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Abstract

This paper addresses the problem of learning and rec-
ognizing human activities of daily living (ADL), which is
an important research issue in building a pervasive and
smart environment. In dealing with ADL, we argue that
it is beneficial to exploit both the inherent hierarchical or-
ganization of the activities and their typical duration. To
this end, we introduce the Switching Hidden Semi-Markov
Model (S-HSMM), a two-layered extension of the hidden
semi-Markov model (HSMM) for the modeling task. Activ-
ities are modeled in the S-HSMM in two ways: the bottom
layer represents atomic activities and their duration using
HSMMs; the top layer represents a sequence of high-level
activities where each high-level activity is made of a se-
quence of atomic activities. We consider two methods for
modeling duration: the classic explicit duration model us-
ing multinomial distribution, and the novel use of the dis-
crete Coxian distribution. In addition, we propose an ef-
fective scheme to detect abnormality without the need for
training on abnormal data. Experimental results show that
the S-HSMM performs better than existing models including
the flat HSMM and the hierarchical hidden Markov model
in both classification and abnormality detection tasks, al-
leviating the need for presegmented training data. Fur-
thermore, our discrete Coxian duration model yields better
computation time and generalization error than the classic
explicit duration model.

1 Introduction

Activity recognition is an important aspect in building
pervasive environments. Our motivating application is the
construction of a safe and smart house for the aged that fa-

cilitates automatic monitoring and supporting its occupants.
There are two main problems in building such a system.
First, the system needs to learn, understand, and automat-
ically build a model of the occupant’s activities of daily
living (ADL) through observing what the occupant usually
does during the day. Second, the system needs to be able
to use its learned knowledge to monitor the person’s cur-
rent activity, and to detect if there is any deviation from the
normal activity patterns and alert the caregiver if necessary.

Traditionally, most activity recognition work has focused
on representing and learning the sequential and tempo-
ral characteristics in activity sequences. This has led to
the widespread use of dynamic models such as the hid-
den Markov model (HMM) [23, 22]. While the HMM is
a simple and efficient model for learning sequential data, its
performance tends to degrade when the range of activities
becomes more complex, or the activities exhibit long-term
temporal dependency that is difficult to deal with under the
Markov assumption.

To get around these limitations, two classes of extension
to the HMM have been proposed. The first extension in-
troduces models that supplement the basic HMM with a hi-
erarchical structure, aiming to exploit the natural hierarchi-
cal organization of human behaviors. Examples of these
models include the Abstract HMM [2], the Hierarchical
HMM [3, 8, 1], and the Layered HMM [18]. Long-term
dependency is captured in these models via the additional
layers designed to model higher-level activities evolving at
slower timescales.

The second extension adopts the semi-Markov model
and introduces its hidden variants [15], including explicit
duration HMMs [20, 21] and segmental HMMs [4]. In
these models, a state is assumed to remain unchanged for
some random duration of time before its transit to a new
state. For each state a duration distribution is given to char-
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acterize the length of its duration. The hidden semi-Markov
model (HSMM) has been an active research topic since the
late 1980s, driven by applications in the field of speech pro-
cessing and recognition. It addresses the violation of the
Markov assumption arising from having states whose du-
ration distributions are nonexponential (or nongeometric if
time is discrete).

A classic approach is to model the duration explicitly
via the multinomial distribution [20, 21, 4, 10]; however, its
drawback is in the large number of free parameters needed,
which requires more training data and incurs extra com-
putation cost in both training and classification. Existing
approaches to overcome this problem typically use a more
compact parametric duration model such as the continuous
gamma distribution [7], or an integer-valued distribution in
the exponential family [11]. All these methods require ad-
ditional approximation when applied to a discrete-time do-
main resulting in longer learning/classification time, and an
approximate numerical method in the M-step of the Expec-
tation Maximization (EM) procedure for parameter reesti-
mation, with complexity depending on the maximum pos-
sible duration length. Using a Coxian distribution for dura-
tion modeling, as proposed in this work, yields an elegant
solution to these problems: when applied to the discrete
domain, its exponential phase components, as shown later,
are simply replaced by the geometric distributions; further-
more, it is flexible enough, yet remains computationally ef-
ficient and avoids the problem of having to determine the
maximum possible duration length in advance.

We argue here that in the domain of modeling ADL, it
is beneficial to exploit both the inherent hierarchical or-
ganization of activities and their typical duration. Despite
the fact that the duration of any activity is unlikely to have
an exponential or geometric distribution (hence requiring
a semi-Markov model), there have been only a few recent
attempts at duration modeling in activity recognition. A
Gaussian duration distribution is used in [19] but parame-
ter learning is not supported, while an explicit multinomial
duration HMM is used in [9]. Previous work [6] has also
recognized the need for combining both the hierarchical
and semi-Markov extensions to form a hierarchical hidden
semi-Markov model. However, there has been no attempt
at formalizing such a model or demonstrating its usefulness
empirically over other existing models.

In this paper, we introduce the Switching Hidden Semi-
Markov Model (S-HSMM), a special case of the hierarchi-
cal model with only two layers. The top layer is a Markov
sequence of switching variables, while the bottom layer is
a sequence of concatenated HSMMs whose parameters are
determined by the switching variable at the top. Thus, the
dynamics and duration parameters of the HSMM at the bot-
tom layer are not time invariant, but are “switched” from
time to time, similar to the way linear Gaussian dynamics

are “switched” in a switching Kalman filter [12].

Mapping to the ADL modeling problem, our intention is
to use the bottom layer in our model to capture atomic activ-
ities such as spending time at the cupboard, stove, fridge, or
moving between these designated places. Several of these
atomic activities then form high-level activities in the house
such as making breakfast, eating breakfast, making coffee,
or washing dishes, each represented by a state at the top
layer in our model. Transition from one top-level state to
another represents sequences of high-level activities that are
typical in a human daily routine. We note that only the du-
ration of the atomic activity is represented in our framework
using the semi-Markov model at the bottom layer. Since a
high-level activity is made of a sequence of atomic activ-
ities, its total duration is implicit from the duration of the
atomic activities.

We provide a formal definition for the S-HSMM includ-
ing two different probabilistic models for the duration using
the multinomial and the discrete Coxian parameterization.
We then develop formalisms for inference and maximum-
likelihood parameter estimation based on the conversion of
this model into an equivalent dynamic Bayesian network
(DBN) [13]. We apply the S-HSMM to the problem of rec-
ognizing high-level activities and detecting abnormalities
in durations of low-level activities in a typical routine se-
quence and compare its performance with two existing ap-
proaches: a flat HSMM without information about activity
hierarchy, and a two-layer hierarchical HMM without du-
ration modeling. Our experimental results demonstrate that
the S-HSMM outperforms these existing models and con-
firm our belief that both hierarchy and duration information
are needed to build accurate activity models in the home.
We also demonstrate that using the discrete Coxian distribu-
tion for duration modeling improves both the computational
time and the generalization error. Furthermore, we derive an
effective method for detecting abnormality in activity dura-
tion based on inverting the learned duration model.

The layout of this paper as follows. Sec.2 develops
the S-HSMM framework including definition, inference and
learning. Sec.3 presents the experimental results for activ-
ity and duration abnormality detection. Finally, our conclu-
sions follow in Sec.4.

2 The
Model

Switching Hidden Semi-Markov

In this section, we provide a formal definition for the S-
HSMM, together with methods for inference and parameter
estimation. We start with a 2-layer hierarchical HMM and
then describe how a semi-Markov extension can be added
to this model. Methods for inference and learning are then
derived by viewing the model as a dynamic Bayesian net-
work.
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2.1 Model definitions and parameters

Let us consider a 2-layer hierarchical HMM [3, 1] de-
fined as follows. The state space is divided into the set of
states at the top level Q* = {1,...,|Q*|} and states at the
bottom level @ = {1,...,|Q|}. Our convention is to use
the letters p, g to refer to elements of @* and ¢, j to refer
to elements of (). The parameters 7, and A7 are the ini-
tial probability and the transition matrix of a Markov chain
defined over the states in Q*. For each top-level state p,
ch(p) C Q@ is the set of children of p (it is possible that
two different parent states might share some common chil-
dren). A transition to p in the top-level Markov chain will
initiate a Markov chain at the bottom level over the states
in ch(p). The parameters of this p-initiated chain are given
by 7? ,Af j’Af, eng Where 7’ A? ’; are the initial and transition
probabilities as usual, and Af, ena 18 the probability that this
chain will terminate after a transition to 7. At each time
point, an observation y in the alphabet Y is generated with
probability B;,, where i is the current state at the bottom
level.

In this 2-layer HHMM, the duration d for which a bot-
tom state ¢ remains the same has a geometric distribution:
d ~ Geom(1 — AL). In activity modeling, geometric distri-
butions are often too restricted to model realistic durations
of activities. Thus, we would like d to follow a more gen-
eral discrete distribution d ~ DP'i(d). To state this in a
more precise way, the p-initiated chain at the bottom level
is now a semi-Markov sequence with 7}, A};, D"*(d) be-
ing the initial, transition, and duration probabilities, respec-
tively (A%, must be zero). The termination and observa-
tion probabilities remain the same as in the 2-layer HHMM.
We term this the Switching Hidden Semi-Markov Model
(S-HSMM) since it can be viewed as the concatenation of
many HSMMs, each initiated by a different “switching”
state p.

2.2 Duration model

The usual choice for D is the multinomial distribution
Mult(per, ... par)s i > 0, 5 = 1 [20, 10]. How-
ever, modeling duration in this way becomes very inefficient
when M, the maximum duration length, is large. Such a sit-
uation is often encountered in activity modeling, especially
when some types of activities are considerably longer than
others. We thus propose the use of the discrete Coxian dis-
tribution [16] as follows.

A discrete Coxian distribution! with parameter y =
M1, par and X = Aq, ..., Ay, denoted by DCox(pu, \)
where 0 < p; < 1,3 = 1,0 < A < 1, is de-
fined as the mixture Mix(g1, S1;. .. ; par, Sar) where S; =

"When considering continuous Coxian, the geometric distribution is
replaced by its continuous counterpart, the exponential distribution.

X; 4+ ...+ X X, are independent and have geometric
distributions X; ~ Geom(});). Note that the Coxian dis-
tribution, as shown later in section 3, will typically has a
much smaller M than the multinomial one. The discrete
Coxian distribution is a member of the phase-typed distri-
bution family and has the following very appealing inter-
pretation. Imagine a left-to-right Markov chain with M + 1
states numbered from 1 to M + 1, with the self transition
parameter A;,; = 1 — A;. The first M states represent the M/
phases, while the last state is absorbing and acts like an end
state. The duration of the state (phase) i is X; ~ Geom()\;).
If we start from state 7, S; = X; + ...+ Xy is the duration
of the Markov chain before the end state is reached. Thus,
DCox(fi, A) is in fact the distribution of the duration of this
constructed Markov chain when p is the initial state dis-
tribution. The discrete Coxian is much more flexible than
the geometric distribution: its probability mass function is
no longer monotonically decreasing and it can have more
than one mode. As a special case, we note that if for all
i, \; = 1 thus X; = 1, we recover the multinomial distri-
bution: DCox(u,1) = Mult(puar, iar—1,- - -, 41). Further,
note that in the Coxian distribution the number of phases
M, as shown later in Sec.3, is typically much smaller than
the maximum length M in the multinomial case.

Using the discrete Coxian distribution, we model the
duration distribution for states at the bottom level in the
S-HSMM as follows. For each p-initiated semi-Markov
sequence, the duration distribution of a child state 7 is
DrPi(d) = DCox(d; uP*, \P"*). The parameters pP* and
AP are M-dimensional vectors where M is a fixed constant
representing the number of phases of the discrete Coxian.
When M = 1, the model becomes identical to a 2-layer
HHMM.

2.3 Dynamic Bayesian Network representation

Following the idea of representing the HHMM as a DBN
[14], Fig. 1 shows a DBN representation of the S-HSMM
for two time slices. At each time slice ¢, a set of vari-
ables V, = {z,,¢,,x,,e,;,m;,y,} is maintained. At the top
level, z, is the current top-level state acting as a switching
variable; ¢, is a boolean-valued variable set to 1 when the
z,-initiated semi-Markov sequence ends at the current time
slice. At the bottom level, z, is the current child state in the
z,-initiated semi-Markov sequence; e, is a boolean-valued
variable set to 1 when z, reaches the end of its duration?.
Since we are using the M -phase discrete Coxian to model
duration, m, represents the current phase of x,. Last, y, is
the observed alphabet.

2In an HSMM, ¢ is the end of duration of the state z, iff x, # Tyyq
However, in an S-HSMM, it is possible that x,, ; is actually part of a
newly initiated HSMM. Thus z, , ; # x,ife, = land ¢, = 0, but we
canhavez, =z, ife, = ¢ = 1.
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Figure 1. DBN representation of the S-HSMM for two time slices.

The parameters of this DBN are constructed from the
parameters of the S-HSMM in a way similar to the hierar-
chical HMM [1, 14]. Intuitively, the “ending” variables €,
and e, act like the context defining how the next time slice
t + 1 can be derived from the current time slice t. When
e, = 0, the same states at the top and bottom levels carry
on to the next time slice. When e, = 1, there are two possi-
bilities: if €, = 0, the same top-level state carries on to the
next time slice, but the semi-Markov sequence at the bottom
level transits to a new child state; if e, = 1, the top-level
state “switches” to the next state, and a new semi-Markov
sequence is initiated at the bottom level.

In addition, the transition of the phase variables m, fol-
lows the parameters of the Coxian duration model. When
e; = 0, we have m;; € {m;, m; + 1} and the probabil-
ity of staying in the same phase is (we use the short-hand
notation s} to denote the event {s; = k}):

m m.o 0 p 0 — _ )\Pst
Pr(m{y, |m{", xy 1,20 1,e;) = 1= form <M
p 0 —
Pr(mt+1|mt axtaztvet) - 1

When e, = 1, the starting phase for a new semi-Markov
sequence is initialized:

Pr(miyy |40, 2 0 er) = pi)!

Finally, e, = 1 only when the m, is in the last phase M:

. 0ifm < M
Pr(et: 1|mt 7xt7211€)) = {)\p,i 1fm—M
M =

2.4 Inference and parameter estimation

When applying the S-HSMM to activity modeling, we
would like to learn the parameters of the S-HSMM from
training data and then use the learned model for classify-
ing, segmenting and detecting abnormality in new activity

sequences. Since we have derived a DBN equivalent to a
given S-HSMM, existing learning and inference methods
for DBNs can be readily applied to these problems [13].

In the inference task, let S, = {z,,¢,,z,,e,,m,} be the
amalgamated hidden state; we are interested in comput-
ing the filtering distribution Pr(S, | y.,), and the smooth-
ing distributions Pr(S; |y,.p) and Pr(S;, S, |y.7). A
range of queries regarding the current high-level activity
(z;), the current atomic activity (x,), and the remaining
duration of the current activity can be answered from the
marginals of these distributions. Using the familiar for-
ward/backward procedures for HMM [20], the complexity
for computing these distributions is O(|Q|*|Q*|?M>T), or
O(|Q]?|Q*|> M?) for each filtering step. However, since the
phase variables are constrained so that m, ; € {m,,m, +
1}, the full joint probability of m, and m, ; can be rep-
resented in just O(M) space instead of O(M?). This
reduces the overall complexity to O(|Q|*|Q*|?MT), or
O(|Q|?|Q*|> M) per filtering step.

On the surface, this complexity term seems to be identi-
cal to the complexity of explicit duration HMMs [10]; how-
ever, note that for the explicit multinomial duration model,
M 1is the same as the maximum possible duration length L,
which in theory can be as large as the length of the obser-
vation sequence 7. For the discrete Coxian duration model,
as we show in section 3, we can choose M < L, and at the
same time avoid the problem of having to determine L in
advance.

In the learning task, we note that the set of parame-
ters for the S-HSMM 6 = {n*, A*, 7w, A, B, u, \} ties to-
gether different parameters for the DBN. The S-HSMM
thus can be viewed as a member of the exponential fam-
ily [5] with parameter . Given a sequence of training
data of the form y,.,, the maximum likelihood parameter
6* = argmax, Pr(y,.1| 0) can be estimated iteratively us-
ing the EM algorithm. This involves first computing the
expected sufficient statistics (ESS) that can be derived from
the smoothing distribution. The reestimated parameters are
then set to the normalized values of the ESS. Due to space
restrictions, we give reestimation formulas only for the pa-
rameters of the discrete Coxian duration model below. In
the reestimation formula for /i7;%, note that e} is true by def-
inition. Further, notice that the number of free parameters
for the Coxian duration model is |Q||@Q*|(2M — 1), which
is usually much smaller than |Q||Q*|(L — 1) for the explicit
duration model.

T-1 m+1
AP _Zt:l Pr(m My ,my 7$t+172’t+17€t | Y1.7,0)

" 23:11 Pr(mi*, xf, 2, €] | yy.7,0)
Z? 1 Pr(emmyﬂmzt | y1.1, 0)

Z;[ VPr(md, 2l 28 |y, 0)
~pyi :Zf:ol Pr(mtjrhfﬂtﬂvztﬂv@tl | 1.7, 0)

2o Pr(x72+17 Z?Jrl? et | Yy.1:0)

,m < M

N
Ay =

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
1063-6919/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 21:11 from IEEE Xplore. Restrictions apply.



3 Experimental Results

We apply the S-HSMM to the problem of learning
and online classification in sequences of activities in the
home. We consider a typical morning routine consisting of
six high-level activities: [1] entering-the-room & making-
breakfast, [2] eating-breakfast, [3] washing-dishes, [4]
making-coffee, [5] reading-morning-newspaper & having-
coffee, and [6] leaving-the-room. The routine generally fol-
lows the sequence [1-2-3-4-5-6] or [1-2-4-5-3-6], depend-
ing on whether the person washes the dishes before or af-
ter having coffee. The kitchen is quantized into 28 square
cells of 1m? each. The six activities and their typical tra-
jectories are shown in Fig. 2. The shaded regular polygons
in the walking path imply that the person does not simply
walk past the cell, but actually spends some time at the re-
gion (the darker the polygons, the longer the time). For
example, in the first activity (entering-the-room & making-
breakfast), the occupant first walks to the fridge from the
kitchen door, and spends some time there (5 - 7s) taking
out the food, as indicated by a dark polygon in cell num-
ber 13, and then goes to the stove and stays there (10 - 15s)
cooking breakfast, as illustrated by a darker polygon in cell
number 5. The scene is captured by four cameras mounted
at the ceiling corners, and a multiple-camera tracking mod-
ule is used to detect movement and return the list of cells
visited by the person. The tracking module sometimes re-
turns a neighboring cell instead of the actual cell occupied
by the person, so an observation model is estimated offline
with manually labeled ground truth [17]. A total of 40 un-
labeled, unsegmented sequences of cells as returned by the
tracking module are used for training, with another 40 se-
quences used for testing. Each sequence consists of six ac-
tivities with total length of approximately 140 time slices.
For evaluation of abnormality detection, we capture 18 ab-
normal sequences where a person spends too little or too
much time at some location. We also assume that the num-
ber of activities (six) and their spatial extent (the estimated
set of cells visited during the activity) are known.

We use the data to train four different models: a Cox-
ian duration S-HSMM, a multinomial explicit duration S-
HSMM, a 2-layer hierarchical HMM, and a multinomial
explicit duration flat HSMM. For the S-HSMM and the
HHMM, we let |Q*| = 6, |Q| = 28, and use the spatial
extent of each activity to define the set of children ch(p) for
each activity p € @Q*. Each bottom-level state ¢ € () thus
represents the atomic activity within the i-th cell such as
passing through, cooking at the stove, eating at dining table
or rummaging through fridge. For the Coxian duration S-
HSMM, the number of phases M is 3, and the initial phase
distribution is fixed to p; = 1,pus = 0,3 = 0; for the
explicit duration S-HSMM, the number of phases M is set
to 35, which is the maximum time span of any individual

2% W

1 sink 2 3 4

O=

—chpb()ard
P
i I

xt(we/. g
9

special

lankmarks
activity
trajectory

read. chair

25 126
A ] 2y

Figure 2. The morning routine consists of activities [1]-[6].

activity (assumed known in advance). The flat HSMM has
only a single layer with || = 28. All these models have a
fixed observation model B obtained offline from the charac-
teristics of the tracking module. Except for the constraints
mentioned here, all other parameters of these models are
initialized randomly.

3.1 Learning and online classification results

Through examining the learned parameters of these
models after training, we find that the S-HSMM variants ad-
equately capture the patterns exhibited in the training data,
while the 2-layer HHMM fails to do so. To illustrate, the left
matrix below is the transition between the six high-level ac-
tivities A;q obtained from the multinomial S-HSMM (the
Coxian S-HSMM yields a similar result), while the right
one is obtained from the 2-layered HHMM. While the S-
HSMM has learned reasonable transitions (from activity /2]
to [3] or [4]; from activity [3] to [4] or [6]), the HHMM
fails to capture these transitions.

0 1 0 0 0 0 0 0 0.05 0.19 0 0.76
0 0 0.8 0.2 0 0 0 0.06 0 0 0.07 0.87
0 0 0 0.8 0 0.2 0 0 0 1 0 0
0 0 0 0 1 0 0 0 0 0 1 0
0 0 0.18 0 0.10 0.72 1 0.65 0 0 0 0.2
1 0 0 0 0 0 8 0 0 0.17 0 0

Fig. 3 shows an example of the duration model learned
by different S-HSMMs for the state “at-stove” at the bot-
tom level associated with activity [4] (making-coffee). The
Coxian model tends to lean to the left as compared with
the multinomial explicit model; however, it does an ade-
quate job at smoothing out the spikes in the multinomial
model. For comparison, we also smooth the multinomial
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duration distribution using a simple moving-window aver-
aging method.
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Figure 3. Duration distribution learned for the atomic activity
‘at-stove’ of the activity [4] (making-coffee) by a multinomial
S-HSMM: (a) before smoothed, (b) after smoothed by moving-
window averaging; and (c) by a 3-phase Coxian S-HSMM.

In the online classification test, we use the learned mod-
els for segmenting and classifying segments of the test se-
quences into the six high-level activities (the flat HSMM
is not included in the test since it cannot model the high-
level activities). The filtering distributions Pr(z,|y,.;) and
the most likely label z, are computed for each time ¢. The
label z, at 95% percent of the length of each true segment is
used to measure the classification accuracy. In addition, if a
segment starts from ¢( and ¢ is the earliest time from which
the label z, remains accurate, then (¢t —ty)/segmentlength
is used as the measure for early detection performance.

The complete result on classification accuracy is pre-
sented in Table 1. The result shows that modeling the du-
ration as ether multinomial or discrete Coxian works rea-
sonably well. While smoothing the multinomial results in a
small improvement, the Coxian model yields the best per-
formance. Since the 2-layer HHMM has not learned an ad-
equate transition model at the high level, it performs very
poorly as expected. In early detection (Table 2), the Cox-
ian S-HSMM performs slightly worse in some cases, but all
the S-HSMM variants are capable of recognizing the activ-
ities earlier than 30% of their life span, which is reasonably
adequate for real deployment. Table 2 also shows that it
takes longer time to decide the occurances of activities [3],
[4] and [6] than the rest. It is because the morning routine
generally follows activities in the order [I-2-3-4-5-6], but
sometimes conforms to [/-2-4-5-3-6], thus, each of activ-
ities [3], [4] and [6] can be reached from more than one
activity, while the others can be reached from only one de-
fined activity.

An example of the online segmentation process is shown

in Fig. 4. While the segmentation obtained by the Coxian S-
HSMM is fairly accurate, the result for the 2-layer HHMM
is rather inconsistent: it correctly detects activities [1], [4]
and [5]; however, it becomes confused during the remaining
major portion of the sequence.

Avg. accuracy of each activity (%)
Act.l | Act2 | Act3 | Act4 | Act5 | Act.6
Cox 100 100 92.5 95 100 97.5
S-mul 100 100 87.5 95 100 97.5
UnS-mul | 100 97.5 87.5 95 100 97.5
HHMM 5 0 0 35 95 0

Table 1. S-HSMM: activity recognition at the top level obtained
with the S-HSMM when the durations are un-smoothed multi-
nomial (UnS-mul), smoothed multinomial (S-mul) and Coxian
(Cox), and with the 2-layer HHMM.

Activity no. | 1 2 3 4 5 6
Cox 0 | 4.67 | 26.85 | 2523 | 4.70 | 29.20
S-mul 0| 482 | 21.73 | 24.12 | 2.29 | 26.05
UnS-mul 0| 519 | 2696 | 24.13 | 2.18 | 27.22

Table 2. S-HSMM: Early Detection rates (%). Notice that activi-
ties with shorter life spans, such as [3],/4] and [6], will naturally
result in higher early detection rates.

In addition to having a favorable performance result, the
Coxian S-HSMM reduces learning and filtering time by a
factor of 4. In our MATLAB implementation, the filter-
ing computation per time slice is approximately 3s for the
multinomial, and only 0.8s for the Coxian.
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Figure 4. Comparing (a) Coxian S-HSMM with (b) 2 layer
HHMM in activity recognition for a sequence comprised of ac-
tivities in order [1-6]. The vertical solid lines are the true segmen-
tation of activities.
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3.2 Duration abnormality detection

Abnormality in the duration of activities, if detected, can
provide an important clue to an alert system. For example,
in the elder care domain, an person staying at a location for
a longer duration than usually observed might indicate the
onset of illness. Since the S-HSMM can capture the normal
patterns in duration spent at each location, it can also be
used to detect abnormality in new activity sequences.

We implement an online abnormality detection scheme
in activity sequence as follows. Suppose that at time ¢, the
online classification algorithm has recognized that p is the
winning activity in the period starting from some ¢,, < .
The decision to classify p as normal or abnormal is based on
Pr(y,,..10")
Pr(ytp:t\t‘)’))
0P is the parameter of the p-initiated semi-Markov sequence
(the learned normal model for p), and 0P is the abnormal
model for p. The abnormal model 67 is the same as 6 ex-
cept that the duration parameter is either replaced by a uni-
form distribution, or is “inverted”, where the inverted distri-
bution of Mult(u;) is Mult(g;) where ji; = %@“_1
A Coxian distribution model can be inverted by first approx-
imating it using a multinomial distribution. The abnormal
model 6P constructed by only inverting the duration model
suffices to capture abnormalities since our aims as men-
tioned previously focus on detecting a more subtle form of
abnormality, which is the abnormalities only in the state du-
ration, and not in the state order, as this form of abnormality
often presents in the elder care domain.

The unseen testing data includes 22 normal sequences,
and 18 sequences in which some activities contain abnor-
mal duration. Fig. 5 shows the two receiver operating char-
acteristic (ROC) curves resulting from hypothesis testing
with the two likelihood ratios: one uses an inverted du-
ration model of the smoothed multinomial S-HSMM, and
the other uses a uniform duration model. Both curves, es-
pecially the inverted S-HSMM’s curve, climb rapidly to-
ward the upper left corner of the graph, indicating high
true positive rates and low false positive rates. The optimal
choice would be around 84%, and 80% true positive rates
for the inverted and uniform S-HSMMs, respectively at the
expense of 10% false positive rate. Hence, our inverted S-
HSMM outperforms the uniform S-HSMM by about 4%.
Given that detection is performed online on unsegmented
sequences, the results obtained are promising.

We also compare the use of the S-HSMMs versus a flat
HSMM in abnormality detection. Since the HSMM can-
not segment the sequence into the six activities, it learns
a normal duration model at each cell location for the en-
tire morning routine. This makes the HSMM less flexible
and unable to isolate the abnormal segments in a sequence.
Fig. 6 shows an example of a sequence where abnormal-

examining the likelihood ratio RP(t) = where
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Figure 5. ROC curves for abnormality detection.

ity occurs in the first two activities, while the situations are
back to normal in the remaining four activities. While the
S-HSMM successfully deals with this scenario, the HSMM
continues to label the sequence as abnormal until the the
sequence is about to end.
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Figure 6. Abnormality detection with (a) the S-HSMM, (b) the flat
HSMM, where all, except for the first two activities, are normal.

4 Conclusions

We have presented the formal foundation and exper-
imental validation for the novel switching hidden semi-
Markov model. The model can learn what an occupant nor-
mally does during the day from unsegmented training data,
and then perform online activity classification, segmenta-
tion, and abnormality detection in sequences. In addition,
the novel use of the discrete Coxian distribution in modeling
duration has resulted in an important improvement in com-
parison with the classic explicit model using multinomial

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)

1063-6919/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 21:11 from IEEE Xplore. Restrictions apply.



distribution. Furthermore, the experiments also demon- [10] C.Mitchell, M. Harper, and L. Jamieson. On the Complexity

strate the superiority of the model over the existing HHMM of Explicit Duration HMMs. IEEE Transactions on Speech

and the flat HSMM in online activity recognition and dura- and Audio Processing, 3(3), May 1999. . .

tion abnormality detection tasks. [11] C D. Mltchell and L. H. Jam'leson. Modehng Duratl'on

In other more complex domains, a full hierarchical in a Hidden Markov Model with the Exponential Family.

. ’ In Proceedings of the 1993 IEEE International Conference

model might be needed, and the framework presented here on Acoustics, Speech, and Signal Processing, pages 11331

can be extended to a full hierarchical hidden semi-Markov 11334, Minneapolis, April 1993,

model. In addition, the use of the Coxian duration model [12] K. Murphy. Learning Switching Kalman Filter Models.

allows us to control the model complexity by varying the Technical report, Campaq Cambridge Research Lab, 1998.

number of phases M of the Coxian. We plan to apply a [13] K. Murphy. Dynamic Bayesian Networks: Representation,

cross-validation technique and other model selection meth- Inference and Learning. PhD thesis, University of California

ods to this interesting problem in the future. at Berkeley, Computer Science Division, 2002.

[14] K. Murphy and M. Paskin. Linear-time inference in Hierar-
chical HMMs. In Advances in Neural Information Process-

Acknowledgement ing Systems, Cambridge, MA, 2001. MIT Press.

[15] K. P. Murphy. Hidden semi-Markov models (HSMMs), un-
.. ublished notes, 2002.

Hung B_m is supported by the Defense Advanced Re- [16] i/l F. Neuts. Matrix-Geometric Solutions in Stochastic Mod-
search Projects Agency (DARPA), through the Department els. The Johns Hopkins University Press, Baltimore and
of the Interior, NBC, Acquisition Services Division, under London, 1981.

Contract No. NBCHDO030010. [17] N.T. Nguyen, S. Venkatesh, G. West, and H. H. Bui. Learn-
ing people movement model from multiple cameras for be-
haviour recognition. In Joint IAPR International Workshops

References on Structural and Syntactical Pattern Recognition and Sta-
tistical Techniques in Pattern Recognition, pages 315-324,

[1] H.H.Bui, D. Q. Phung, and S. Venkatesh. Hierarchical Hid- Lisbon, August 2004.
den Markov Models with General State Hierarchy. In Pro- [18] N. Oliver, E. Horvitz, and A. Garg. Layered Representations
ceedings of the Nineteenth National Conference on Artificial for Human Activity Recognition. In Fourth IEEE Inter-
Intelligence, pages 324-329, San Jose, California, 2004. national Conference on Multimodal Interfaces (ICMI°02),
[2] H. H. Bui, S. Venkatesh, and G. West. Policy Recognition pages 3 — 8, October 2002.
in the Abstract Hidden Markov Model. Journal of Artificial (19] D. J. Patterson, D. Fox, H. Kautz, and M. Philipose. Spo-
Intelligence Research 17, pages 451-499, 2002. rz.ldic State Estimation for General Activity Inferepce. Tech-
[3] S. Fine, Y. Singer, and N. Tishby. The Hierarchical Hid- nical .report, Intel Research Seattle and the University of
den Markov Model: Analysis and Applications. Machine Washlngtf)n, July 2004' .
Learning, 32(1):41-62, 1998. [20] ? R‘dR‘:blnfr. ?Tutf)rlgl on Elgden Mfc\:jkov 1;/[0;’161s an:ii.Se-
41 M. J. F. Gales and S. J. Youne. The Theory of Seemen- ected Applications in Speech Recognition. In Proceedings
“ tal IJ{idde(r}l Markov SM;I)dels. gTechnical Regcm CSUElgED/F- of the IEEE, volume 77, pages 257-286, February 1989.
INFENG/TR133, Cambridge University Engincering De- [21] M. J. Russelll arlld R. K. Moore. Explicit modelllng of state
; occupancy in hidden Markov models for automatic speech
partrne.nt, June 199?,)' . . recognition. In Proceedings of IEEE Conference on Acous-
[5] D. Geiger. Graphical Models and Exponential Families. tics Speech and Signal Processing, pages 5-8, March 1985.
In Proceedings of the 14th Annual Conference on Uncer- [22] T. Starner and A. Pentland. Real-Time American Sign Lan-
tainty in Artificial Intelligence, pages 156-165, San Fran- guage Recognition from Video Using Hidden Markov Mod-
cisco, 1998. els. In Proceedings of SCV’95, pages 265-270, 1995.
[6] H. Kautz, O. Etzioni, D. Fox, and D. Weld. Foundations of [23] J. Yamato, J. Ohya, and K. Ishii. Recognizing human ac-

Assisted Cognition Systems. Technical report, University of
Washington, CSE, March 2003.

[7] S. E. Levinson. Continuously variable duration hidden
Markov models for automatic speech recognition. Computer
Speech and Language, 1(1):2945, March 1986.

[8] S. Luhr, H. H. Bui, S. Venkatesh, and G. West. Recognition
of Human Activity through Hierarchical Stochastic learn-
ing. In International Conference on Pervasive Computing
and Communication, 2003.

[9] S.Luhr, S. Venkatesh, G. West, and H. H. Bui. Duration Ab-
normality Detection in Dequences of Human Activity. Tech-
nical report, Department of Computing, Curtin University of
Technology, May 2004.

tion in time-sequential images using hidden Markov model.
In IEEE Computer Society Conf. on Computer Vision and
Pattern Recognition, pages 379-385, 1992.

Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
1063-6919/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: CURTIN UNIVERSITY OF TECHNOLOGY. Downloaded on October 15, 2009 at 21:11 from IEEE Xplore. Restrictions apply.



