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Abstract

This paper presents a novel and efficient algorithm for
the 3D range to 2D image registration problem in urban
scene settings. Our input is a set of unregistered 3D range
scans and a set of unregistered and uncalibrated 2D im-
ages of the scene. The 3D range scans and 2D images cap-
ture real scenes in extremely high detail. A new automated
algorithm calibrates each 2D image and computes an opti-
mized transformation between the 2D images and 3D range
scans. This transformation is based on a match of 3D with
2D features that maximizes an overlap criterion. Our algo-
rithm attacks the hard 3D range to 2D image registration
problem in a systematic, efficient, and automatic way. Im-
ages captured by a high-resolution 2D camera, that moves
and adjusts freely, are mapped on a centimeter-accurate
3D model of the scene providing photorealistic renderings
of high quality. We present results from experiments in
three different urban settings.

1 Introduction

This paper deals with the problem of automatic pose es-
timation and calibration of a 2D camera with respect to an
acquired geometric 3D model of an urban scene. The pose
estimation is part of a larger system which constructs high-
resolution photorealistic 3D models from unregistered 3D
range scans and uncalibrated 2D color images. Our goal is
to enhance the geometric model with photographic obser-
vations taken from a freely moving 2D camera by automat-
ically recovering the camera’s position and orientation with
respect to the model of the scene and by automatically cali-
brating the camera sensor. We are attacking the stated prob-
lem under the following assumption: the 3D scene contains
3D lines defining two major orthogonal directions, i.e. one
major vertical direction and at least one major horizontal
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direction. This is a valid assumption that represents the
large majority of scenes in urban settings.

Most systems recreating photorealistic models of the en-
vironment by a combination of range and image sensing
[2, 7, 19, 21, 26] solve the 3D range to 2D image regis-
tration problem by fixing the relative position and orien-
tation of the camera with respect to the range sensor (the
two sensors are rigidly attached on the same platform). The
fixed-relative position approach provides a solution that has
the following major limitations: A) The 3D-range and 2D-
image captures occur at the same point in time and from the
same location in space. That leads to a lack of 2D sensing
flexibility, since the limitations of 3D-range sensor posi-
tioning (standoff distance, maximum distance) will cause
constraints on the 2D camera placement. Also, the 2D im-
ages may need to be recaptured due to poor lighting con-
ditions at the time of the 3D-range capture. B) The static
arrangement of 3D and 2D sensors also means that the 2D
camera can not be dynamically adjusted (by changing its
focal length and position) to the requirements of each par-
ticular scene. C) The fixed approach can not handle the
case of mapping historical photographs on the models or
of mapping 2D images captured at a different instant in
time (under different lighting conditions), something that
our method is able to accomplish. In summary, by fixing
the relative position between the 3D-range and 2D-sensors,
we sacrifice the flexibility of 2D-image capturing. We be-
lieve that methods similar to the one provided in this paper
are essential for the accurate photorealistic capture of urban
scenes.

This work is a continuation of our original contribu-
tions on the subject of 3D range to 2D image registration
[22, 23]. In previous work, we provided a solution for au-
tomatically matching 3D and 2D features from the range
and image datasets. The approach involved the utilization
of parallelism and orthogonality constraints that naturally
exist in urban environments. This paper is based on our
original framework, but a number of novel avenues are now
explored. Here are our new contributions:

���
Extraction of

a richer set of 3D features by utilizing data from all reg-



istered 3D range images at once.
�����

Utilization of new
type of higher-order clusters of 3D and 2D features.

�������
Development of a new method for optimizing the inter-
nal camera parameters.

���	�
Development of a new algo-

rithm for matching 3D with 2D features. Here, we would
like to point out that our new algorithm is not a proba-
bilistic RANSAC approach.The whole search space is ef-
ficiently and systematically explored.

�	�
Development of

user-interface for minimal user interaction.
There are many approaches for the solution of pose esti-

mation problem from both point correspondences [17, 20]
and line correspondences [5, 10], when a set of matched
3D and 2D points or lines are known, respectively. In
the early work of [6], the probabilistic RANSAC method
for automatically computing matching 3D and 2D points
was introduced. This approach works well only when the
percentage of outliers (i.e. incorrectly matched pairs) is
small. Works in automated matching of 3D with 2D fea-
tures in context of object recognition and localization in-
cludes [3, 9, 11, 13, 14, 18, 25]. Recently, a scale-invariant
approach in the context of 2D image registration has been
presented in [16]. Teller [1] attacks the 2D image registra-
tion problem in urban environment settings as well. In [27],
Zhao uses SFM and stereo algorithms to map a continuous
video from an aerial source on a 3D urban model. Ikeuchi
[12] presents an automated 3D range to 2D image registra-
tion method that relies on the reflectance range image. In
our work, we attack the 3D range to 2D image registration
problem in an efficient and systematic way (i.e. we do not
rely exclusively on 2D images). In order to achieve this, we
have implemented novel feature extraction and 3D range to
2D image matching techniques.

2 3D Feature Extraction

The first step is to acquire 
 range scans to adequately
cover the 3D scene. The laser-range scanner is Cyrax 2500
[15], an active sensor that emits eye-safe laser beams into
the scene. It is capable of gathering one million 3D points
at a maximum distance of 100 meters. A range scan of an
urban scene is shown in (Fig. 1(a)). Each point is associated
with four values �
������������� ��� , where ����������� ��� is its Carte-
sian coordinates in the scanner’s local coordinate system,
and � is the laser intensity of the returned laser-beam. The
intensity depends on: the material properties of the phys-
ical 3D surface, the distance of the point from the range
sensor, and the orientation of the laser beam with respect to
the local surface normal at the measured 3D point.

Each range scan is processed via an automated segmen-
tation algorithm [23]. A set of major 3D planes and a
set of geometric 3D lines ��� are extracted from each scan��� � �"!#!"!$��
 . The geometric 3D lines are computed at the
intersections between segmented planar regions and at the
borders of the segmented planar regions [23]. The range
scans are registered in the same coordinate system via the
automated range-range feature-based registration method

which is described in [4, 24]. As a result, all range scans
are registered with respect to one selected pivot scan, in the
scene’s coordinate system, namely %�&�' . In addition to the
geometric lines �(� , a set of reflectance 3D lines )�� are ex-
tracted from each 3D range scan. They are produced by
discontinuities of the laser intensity (Fig. 1(a)). We extract
2D lines from the reflectance image using standard image
processing techniques (Canny edge detector followed by
orthogonal regression). The end points of each reflectance

(a) (b)

(c) (d)

(e) (f)

Figure 1. (a) A range-scan of building 1 at a resolution
of one-million 3D points (Cyrax 2500 laser scanner).The
pseudo-color of each point corresponds to the returned
laser intensity. (b) Clustered line sets for building 1 (12
range scans). Three major directions are identified with
different colors: red for vertical, green and blue for two
horizontal directions. (c) Lines on a 3D *,+.-0/ of building
1 (vertical and one horizontal directions are used). (d) Ver-
tical and horizontal 3D parallelepipeds for the 3D *,+1-�/ of
building 1 in 2
354 . (e) A 2D image of building 1. (f) Verti-
cal and horizontal rectangles from the rectified lines which
are extracted from the 2D image in 27684 . Two vanishing
points are used. In images (d) and (f), the matching 3D and
2D features, as extracted by our automated algorithm, are
highlighted in blue.

2D line �:9<;5��9�= � correspond to two 3D points ���<;.���>;?���.; �
and �
�@=1���1=.���?= � which define a geometric line in 3D space.
We call this line a reflectance 3D line because it is com-
puted based on information gathered from the reflectance



image alone.
The combination of all 3D geometric and reflectance

lines provides a very rich representation of the acquired 3D
scene. We use A &�' to represent those lines. Therefore:
A &�' �CB � )ED�GF �(D� , where )HD� and ��D� are the computed
reflectance lines ) � and geometric lines � � of each scan af-
ter their transformations into the scene coordinate system
% &�' ; .

The next step is to cluster the line set A &�' . Each line
in a cluster has the similar orientation as every other line
in the same cluster. One large cluster of vertical 3D lines
and a number of clusters of horizontal 3D lines are ex-
pected to be obtained. We call the cluster of vertical lines
A &�'JI , and the one (or more) clusters of horizontal lines
A &�'LK5M ��A &�'LK#N �"!"!#!"��A &�'OKQP . Figs. 1(b) shows the clustered
sets of 3D geometric and reflectance lines from one of our
experiments.

In all the following algorithms, 3D and 2D lines or fea-
tures are transformed to the coordinate system %SR�T$U�V . %WR�T$U�V
serves as a common intermediate coordinate system of ref-
erence, where the horizontal features are parallel to the x-
axis and the vertical features parallel to the y-axis. That
property makes the implementations of feature matching
and translation computation very efficient (see section 4).
%WR�T$U�V is defined by the three orthogonal axes XY �[Z\� ��]G��]5^ � ,
X_ �`Z ]G� � ��].^ � , Xa �`Z ]G��]G� � ^ � , and the origin which is atZ ]G��]b��].^ � .

Let us consider one pair of vertical and horizontal clus-
ters ��A &�' I ��A &�' KQc � = . The 3D lines of this pair are aligned
to the axes of the coordinate system %dR�T$U�V through a rota-
tion ef&�'(� ��� : ef&�'(� ���g�hZ XY X_ Xa ^ �ji@Z YWkl_WkJa1k ^nm � , where_Wk � direction of A &�' I , a1k � _Wkpo direction of A &�' KQc ,
and YWk � _Wkjoja8k . The transformed 3D lines are fur-
ther clustered into major 3D planes. We call each one of
these clusters a 3D q�r>s$t . Each 3D q�r>s$t is thus defined
by its base-plane and all lines that lie on it. The lines can
be either vertical or horizontal but their distances from the
base-plane should be smaller than a user-defined thresholduwv K .
2.1 Rectangular Parallelepiped Extraction

Our goal is to obtain 3D features from the 3D line sets
that are matchable with 2D features from the 2D color im-
ages. Matching individual 3D lines with individual 2D
lines is impractical due to the large size of the generated
search space. Another problem is that some 3D lines are
not present in the 2D image and vice versa (eg. 2D lines
that are generated by shading discontinuities are not present
in the 3D model of the scene). Therefore, we use higher
level features, i.e. vertical or horizontal 3D rectangular

x
Note that we know the rotational and translational transformation be-

tween range scans from our range-range registration module.y
This pair can be interactively selected by the user via a simple color-

based user interface.

parallelepipeds that can be matched with 2D rectangles ob-
tained from the 2D images.

The rich set of geometric and reflectance lines in a 3D
q�r>s$t (see section 2) are grouped into sets of lines which
define 3D rectangular parallelepipeds & in space. The set
of extracted parallelepipeds for a 3D q�r>s$t is called e{z .
Each parallelepiped |�9~}�e{z contains clusters of nearby
3D lines. There are two types of clusters: vertical (contain-
ing lines parallel to the vertical direction) and horizontal
(containing lines parallel to the horizontal direction). |09 is
thus defined by three attributes: 1) type: vertical or hori-
zontal; 2) tl : top left vertex of |09 ; 3) br : bottom right
vertex of |09 . The computation of the set e{z is done as fol-
lows. Initially, every line on a 3D q�r>s$t becomes a trivial
parallelepiped |09 . This trivial |09 is a rectangle with a fixed
initial width. When projections of two |09 on the 3D q�r>s$t
base-plane overlap, these two |09 are merged into a bigger
|09 which includes all lines in them. This merging process
will continue until there is no overlap between any of the
remaining |09 . See Fig.1(d) for results.

3 2D Feature Extraction, Internal Camera
Calibration, & Rotation Computation

The internal parameters (focal length and principal
point) of the camera sensor can be calculated from a 2D im-
age, if the image contains at least two vanishing points (i.e.
the 3D scene which the camera is viewing has at least two
major scene directions). We use our previously developed
robust methods to generate and cluster 2D lines from a 2D
image [22]. The result is a set of major vanishing points� ; � � = � i#i"i � ��� . Using the methods described in [22] we
can compute the center of projection � ��Z �l� � ��� � ��� ^ �
(effective focal length and principal point expressed in pix-
els) by utilizing three orthogonal vanishing points. In the
case that the scene contains only two vanishing points,
we calculate the center of projection as follows.The two
vanishing points

� ; and
� = are expressed in the camera

coordinate system as:
� ; ��Z �n��; � � �Q�n��; � � ��]5^ � , � = �Z �n��= � � �#���b= � � ��]5^ � . The angle between the directions that

created the vanishing points is given by the clusters of 3D
lines (in most scenarios, it’s 90 degrees). If this angle is �
radians, then �$�8�Q�
� �E� 
������ � ; �?i 
������ � = � , where 
���� �
is the unit vector parallel to vector � . The effective focal
length

���
can be computed from the equation by assuming

an approximate principal point � �J� � �H�.� at the center of the
image. This approximation is further refined at the end of
this section.

The matching of the computed vanishing points with the
extracted major scene directions A &�' I and A &�' KQc can be
�
Note that we are extracting parallelepipeds instead of rectangles (a

rectangle can be viewed as a parallelepiped with zero width). We can not
expect all 3D lines to lie exactly on top of the 3D �.�"��� base-plane; some
of the lines are produced by architectural details on each facade, or by
window frames. Therefore, the extracted linear features of each 3D �5�#���
may lie as far as ����� meters away from the major scene facade.



automatically achieved by using a-priori assumptions about
the position of the camera with respect to the 3D scene,
or by using information about the relative size of matched
clusters. Alternatively, the user can easily pick the correct
matches through a color-based user-interface. The corre-
spondence between vanishing points

� I , � K?� and 3D di-
rections A &�' I , A &�'LK c , provides a solution to the rotation
ef= ' that brings the 2D features in the coordinate system
% R�T$U�V (see Sec.2): ef= ' �[Z XY X_ Xa ^ ��i$Z 
��
�d; o �W= � �d;<�W=$^�m � ,
where �d; � 
�� � I ��� � and ��= � 
����d; o � � K � ��� ��� .
Then all 2D lines can be rectified by applying the rotation
e = ' about � and then by projecting to the image plane.

The center of projection � can be further refined as fol-
lows. By construction, the rectified 2D lines from A = ' I
and A = 'OK c should be parallel to the �f��r,� ��� and ����r,� ���
of % R�T$U�V , respectively (Fig. 1(f)). But if the estimation of
� is not accurate, the angle between the actual direction of
a rectified line and its expected direction will not be zero.
This per-line computed angle is considered to be an error
due to an inaccurate � computation. The sum of the er-
rors of all lines,called   , is used as a criterion to compute a
more accurate center of projection as follows. We consider
all possible centers of projections in a small spatial neigh-
borhood around the initially computed center � . Search-
ing for the best center of projection � R�V�U v is done sequen-
tially in a spiral manner in the neighborhood of the initial
� . � R�V�U v is the first center of projection that produces an
angle error   less than a user-defined threshold   v K (nor-
mally between 2 to 5 degrees). Then we have the camera
calibration matrix ¡ as ([8]):

¡ �
¢¢¢¢¢¢
��� � R�V�U v ��� ] � � R�V�U v ���
] ��� � R�V�U v ��� � � R�V�U v ���
] ] �

¢¢¢¢¢¢
The same method is applied to extract horizontal and

vertical rectangular 2D features e � as the one used to ex-
tract 3D features e{z in Sec.2.1, except that the extracted
2D features has a zero depth, i.e. they are rectangles instead
of parallelepipeds.

4 Translation Computation

In this section we present the algorithm that automati-
cally computes the translation between the scene %�&�' and
the camera %�£�T¥¤JV�¦0T coordinate systems (Fig.2). From the
previous steps, we have the sets of 3D parallelepipeds efz
and 2D rectangles e � ready to be matched in % R�T$U�V . The
rotation e that brings % &�' to % £�T¥¤JV�¦0T is e � ef= ' m ; i e &�' .
The two rotational components e &�' and ef= ' were com-
puted in sections 2 and 3, respectively.

In order to compute the translation between the scene
and camera coordinate systems, we need to identify § 3D
parallelepipeds |09 (see Fig.1(d) for an example set of 3D
features) that match § 2D rectangles |5s (see Fig.1(f) for
an example set of 2D features). It is important to note that

we can only match horizontal 3D features with horizontal
2D features, and vertical 3D features with vertical 2D fea-
tures. The problem is thus reduced to a 2D pattern match-
ing problem. A single matched |09 with a |5s is not able

Features Matching & Translation Computation

3D Rectangular Parallelepipeds (RP)) 2D Rectangles (RC))

  Get 2 feature pairs  ((rp1, rc1))  and  ((rp2, rc2))

  Compute translation  tt(rp1, rc1)

Compute translation  tt(rp2, rc2)

Compute overlap  OO(rp2, rc2) 
by applying  tt(rp1, rc1)  

Compute overlap  OO(rp1, rc1)  
by applying  tt(rp2, rc2)  

Final translation  tt  is the weighted 
average of  tt(rp1, rc1)    and  

tt(rp2, rc2)..  Store  tt  in list  TT

OO(rp2, rc2) > OOth  

OO(rp1, rc1) > OOth  

OO(rp2, rc2) < OOth  

OO(rp1, rc1) < OOth  

No more pairs

Grade each  ttii  in  TT  

GGii > GGth

Optimization of  ttii

Final Translations

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

Figure 2. Translation computation algorithm outline.

to provide the correct translation as our experiments have
shown. This is due to the nature of our extracted features.
However, two correctly matched |09 with 2D |5s are able
to provide us a very accurate translation as will be shown
in the algorithm to follow. Thus our algorithm searches
through all pairs of possible matches systematically. Note

that we consider all �
¨ K© � o � 
 K© �<ª �

¨ I© � o � 
 I© �
possible matched pairs (where

¨ K � ¨ I are the number of
horizontal and vertical |09 , respectively, and 
 K ��
 I are the
number of horizontal and vertical |5s , respectively). This is
a large search space, but it can be efficiently explored as
our results show (see Sec.5).

Our algorithm consists of six steps (Fig.2). In the first
four steps, a list of candidate translations are being com-
puted from the exploration of all possible matches between
pairs of 3D parallelepipeds and pairs of 2D rectangles. The
fifth step determines the grades of each candidate transla-
tions based on the number of matching 3D and 2D feature
pairs produced by this translation. The candidates with
grades smaller than a threshold will be eliminated. The
sixth step searches in the neighborhood of each remain-
ing candidate translation for the one that maximizes the
amount of overlap. Thus, for each candidate, a final op-
timized translation «5¬�­ v is computed.

For a 3D feature (parallelepiped) pair ®?¯ �
�
|09 ; ��|�9 = � }°e{z o efz , and a 2D feature (rectangle) pair



®5± � �
|5s ; ��|5s = � }²e � o e � , c is defined as the centroid
of a 3D or 2D feature, while ³�&�' is the base-plane of 3D
q�r>s$t where ®?¯ lie on and ³ = ' is the 2D image plane (note
that these planes are parallel to the x-y plane of the %dR�T$U�V
coordinate system).

(Step 1) Consider the next pair of 3D features ®Q¯ �
�
|09 ; ��|�9 = � to match the pair of 2D features ®5± � �
|5s5;5��|5s$= � .
All possible matching pairs are considered. Many of them
can be discarded as shown in the following steps.

(Step 2) We assume that the 3D feature |�9 ; matches
the 2D feature |5s ; . Then the translation vector «8´ ¦ ­ M�µ ¦0£ M�¶
that brings the centroids of both features into alignment
should satisfy the following equation (see Fig.3): ±>¦0£ M �
¡ Z�·�¸ «1´ ¦ ­ M µ ¦�£ M ¶ ^?±1¦ ­ M , where

·
is identity matrix. «8´ ¦ ­ M µ ¦0£ M ¶

is computed as follows. First, we compute the ratio 9�¹ ���tQ
W¦ ­ M�ntQ
W¦�£ M , where ��tQ
 indicates length of the feature (horizon-

tal or vertical length depending on feature’s type). This

lenrpi

3D Feature rpi

ccrpi

dd

lenrci

ccrci 2D Feature rci

tt (rpi ,rci)CCbest

YY

XX

ZZ

SSbase

  ππ  2D

Figure 3. Translation computation.

ratio reflects the scale that should be applied to the 2D
image feature (measured in pixels), so that it matches the
3D feature (measured in meters). Then, considering the
line segment from the centroid of the 2D feature ±>¦0£ M to
the center of projection �ºR�V�U v , we find the point d so that»�¼¾½
¿�À�Á m�Â »»�¼ ½
¿nÀnÁ m@Ã�Ä�Å�Æ M »

� 9�¹ , where Ç¥�HÇ denotes the norm of vec-
tor � . The translation vector «8´ ¦ ­ M0µ ¦�£ M�¶ can now computed
as follows (Fig.3): «8´ ¦ ­ M¥µ ¦�£ M�¶ �ÉÈ �Ê± ¦0£ M . This transla-
tion vector translates the 3D feature |09W; (note that |09<; is
already expressed in the common coordinate system % R�T$U�V )
into the unique position that makes its projection to the im-
age plane ³ = ' have the following properties: A) The length
of the projection of |09 ; is exactly the same as the length of
|5s ; , and B) The centroid of |09 ; is projected exactly on the
centroid of |5s ; . The estimation of this translation vector
can be performed very efficiently in the coordinate system
%WR�T$U�V . This is one of the factors that attributes to the effi-
ciency of our algorithm.

The just obtained translation brings the two features |09 ;
and |5s ; into alignment (the center of |09 ; is projected on
the center of |?sQ; ). A correct translation will also bring |�9�=
and |5s$= into alignment if these 2 features are corresponding
to each other. By applying the translation «,´ ¦ ­ M¥µ ¦�£ M�¶ to |09 = ,
and projecting it onto ³@= ' , we produce a 2D feature called

|09 = ­ (this is a 2D rectangle): |09 = ­ �ÌË ��|09 = ��«.´ ¦ ­ M µ ¦0£ M ¶ � ,
where

Ë
is the function that projects 3D features onto ³ = ' .

This is achieved by projecting two translated diagonal ver-
tices (top left and bottom right) of the 3D feature onto ³ = '
and then generating 2D rectangle based on the two pro-
jected vertices. The percentage of overlap among the fea-
tures |09�= ­ and |5s$= is denoted as ÍÎ´ ¦ ­ N�Ï µ ¦�£ N�¶ . If this overlap
is larger than a user-defined threshold Í v K (normally 80%),
we proceed to the next step; otherwise we go back to step
1, and have the next pair of features to be matched.

(Step 3) Step 2 is repeated for the computation «8´ ¦ ­ N¥µ ¦0£ N�¶
(we now assume that |09 = matches |5s = ). If the over-
lap Í�´ ¦ ­ M�Ï µ ¦0£ M�¶ is larger than Í v K as well, the two pairs
�
®?¯���®5± � }�e{z = o e � = are considered as matching can-
didates (otherwise the next pair of matches is considered at
step 1).

Figure 4. Camera configurations with respect to texture-
mapped 3D models of buildings 1 (top) and 3 (bottom).
The white dots are the locations of the automatically recov-
ered cameras, and the green axes are the sensing directions
of the cameras. For building 1, nine ground-level cam-
eras are recovered. Two images are shot from balconies
of nearby buildings. For buildings 2 and 3, six images are
recovered respectively.

(Step 4) The final translation «1´\Ð�Ñ µ Ð Ã ¶ is computed by a
weighted average of the component translations: «,´ÒÐ�Ñ µ Ð Ã ¶

�
Ó ; i «1´ ¦ ­ M µ ¦0£ M ¶ ª Ó = i «.´ ¦ ­ N µ ¦ ­ N ¶ , where the weight is the
overlap area ratio (i.e. the bigger the relative overlap, the
bigger the weight): Ó ; � ÔSÕ Å Ï N Ï?Ö Å�Æ N�×ÔdÕ Å Ï M Ï Ö Å�Æ M ×
Ø ÔSÕ Å Ï N Ï Ö Å�Æ N × �

Ó = �Ù� �Ó ; .
(Step 5) By repeating steps 1 through 4 on all possible

pairs of 3D and 2D feature pairs �
®?¯l��®5± � }°e{z = o e � = ,
the translations of all matching candidates are computed



and stored in a set Ú . Each translation «?� in Ú is applied
to all |09Ù}Ûefz . The translated |09 are then projected on
³ = ' , producing rectangles |09 ­ . Every pair �
|09 ­ ��|?s � with
overlap larger than Í v K is stored in the set ÜÝ� . The total
number of the pairs in ÜÝ� is defined as the grade Þ�� of the
translation « � . « � in Ú are then sorted based on Þ � , and the
translations with grade less than a user-defined threshold
Þ v K are deleted from the list ß . This increases the efficiency,
without sacrificing the accuracy of the algorithm.

(Step 6) Each translation « � in the list Ú can be op-
timized even further. Our goal is to maximize the over-
lap between matching pairs produced by each translation
« � (the set of matching features for each translation has
been stored in ÜÌ� – see previous step). We consider a
neighborhood àá� of all possible translations around «?� . For
each one of the translations in this neighborhood, the over-
lap between the matching features in Üâ� is calculated.
The translation in àá� that produces the maximum over-
lap is chosen as our final optimum result for «?� : « ¬�­ v � ���O�ãåä5æ Ä0ç#è c ��é ´ ¦ ­ µ ¦0£ ¶ ç1ê c Í�´\ëH´ ¦ ­ µ Ä ¶�µ ¦�£ ¶

�
.

As a result, the user is presented with a sorted list of
« ¬�­ v � ��� . In most cases, the translation with the highest
grade (i.e. largest number of matching features) is the one
that produces the best result. Otherwise, user can select
the 2nd, 3rd or other listed translation. This selection is
extremely simple, since user can instantly assess the com-
puted translation by visually inspecting the computed tex-
ture mapped result.

Finally, a point Y &�' can be transformed from the 3D
scene coordinate system to a point Y £�T¥¤ in the 2D camera
coordinate system via:

Y £�T¥¤ � ¡ Z e ¸ ��ef= ' m ; «Q¬�­ v � ����� ^ Y &�'

5 Results and Conclusions

We performed experiments in three urban settings
(buildings 1, 2 and 3). Buildings 1 and 2 are regular urban
structures with many windows and large planes (a photo-
graph of building 1 is shown in Fig.1(a)), while building 3
has a more complicated structure (as shown in Fig.5 bottom
two images). A number of 3D range scans and 2D images
were acquired for each building. After the range scans are
registered on the same coordinate system, the 2D images
are automatically calibrated and registered on the 3D model
of each acquired structure. Fig.4 presents overviews of our
texture-mapping results and automatically recovered cam-
era configurations. We have not performed any intelligent
blending of overlapping 2D images, something that will be
part of our future work. Finally, detailed textured maps
are shown in Figs.5. Two of the automated transformations
computed from building 3 required a very small correction
ì
The grade threshold í �7� is computed as í �7�lî í1ï¾ð\ñ�òOówônõöí ïS÷¥ø@ùí1ï¾ð\ñ,ú , where í ïS÷¥ø and í1ï¾ðÒñ are the maximum and minimum grades,ûQü ýHþ ó þ ÿ¥ü û .

Figure 5. Details of texture-maps for buildings 1 (top left
image), 2 (top right) and 3 (bottom two images) verifies
the high accuracy of the automated algorithm. Note, that
for building 3 we show results using images taken under
different lighting conditions.



(few pixels of translational adjustment) by a human user
through our easy to use user interface.

The performance of our 3D range to 2D image registra-
tion algorithm is shown in Table 1. The following abbrevia-
tions are being used. FP: Number of feature pairs (number

Table 1. Building 1 (11 images, 12 3D scans) – Building
2 (6 images, 3 range scans) – Building 3 (6 images, 4 range
scans)

FP(
��� o ©�� ) CM G OP(%) RDT(%) T�8��� o � ]1] 25 14 91.23 0.21 42 sec��� o	� � 9 13 95.67 0.49 2 sec�8��� o
��� 28 17 93.45 0.43 11 sec�8��� o ��� � 8 20 92.34 0.04 85 sec�8��� o � ]�� 15 9 91.23 0.12 44 sec�8��� o ��� 19 11 92.05 0.37 4 sec�8��� o ��� 7 32 94.56 0.08 21 sec�8��� o �8��� 20 18 87.14 0.15 55 sec� ��o ©�� 1 16 98.40 0.1 0.6 sec�8��� o ��� 14 16 93.78 0.17 18 sec� ��o	��
 9 5 89.31 0.43 1.5 sec
� © o�� ] 4 13 92.79 0.09 4 sec
� � o	��� 155 18 96.13 4.4 35 sec
� � o � � 153 22 90.17 5.2 38 sec
� © o�� � 8 8 86.38 0.19 5 sec
� © o � � 4 9 93.14 0.12 3 sec
� © o	� � 18 7 92.23 0.61 4 sec

� � o �8] 12 8 87.62 0.29 6 sec
� � o�� � 18 8 92.45 0.31 10 sec
� � o � 
 18 11 94.34 0.69 3 sec
� � o � � 12 11 91.74 0.47 2 sec
� � o �	� 23 7 88.16 0.48 9 sec
� � o ��� 7 8 93.51 0.31 1 sec

of 3D features o number 2D features), CM: Number of
candidate translations in list Ú after thresholding (see sixth
step of algorithm of Sec. 4), G: Grade of optimum trans-
lation «?¬�­ v (number of matching features), OP: Amount of
overlap among matching features (see fifth step of algo-
rithm of Sec. 4), RDT: Percentage of candidate translations
(CM) over all possible translations generated by matches
of 3D and 2D features, T: Execution time of the automated
registration algorithm on a 2GHz Pentium machine. The
fast execution time is based on the large reduction of can-
didate translations (see RDT column).

In this paper, we presented a novel and efficient algo-
rithm for the 3D range to 2D image registration problem in
urban scene settings. Our input is a set of 3D range scans
and a set of 2D images. The range scans are abstracted
into sets of 3D lines, followed by three clustering steps.
As a result, sets of 3D features are extracted. For each
2D image, features are generated via vanishing point ex-
traction, camera calibration and rectification steps. Finally,

an automated algorithm computes an optimized transfor-
mation between the 2D images and 3D range scans. This
transformation is based on a match of 3D with 2D features
that maximizes an overlap criterion. Our algorithm attacks
the hard 3D range to 2D image registration problem in a
systematic, efficient, and automatic way, in the context of
urban scenes. Images captured by a high-resolution 2D
camera, which moves and adjusts freely, are mapped on a
centimeter-accurate 3D model of the scene providing pho-
torealistic renderings of high quality.
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