of each domain.
Gradient direction and magnitude information at a pixel in
tCSMb is selected from either the thermal or the visible do-
main depending on it being present in tCSMT

b or tCSMV
b . If

present in both, the gradient information at that pixel can be
taken from either domain. Since we now have orientation
and magnitude at every contour pixel in the tCSMb, we ap-
ply a local non-maximum suppression algorithm to perform
a second thinning to better align the tCSMb. This results in
a set of contours that are the most salient in the individual
domains as well asacrossthe domains. In Fig. 3(a) and Fig.
3(b) we show corresponding ROIs in the thermal and visi-
ble domains. Figures 3(c) and (d) show the tCSMb before
and after alignment, respectively.

6. Contour Completion and Closing
While contour information from the two channels are of-
ten complementary, the contour fragments in the combined
tCSMb are still mostly broken and need to becompleted
(i.e., the contours have no gaps) andclosed(i.e., the con-
tour figure is equivalent to the closure of its interior) before
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(a) (b) (c) (d)

Figure 3: Fused binary contours. (a) Thermal ROI. (b) Vis-
ible/intensity ROI. (c) Fused binary contours before align-
ment. (d) Fused binary contours after alignment.

we can apply the flood-fill operation to create silhouettes.
We use the two-stage method first suggested in [3, 2] to per-
form this task. We provide here only a brief description of
the basic algorithm.

The first stage of the approach completes any contour
gaps by using the A* search algorithm from each contour
endpoint to find another contour pixel. The watershed lines
of the input gradient image are used to limit the search space
to only meaningful paths. To eliminate small stray contour
fragments present in the tCSMb that may harm the com-
pletion/closing processes, we extend the approach by first
obtaining a coarser segmentation of the ROI using a basin-
merging algorithm on the watershed partition. We employ
the Student’s t-test with a confidence threshold of 99% to
determine whether the pixels for two adjacent basins in the
ROI are similar (merge) or significantly different (do not
merge). Based on the merged watershed segmentation, the
tCSMb is partitioned into distinct segments that divide pairs
of adjacent basins. A contour segment is removed if its
length is less than 50% of the length of the watershed bor-
der separating the two basins. After the completion process,
the second stage (closing) ensures that every contour in the
image is part of a closed loop (using a joining approach
similar to the prior completion method). Lastly, the result
is flood-filled to produce the silhouettes. We show step-by-
step results for a fragmented contour ROI in Fig. 4.

7. Experiments
To examine our contour-based fusion approach, we tested
the method with six challenging thermal/color video se-
quence pairs recorded from two different locations at
different times-of-day, with different camera gain and
level settings. The number of frames in each sequence
are Sequence-1:2107, Sequence-2:1201, Sequence-3:3399,
Sequence-4:3011, Sequence-5:4061, and Sequence-6:3303.
The thermal sequences were captured using a Raytheon
300D ferroelectric BST thermal sensor core, and a Sony
TRV87 Handycam was used to capture the color sequences.
The image sizes were half-resolution at 320×240. Exam-

(a) (b)

(c) (d)

Figure 4: Contour completion, closing, and flood-filling. (a)
Original tCSMb. (b) Completed contour result (white lines
are new paths). (c) Closed result of (b) (white lines are new
paths). (d) Flood-filled silhouettes.

ple images from this dataset, one from each sequence, are
shown in the top rows of Fig. 6. The sequences were
recorded on the Ohio State University campus, and show
several people, some in groups, moving through the scene.
Sequences 1, 2, and 3 contain regions of dark shadows cast
by the buildings in the background. There are also frequent
(and drastic) illumination changes across the scene. To in-
corporate variations in the thermal domain, the gain/level
settings on the thermal camera were varied across the se-
quences. The images of Sequences 4, 5, and 6, were cap-
tured on a cloudy day, with fairly constant illumination and
soft/diffuse shadows.

To demonstrate the generality and applicability of our
approach, we extracted silhouettes from each pair of se-
quences with the proposed method using thesame param-
eter/threshold settings for all sequences. For each sil-
houette, we computed a contrast value in each of the sepa-
rate domains (thermal, visible) as the ratio of the maximum
input-background intensity difference within the silhouette
region to the full intensity range of the background image.
The final contrast value for each silhouette was the larger of
these two ratios. A final user-selected threshold can be used
to remove any minimal-contrast (noise) regions.

To quantitatively measure the performance of the detec-
tion results, we obtained a manual segmentation of the per-
son regions in 30 image-pairs from our dataset (5 image-
pairs spanning each of the 6 sequences). For each of the 30
image-pairs, 3 people hand-segmented the person regions,
in both the thermal and visible domains. Results of the
hand-segmentation of each pair of images by each person
were combined using an element-wise logical OR operation
to obtain the final manual silhouette image. The median sil-
houette images across the 3 participants were used in the
algorithm evaluation. Six of the median silhouette images
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are shown in Fig. 6.
Using the manually segmented images, we compared re-

sults of the proposed approach under three different input
scenarios: both thermal and visible imagery (T-V), only
thermal imagery (OT), and only visible imagery (OV). The
OT scenario would be similar to nighttime surveillance
when the visible sensor would be ineffective. The back-
ground models for the visible and thermal images were
computed using the technique described in Sect. 3 withN
set to the length of the sequence being processed.

To quantitatively compare the algorithm results across
the three scenarios with the manually segmented images, we
examinedSensitivityand Positive Predictive Value(PPV)
measurements. Sensitivity refers to the fraction of ob-
ject/person pixels that are correctly detected by the algo-
rithm, while PPV represents the fraction of detections that
are in fact object/person pixels. For each scenario, only the
final silhouette contrast threshold was adjusted (the remain-
ing parameters were fixed) over a large range and the thresh-
old yielding the largest sum of the Sensitivity and PPV over
all of the 30 test images was selected. The results showed
quite reasonable silhouettes throughout the sequences. We
show silhouette results obtained by the proposed algorithm
under each scenario on six representative images (from the
set of 30) in Fig. 6.

The Sensitivity and PPV results for the 30 images are
shown in Table 1. Both OT and OV have high PPVs. The
high PPVs obtained in OT demonstrate the efficacy of the
contour-based approach, which enables detection of per-
son information within large thermal halo regions. For OV,
the high PPVs suggest that most shadow regions were suc-
cessfully eliminated. However, incorrect shadow removal
and frequent illumination changes are the main causes of
the low Sensitivity of OV. Urban environments often have
poor color information essential for accurate shadow detec-
tion/removal, and hence some person regions darker than
the background can be eliminated as shadows. Other more
computationally expensive approaches could however be
employed.

The best Sensitivity rate of OV is for Sequence 6, when
conditions were overcast and no prominent shadows were
present. Some image regions (taken from the set of 30) of
the visible domain are shown in the top row of Fig. 5. Fig-
ure 5(a) shows a challenging case where the person appears
dark and is in shadow, Fig. 5(b) shows a person casting a
prominent shadow, and Fig. 5(c) shows another example of
a person walking through a dimly lit region and casting a
shadow.

Thermal images corresponding to the color images of
Fig. 5 (a), (b), and (c) are shown in the second row of the
figure. In Fig. 5(a) the person region appears white hot,
possibly due to the lower temperatures in the shade. Figure
5(b) shows a person region with different thermal charac-

(a) (b) (c)

Figure 5: Three example person regions in visible (top row)
and thermal imagery (middle row), and results after contour
fusing (bottom row).

teristics and Fig. 5(c) shows an example of a person region
close to the thermal cross-over.

The bottom row of Fig. 5 shows the results of the pro-
posed approach, before contour completion. The contour
images are coded in gray and white, corresponding to higher
contrasts in the thermal and visible domains, respectively.
While the thermal domain dominates in Fig. 5(a), the vis-
ible domain provides stronger information for the person’s
legs in Fig. 5(b). In Fig. 5(c) the visible domain is less dom-
inant due to misclassification of person regions as shadows.

The Sensitivity rates of OT are better than OV. This is to
be expected since it is unlikely that exposed parts of the hu-
man body are at thermal cross-over. However, clothing that
insulates body heat (e.g., thick winter jackets), can quickly
attain thermal equilibrium with the surroundings, making
person regions harder to discern in the thermal domain.

The Sensitivity rates for T-V are the best for all of the
sequences, while the PPV is not significantly compromised.
This shows that the proposed algorithm is able to exploit the
complementary nature of the sensors. The average results in
the final column of Table 1 demonstrate that the best overall
combined score of S and PPV is obtained when both visible
and thermal images are used.

8. Summary
We presented a new contour-based method for combin-
ing information from visible and thermal sensors to en-
able persistent background-subtraction in urban scenarios.
Our approach handles the problems typically associated
with thermal imagery produced by common ferroelectric
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BST sensors such as halo artifacts and uncalibrated polarity
switches, using the method initially proposed in [3]. The
problems associated with color imagery, namely shadows
and illumination changes, are handled using standard tech-
niques that rely on the intensity and chromaticity content.

Our approach first used statistical background-
subtraction in the thermal domain to identify local
regions-of-interest containing the foreground object and
the surrounding halo. Color and intensity information was
then used within these regions to extract the corresponding
regions-of-interest (without shadows) in the visible domain.
The input and background gradient information within
each region were then combined into a Contour Saliency
Map (CSM). The CSM was thinned using a non-maximum
suppression mask of the individual input gradients. The
most salient contours were then selected using a threshold-
ing strategy based on competitive clustering. The binary
contours from corresponding regions of the thermal and
visible image were then combined, and thinned using
the input gradient information from both sensors. Any
broken contour fragments were completed and closed using
a watershed-constrained A* search strategy. Lastly, the
contours were flood-filled to produce silhouettes.

Experiments were conducted with six challenging ther-
mal/color video sequences recorded from different loca-
tions and at different times-of-day. A manually segmented
subset of 30 images was used to compare the results of our
algorithm with thermal-only, visible-only, and combined
thermal-visible inputs. Our method, using a single set of pa-
rameters/thresholds, showed promising results. The quanti-
tative results using Sensitivity and Positive Predictive Value
demonstrated the enhanced performance obtained by fusing
visible and thermal imagery with our approach.

To further improve our results, we plan to include mo-
tion information into the saliency map, and employ shaped-
based models for better figure completion and tracking.
Furthermore, we will incorporate an adaptive background
model to test our algorithm over longer durations. As the
approach is not limited to only extracting silhouettes of peo-
ple, we will also examine the method for detecting other
objects of interest (e.g., vehicles and animals).
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Examples of registered thermal and visible image pairs

Manually segmented silhouettes

Proposed method, using both thermal and visible domains

Proposed method, using only thermal domain

Proposed method, using only visible domain

Figure 6: Visual comparison of detection results of the proposed approach across different images and scenarios.
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