
Hierarchical Procrustes Matching for Shape Retrieval

Graham McNeill, Sethu Vijayakumar

Institute of Perception, Action and Behavior

School of Informatics, University of Edinburgh, Edinburgh, UK. EH9 3JZ

G.J.McNeill-2@sms.ed.ac.uk, sethu.vijayakumar@ed.ac.uk

Abstract

We introduce Hierarchical Procrustes Matching (HPM),

a segment-based shape matching algorithm which avoids

problems associated with purely global or local methods

and performs well on benchmark shape retrieval tests. The

simplicity of the shape representation leads to a power-

ful matching algorithm which incorporates intuitive ideas

about the perceptual nature of shape while being compu-

tationally efficient. This includes the ability to match sim-

ilar parts even when they occur at different scales or po-

sitions. While comparison of multiscale shape representa-

tions is typically based on specific features, HPM avoids the

need to extract such features. The hierarchical structure of

the algorithm captures the appealing notion that matching

should proceed in a global to local direction.

1. Introduction

In many object recognition problems, the classes are

most easily disambiguated on the basis of shape - as op-

posed to properties such as color or texture. However,

defining a shape descriptor and associated matching algo-

rithm which is both generic and discriminative is a difficult

challenge. Hierarchical Procrustes Matching (HPM) ap-

proximates the perceptual similarity between two shapes by

matching progressively smaller boundary segments. Longer

segments that have already been matched provide initial

matches for the shorter segments, which can then slide and

stretch/contract in order to find the best matches at this

smaller scale. The individual segment matches reflect the

similarity of features that are relevant at the current length.

Rather than working with segments of a particular type (e.g.

convex segments), HPM essentially approximates a map-

ping which takes any segment of one shape to its coun-

terpart on the other shape. In the next section we briefly

review the relevant literature and explain the motivation be-

hind HPM. The algorithm is described in detail in Sec. 3

and evaluated on a range of benchmark data sets in Sec. 4.

2. Motivation and Related Work

Simple, global point matching methods [20, 14] work

surprisingly well in many shape retrieval and classification

tasks. These find a single linear transformation which best

aligns one point set with the other. This approach fails when

more complex transformations are present such as indepen-

dent movement of parts or smooth deformations (Fig. 1).

To deal with such cases, a more local or nonlinear approach

is needed (e.g. [5, 17]). However, techniques which focus

on local shape differences suffer from other problems. For

example, the curve alignment algorithm of Sebastian et al.

[17] remains effective in the presence of smooth deforma-

tions and, to some extent, part articulation. However, the

authors note that their algorithm regards a handwritten “6”

and “U” as similar, since the curvature of the two shapes

only differs at a few points.

The above discussion indicates that even in apparently

simple cases, there can be a large discrepancy between a

perceived difference in shape and the approximation of this

difference from a global or local perspective. It therefore

seems natural to investigate whether a generic shape match-

ing algorithm should lie somewhere between these two ex-

tremes – a neighborhood-based approach. More generally,

one can imagine an algorithm that is not restricted to com-

parisons based on a single neighborhood size. We realize

this idea by considering segments of different lengths. HPM

is a multiscale approach that investigates shape matching at

a variety of different positions (segment start points) and

scales (segment lengths). In shape matching, ‘scale’ can re-

late to a number of related ideas: frequency (e.g. wavelets

[6]), the degree of filtering that the shape has undergone

[7, 16], or the resolution at which the shape is sampled

[2]. Here, the notion of scale arises through the match-

ing process (rather than just the shape representation itself)

since the least squares criteria used to assess segment sim-

ilarity is dominated by the ‘global’ shape of the segment.

Many techniques match shapes based on specific fea-

tures, such as points of zero curvature [16], points of mini-

mum curvature [7], and convex/concave segments [15, 11].



(a) (c)(b)

Figure 1. Examples of shapes matched using GPM (linear interpo-

lation between points is used for clarity). The filled circles show

corresponding points. In all cases, the correct correspondence is

found, but a good alignment is not possible.

In contrast, HPM compares segments explicitly – rather

than comparing very specific features, and does not restrict

itself to working with segments of a particular type.

Corresponding regions of shapes often appear at slightly

different scales and positions. For example, the dorsal fin

of a fish may be both larger and further forward than its

counterpart on a second fish. Matching algorithms must

be flexible enough to allow for this phenomenon. HPM

achieves this by matching in a global to local direction.

Longer segments that have already been matched provide

initial matches for the shorter segments, which can then

slide and stretch/contract in order to find the best matches

at this smaller scale. In the context of our example, if we

have already aligned the backs of the two fish, it means that

we have an approximate alignment for the fins. We then

search in the neighborhood of this estimate (i.e. over seg-

ments with start points and lengths close to this estimate)

to find the best match. To prevent the algorithm matching

fins that are too far apart (the more candidate segments that

are considered, the greater the chances of finding a spurious

match), we can penalize deviations from the initial predic-

tion (Sec. 3.4.2), or simply use the neighborhood size (Sec.

3.4.1). We now describe the HPM algorithm in detail.

3. Hierarchical Procrustes Matching (HPM)

The first step is to specify how two shapes are compared

when the correct correspondence is known. In this paper

we use Procrustes matching, the main concepts of which

are summarized below.

3.1. Procrustes Matching

Assume that we have two objects, each represented by n
2D points: U = (U1, . . .UN )T , V = (V1, . . .VN )T ∈
RN×2, and that the point-to-point correspondence is known

to be U1 ↔ V1,U2 ↔ V2, . . . Intuitively, the shape of

an object should not change under translation, rotation or

scaling, so a reasonable measure of similarity between U

and V is the minimum sum of squared distances over cor-

responding point pairs:

dP (U,V) ≡ min
a,t,Γ

1

N

N∑
n=1

‖Vn − (aΓUn + t)‖2, (1)

where a is a scale parameter, t ∈ R2 is a translation vec-

tor and Γ is a 2D rotation matrix. We refer to the value

dP (U,V) as the Procrustes distance (PD). It is common to

use a normalized version of the PD where points sets are

first scaled to have unit size [8]. In this paper, we will nor-

malize the boundary length of the polygon associated with

V and then transform U to match V, so the PD used here is

not symmetric in its arguments. For 2D shapes, dP (U,V)
can be calculated using a simple closed form expression as

follows [8]. Represent each 2D point as a complex num-

ber, Vn = (xn, yn) → xn + iyn = wn ∈ C. Then,

V → w and U → z ∈ CN . After centering w and z

so that
∑N

n=1 wn =
∑N

n=1 zn = 0, the PD between U and

V is given by

dP (U,V) = (w∗
w − (w∗

zz
∗
w)/z∗z)/N. (2)

The PD is used to measure the similarity of segments (or

entire shapes) throughout this paper.

3.2. Global Matching

Given two shapes U = (U1, . . . ,UN )T and V =
(V1, . . .VN )T , we find a global correspondence between

them using the technique described in [14]. This finds a 1-1

correspondence between the two point sets, under the as-

sumption that the cyclic ordering of the indices is respected

by the correspondence. For example, U12 ↔ V78,U13 ↔
V79, . . . is a valid correspondence. There are N valid corre-

spondences. We compute the N PDs associated with these

and the N PDs associated with the reflection of U, and then

select the correspondence with the smallest PD. This tech-

nique is referred to as Global Procrustes Matching (GPM)

throughout. The global alignments shown in Fig. 1 were

found using this approach. Note that GPM is very fast since

the number of correspondences to check is linear in N , and

PDs can be computed efficiently (eq.(2)). The PD asso-

ciated with GPM can be used as similarity score between

shapes and has been shown to be moderately effective in

shape retrieval tests [14].

HPM requires a roughly correct global alignment, and

it may seem somewhat risky to use a technique as simple

as GPM to find this alignment. However, the high perfor-

mance of HPM on retrieval tasks (Sec. 4) (and in particu-

lar, the increase in performance over GPM) suggests that

GPM generally does find the correct correspondence – even

with difficult examples (Fig. 1). The problem with GPM

is that the PD does not approximate perceptual similarity

accurately enough to retrieve the correct shapes.



Algorithm 1 Pseudocode for HPM.

1: Initialize: match U and V using GPM

2: for segment lengths: l = 50, 25, 12.5 do

3: for segments of U: m = 1, . . ., # segs. at len. l do

4: compute the predicted match of seg. m based on

the matches at length l-1
5: define neighborhood around the predicted match

6: compute PD between seg. m and each neighbor-

hood seg. of V

7: end for

8: Select matches and get total score for len. l based on:

i. PD between segs. and candidate matches

ii. deviation from match predicted by l-1
iii. deviation from match predicted by neighbors

9: end for

10: shape similarity = wtd. sum of scores at each length

3.3. Segment Representation

We assume that U and V are 2D shapes, each repre-

sented by N ordered points taken at equal intervals along

their respective closed boundaries. The shapes are normal-

ized so that the polygons formed by their points have bound-

ary length equal to 100. A global correspondence between

U and V is found using GPM (Sec. 3.2) and points are re-

labeled such that V1 corresponds to U1. A segment of the

U polygon is denoted by U(sU , lU ), where sU is the seg-

ment’s start point and lU its length. A segment is repre-

sented by k equally spaced points taken from the relevant

segment of the complete polygon. Note that a segment of

any length and start point (i.e. sU and lU need not be natural

numbers) can be represented by any number of points, k,

by re-sampling from the polygon in this way. A segment of

length l is represented by k ≃ l
100N points – i.e. the orig-

inal sampling frequency of the boundary is approximately

maintained.

To match U to V, we consider the full shape U, four seg-

ments of length 50, eight of length 25 and sixteen of length

12.5. At each length, neighboring segments overlap by one

half. Each of these segments will, at some stage, be com-

pared to multiple segments of V which have different start

points and lengths. If the segment of U has k points, the

segments on Y it is compared to will also be represented

by k points, enabling the PD between segments to be com-

puted – the points are indexed in order of their position on

the segment so the correspondence is known.

3.4. Hierarchical Matching

Having described how the similarity of any pair of k-

point shapes is computed (Sec. 3.1), how the global match

is found (Sec. 3.2), and how segments are represented (Sec.

3.3), we are now in a position to describe the HPM algo-

rithm (summarized in Algorithm 1). Two variants of HPM

are considered. The first prevents invalid segment matches

by limiting the permitted change in start point and length.

The second uses a softer approach which requires dynamic

programming.

3.4.1 Fast Method

Consider the task of matching the segment of U of length

50 and start point 0, U(0, 50). The global correspondence

‘predicts’ that U(0, 50) should be matched to V(0, 50). As

discussed in Sec. 2, the segment U(0, 50) should be al-

lowed to stretch/contract and slide along the boundary of

V, but only to a limited extent. Formally, U(0, 50) must be

matched to a segment V(0 ± δs, 50 ± δl), where the maxi-

mum values of δs and δl determine the permitted slide and

stretch/contraction, and the sums in the arguments are taken

modulo 100. In practice, we define a 7×7 grid centered at

(0, 50) and compute the PD between U(0, 50) and the seg-

ments of V associated with the grid points (Alg. 1, steps

4-6). Segment U(0, 50) is then matched with whichever

segment of V is closest in terms of the PD (Alg. 1, step 8

– only 8(i) is used here; 8(i)-(iii) are used for the extended

method described in Sec. 3.4.2). The same approach is used

to match the other segments of length 50. The matched seg-

ments of length 50 provide initial estimates for matching the

segments of length 25 and so on. The maximum permitted

slide and stretch decreases with segment size. In our exper-

iments, the segments of length 50 were allowed to stretch

or contract by a maximum of 3% (with increments of 1%

being evaluated) and to shift along the boundary by ±1.5%.

For segments of length 25, these values were halved, and so

on.

The similarity of U and V is a weighted sum of the PDs

over all the matched segments. The PD is normalized for

the number of points (eq.(2)), so the PDs corresponding to

different length segments are of a similar magnitude (recall

that the segments of length 50 have ∼ N/2 points whereas

the segments of length 25 have ∼ N/4 points). However,

there is less variation between shorter segments (c.f . Fig. 2)

so the PDs are generally somewhat smaller. We ensure that

matches at every length make a roughly equal contribution

to the final similarity score by giving a higher weight to PDs

from shorter segments. Let Sl denote the sum of PDs over

the matched segments at a fixed length l. The asymmetric

similarity of U and V is given by

dF (U,V) ≡ w100dP (U,V) +
∑

l=50,25,12.5

wlSl (3)

where the wl are constant weights. The weights used for

the evaluations in Sec. 4 were determined experimentally,

and the same weights were used for all data sets. Since

dF (U,V) 6= dF (V,U), we take the (symmetric) similarity



of U and V to be

DF (U,V) ≡ dF (U,V) + dF (V,U). (4)

Note that dF (U,V) (eq.(3)) depends on the position of

sU=0 on the polygon U. We have not yet investigated

whether there is any significant variation in performance as-

sociated with this choice.

3.4.2 Dynamic Programming Approach

This section describes a more sophisticated technique for

selecting the segment-segment matches. Readers look-

ing for a brief introduction to HPM can skip straight to

the evaluations in Sec. 4 and return to this section later

if they wish. In Sec. 3.4.1, the valid segment mappings

were determined by a hard limit on the amount that a seg-

ment of U could slide and stretch away from its predicted

match on V. Here, we use a softer approach, whereby the

amount of slide and stretch is penalized. Consider a seg-

ment U(sU , lU ), and assume that its predicted match on V

(given the already matched longer segments) is V(sp
V , lpV ).

If the selected match is V(sV , lV ), then we can penal-

ize the deviation from the predicted match using the value

|(sV , lV ) − (sp
V , lpV )|. Rather than selecting a segment

V(sV , lV ) purely on the basis of PD, we now select it using

V(sV , lV ) = arg min
V(sV ,lV )

d′P (U(sU , lU ),V(sV , lV ))

(5)

where

d′P (U(sU , lU ),V(sV , lV )) ≡ dP (U(sU , lU ),V(sV , lV ))

+ λlU |(sV , lV ) − (sp
V , lpV )|.

(6)

The parameter λlU specifies the importance of staying close

to the predictions at length lU . The λl’s should be chosen

so that the penalty terms have a similar impact at each level

of matching. The values used for the evaluations in Sec. 4

were determined experimentally, and the same values were

used for all data sets.

We may also want to encourage consistency between the

matches of neighboring segments of the same length – bear-

ing in mind that these overlap by one half. For example,

if the segment U(0, 50) is slid far to the left of its pre-

dicted match on V, it seems inappropriate that the neigh-

boring segment U(25, 50) should slide to the right. Just as

the longer segments predict a match for shorter segments,

we think of a segment U(sU , lU ) predicting matches for

its neighbors on either side. Specifically, if U(sU , l) is

matched to a segment V(sV , lV ), it predicts that its neigh-

bors of the same length, U(sU ± l/2, l), are matched to

V(sV ± lV /2, lV ).

Given a segment U(sU , lU ), the segment V(sV , lV ) that

it is matched to will now depend on the PD between the seg-

ments, the penalty for choosing V(sV , lV ) given the predic-

tion from the already matched longer segments, and an ad-

ditional penalty associated with the neighbors of U(sU , lU )
of the same length. Using this new penalty is problem-

atic since the neighbors of U(sU , lU ) have not already been

matched. Unlike the way that a global match provides pre-

dictions for the segments of length 50 and so on, there is no

natural starting place to begin matching when considering

segments of the same length – we must effectively choose

all the matches simultaneously. If the M segments of U of a

fixed length l (e.g. there are M=4 segments of length 50) are

denoted by U(sU1
, l), . . . ,U(sUM

, l), then the segments of

V that they are matched to: V(sV1
, lV1

), . . . ,V(sVM
, lVM

),
are chosen so as to minimize

J ≡

M∑
m=1

{d′P (U(sUm
, l),V(sVm

, lVm
))

+
λl

2
|(sVm

, lVm
) − ((sVm−1

+ lVm−1
/2), lVm−1

)|

+
λl

2
|(sVm

, lVm
) − ((sVm+1

− lVm+1
/2), lVm+1

)|},

where d′P and λl are from eq.(6), and the sums m+1
and m-1 are taken modulo M . As in Sec. 3.4.1, we re-

strict ourselves to considering a fixed number of candi-

date segments (7×7=49 in our experiments) on V for each

U(sUm
, l). In this case, minimizing J is a cyclic short-

est path problem which can be solved using Dijkstra’s al-

gorithm. The nodes of the shortest path correspond to the

selected V(sV1
, lV1

), . . . ,V(sVM
, lVM

), and the cost of the

shortest path is the contribution to the similarity score, Sl

(eq.(3)), at length l. Eqs.(3) and (4) are used to compute the

similarity of shapes U and V.

3.5. Normalized Procrustes Distances

It is interesting to consider whether the ‘confidence’ with

which each segment match is chosen (out of the candi-

date matches available) carries useful information about the

quality of the overall match. To investigate this idea, we

normalize the PDs associated with a segment of U and its

candidate matches on V by making the average PD equal to

1, and then apply HPM as normal. This means that when

a selected match is much better than the other candidate

matches, it will make a very small contribution to the sim-

ilarity score – recall that a small score indicates high sim-

ilarity. Using this approach, the similarity of two shapes

(eq.(4)) will be a crude measure of the average confidence

with which each segment match is selected, rather than an

absolute measure of shape similarity. The surprisingly good

results achieved using this confidence measure (Section 4)

highlights the strong correlation between shape similarity



Segment length on = 50%U

Segment length on = 25%U

Segment length on = 12.5%U

Segment length on = 50%U

Segment length on = 25%U

Segment length on = 12.5%U

Segment length on = 50%U

Segment length on = 25%U

Segment length on = 12.5%U

(a) (c)(b)

Figure 2. The segment matches found by HPM for the shapes in Fig. 1.

and the uniqueness of the optimal segment matches. We

discuss this further in Sec. 6.

4. Experiments and Evaluations

The proposed algorithm was applied to the shapes in

Figure 1. The matched segments are shown in Figure 2.

Note that similar features are generally well matched at

the scale at which they become prominent, whereas gen-

uinely dissimilar features (e.g. the horses’ tails) are never

well aligned.

We now consider the performance of HPM on bench-

mark data sets. Four variants of the algorithm are consid-

ered:

• GPM: global Procrustes matching (Sec. 3.2)

• HPM-F: fast HPM (Sec. 3.4.1)

• HPM-DP: dynamic programming HPM (Sec. 3.4.2)

• HPM-Fn: fast HPM with normalized PDs (Sec. 3.5)

Shapes were described by N=100 points in all cases.

4.1. MPEG7 Shapes

The “Bullseye Test” on the MPEG-7 shape data set1 has

been used extensively to assess the performance of shape

retrieval algorithms. The data set is composed of 1400 bi-

nary images with a single shape in each image. There are

70 different classes and 20 observations in each class. Some

of the shapes are shown in Figure 3. In the bullseye test, a

1http://www.cis.temple.edu/∼latecki/research.html#shape

Figure 3. Example shapes from the MPEG-7 data set.

Table 1. Bullseye scores for best performing algorithms.

Algorithm Score (%)

HPM-Fn 86.35

Internal Distances [13] 85.40

Multiscale Rep., Adamek et al. [1] 84.93

Polygonal Multiresolution [2] 84.33

HPM-F 84.07

HPM-DP 83.98

Chance Probability Functions [18] 82.69

Curvature Scale Space [16] 81.12

Generative Model [19] 80.03

shape is presented as a query and the top 40 matches are

retrieved (from the entire data set – the test shape is not

removed). The task is repeated for each shape and the num-

ber of correct matches (out of a maximum possible 20) are

noted. A perfect performance results in 1400×20 = 28000
matches. Results are given as a percentage of this maxi-

mum score. Table 1 shows our results and, to the best of

our knowledge, the best published scores. The algorithms

described in [12, 4, 17, 9, 10] all achieved scores <80%.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

DP - nonoptimal

DP - optimal

Fourier descriptors

Geometric moments

Sequential moments

GPM

HPM-F

HPM-Fn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

c
is

io
n

DP - nonoptimal

DP - optimal

Fourier descriptors

Geometric moments

Sequential moments

GPM

HPM-F

HPM-Fn

(a) (b)

Figure 4. Precision-recall plots for (a) the GESTURES data, and (b) the MARINE data. Results for DP-nonoptimal, DP-optimal, Fourier

descriptors, sequential moments, and geometric moments taken from Milios and Petrakis [15].

4.2. GESTURES Data

The data set consists of 980 shapes generated from 17

hand gestures. Milios and Petrakis [15] used the 17 original

shapes as queries and human relevance data as the ground

truth with respect to which different algorithms can be eval-

uated.2 Figure 4a shows the precision-recall plots3 from

[15] augmented with our own results – the results for HPM-

DP were very similar to those for HPM-F and have been

omitted for clarity. Both GPM and HPM outperform the

segment-based method described in [15]. The algorithms

described in [3, 17, 2] have also been tested on this data.4

From a visual inspection of their results, it seems that HPM

outperforms Shape Contexts [3], performs similarly to the

algorithm of Attalla and Siy [2] and performs worse than

Sebastian et al.’s curve alignment algorithm [17].

4.3. MARINE Data

The data set contains the outlines of 1100 different ma-

rine species [16].5 There are 20 query shapes and human

relevance information is again used to evaluate performance

[15]. Precision-recall plots are shown in Figure 4b (the re-

sults for HPM-DP are similar to those of HPM-F and are

omitted). Again, HPM outperforms the technique described

in [15] except when a large number of shapes are retrieved.

Note that this time the difference in performance between

2GESTURES data set and relevance information for GESTURES and

MARINE data available at: http://www.ced.tuc.gr/∼petrakis
3Precision is the number of relevant shapes retrieved divided by the

total number of retrieved shapes. Recall is the number of relevant shapes

retrieved divided by the total number of relevant shapes in the data set.
4We requested the relevant results from the authors of [17] and [2] at

rather short notice and did not receive them in time for publication.
5http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html

Figure 5. Example shapes from the DIATOM data set – shapes in

the same row are in the same class.

GPM and HPM is more pronounced. The algorithm of At-

talla and Siy [2] has also been tested on this data set. From

a visual inspection of their results, it is clear that HPM per-

forms significantly better on this data set.

4.4. DIATOM Data

The data set [10] consists of 781 outlines of individ-

ual diatoms.6 The examples are not distributed equally

among the 37 species, so Jalba et al. [10] applied a mod-

ified bullseye test whereby the number of retrieved shapes

is set at twice the relevant class size. The 100 point polyg-

onal approximations for some shapes from the data set are

shown in Figure 5. We achieved bullseye scores of: GPM

– 63.57%, HPM-F – 74.12% HPM-DP - 73.41% and HPM-

Fn – 79.89%. HPM-Fn outperforms all but one of the tech-

niques tested in [10]: Curvature Scale Space (CSS) [16]

– 66%, Fourier descriptors – 73.7%, wavelet descriptors

– 74.2%, Morphological Curvature Scale Space – 82.2%.

Our results for this data set are likely to have suffered due

to HPM’s dependence on the global correspondence. The

shapes have approximate rotational and reflectional sym-

metry (Figure 5) which suggests four potential choices of

6Diatoms are single celled algae with silica shells.



global correspondence between any two shapes. Ideally, all

of these should be investigated using HPM.

4.5. Computational Complexity

The complexity of GPM scales linearly in the number of

boundary points and hence, it is extremely fast (<10ms per

match using 100 points). Matching two shapes takes 0.1-

0.2s using HPM-F or HPM-Fn and ∼0.3s using HPM-DP

on a 1.4GHz Pentium-M machine using interpreted Matlab

code. It should be noted that the similarity score defined

in eq.(4) requires two applications of HPM. The speed of

HPM is similar to the algorithms in [19, 13], though slower

than those described in [16, 18, 1, 2].

5. A Continuous Segment Mapping

It is easier to qualitatively assess the performance of

HPM if one can examine the match between perceptual or

functional elements of shapes – rather than the segments of

pre-defined length and start point used by the algorithm. Af-

ter applying HPM, we can use the finite number of matched

segment pairs to find a continuous mapping which takes any

segment of U to a segment of V. Fig. 6 demonstrates this

idea using thin plate spline regression.7 It is clear from the

figure that the mapping has matched the correct segments in

both the cases shown. Note that the shorter segment of U

(Fig. 6c) is a subsegment of the longer segment (Fig. 6b),

yet the mapping shifts their start points in different direc-

tions and only changes the length of the shorter segment.

Rather than recovering a segment-segment mapping

from HPM, one could formulate HPM in a continuous set-

ting from the outset. Let us assume that U and V are

parameterized closed curves with arc length parameters

sU , sV ∈ (0, 100], and use the same notation U(sU , lU )
to denote a segment of U. The aim of a continuous HPM

algorithm would be to find a mapping f(sU , lU ) = (sV , lV )
such that U(sU , lU ) corresponds to the segment V(sV , lV )
of V (c.f . Fig. 6). Given a suitable family of functions F ,

we could select the f ∈ F which minimizes an appropriate

cost functional. For example

f = argmin
f∈F

∫ 100

l=0

∫ 100

s=0

{d(U(s, l),V(f(s, l)))

+ λ‖f ′′‖2}dsdl, (7)

where d(·, ·) is a measure of segment similarity and the fi-

nal term is a smoothness penalty on f – segments of U with

similar start points and lengths should be mapped to seg-

ments of V with similar start points and lengths. The ideas

used to construct HPM-Fn in Sec. 3.4.2 were aimed at en-

forcing this ‘smoothness’ in a discrete setting. The mini-

7Note that the regression gives the segment mapping. We are not using

thin plate splines to deform one shape onto the other as in [5].

0 50 100

50

100

segment position on U

s
e
g
m

e
n
t 
le

n
g
th

 o
n

U

0 50 100

50

100

segment position on V

s
e
g
m

e
n
t 
le

n
g
th

 o
n

V

V: position=91.3, length=24.4U: position=90.5, length=27.5

V: position=45.8, length=75.0U: position=46, length=75
(b)

(a)

(c)

Figure 6. (a) Continuous segment mapping between two shapes.

The highlighted points correspond to the segment matches shown

in (b) – squares, and (c) – circles.

mum value of the functional in (7) would indicate the sim-

ilarity of U and V. There are additional ideas that could

be considered when selecting F or designing the cost func-

tional. For example, for a fixed lU , sV should be a monoton-

ically increasing function of sU so that the cyclic order of

the segments of U is preserved on V.

Formulating a continuous HPM in this way and applying

continuous optimization techniques may provide a way of

avoiding the large increase in computation associated with

considering many candidate matches (i.e. using a larger or

finer neighborhood grid). The soft approach of HPM-DP

is likely to be required when many candidate matches are

considered under the current framework, but finding the

matches using dynamic programming is slow in such cases.

6. Summary and Discussion

We have introduced a novel shape matching algorithm

which performs well on benchmark shape retrieval tests.

Matching boundary segments of different lengths avoids

problems associated with global and local approaches. The

hierarchical structure of the matching algorithm captures

the intuitive notion that matching should proceed in a

global to local direction. While comparison of multiscale

shape representations is typically based on specific features

such as curvature-zero crossings (CSS [16]) or dominant

points (wavelets [6]), with HPM there is no need to de-

fine such features. The proposed approach generalizes the

idea of finding a point-to-point correspondence between

two shapes to that of finding a segment-to-segment corre-

spondence.



The experiments and results in Sec. 4 indicate that HPM

is robust to a number of common transformations such as

independent movement of parts and smooth deformations.

Its reliance on segments makes it robust to viewpoint related

changes in shape since the individual segments still match

quite well even though the global alignment becomes poor

(consider the bats class in Fig. 3). HPM requires ordered

boundary information and assumes that the order in which

corresponding segments appear is preserved across similar

shapes. The ability of segments to stretch and slide along

the boundary they are being matched to may enable HPM

to handle missing features and slight occlusion, but it is not

designed to handle significant occlusion or part rearrange-

ment.

HPM-DP performed worst out of the different variants

tested. A penalty-based approach to selecting the matches

is likely to be more effective when segments are allowed

to slide and stretch to a greater extent than was permitted

here. It may only be necessary to use the predictions of the

already matched longer segments in such cases and avoid

the use of neighbor-based predictions which necessitate the

use of dynamic programming. Also, the choice of penalty

term has not been fully investigated – for example, the ab-

solute difference between the predicted match and the cho-

sen match (eq.(6)) may not be suitable.

The strong performance of HPM-Fn is particularly inter-

esting. It seems likely that normalizing the PDs between a

single segment of one shape and its candidate matches on

the other shape leads to a simple form of novelty detection.

For shape regions that have roughly constant curvature, all

the candidate matches will be of a similar quality and all

PDs will be close to 1. Consequently, the contribution of

these regions to the similarity score will not be decisive.

One could hypothesize that such regions are, on average,

less useful for discrimination and that this effective down-

weighting is desirable. On the other hand, there is often

a definite best match for more complex segments (we can

think of the segment clicking into place), and this will have

a low normalized PD associated with it. Again, we might

hypothesize that segments with an intricate structure (at the

scale being considered) are more useful for discrimination

and should have a greater impact on the similarity score.

This is an interesting idea, though somewhat at odds with

the notion of attaching equal significance to all parts of the

shape and not identifying specific types of segment (Sec.

2). Future work will focus on investigating HPM-DP and

HPM-Fn more thoroughly.

7. Acknowledgements

We wish to thank Euripides Petrakis, Farzin Mokhtarian,

Longin Jan Latecki, and Andrei Jalba for making the data

sets available.

References

[1] T. Adamek and N. O’Connor. A mutliscale representation

method for nonrigid shapes with a single closed contour.

IEEE Trans. Circ. and Sys. for Vid. Tech., 14(5):742–753,

2004.

[2] E. Attalla and P. Siy. Robust shape simlilarity retrieval based

on contour segmentation polygonal multiresolution and elas-

tic matching. Patt. Recog., 38:2229–2241, 2005.

[3] S. Belongie and J. Malik. Matching with shape contexts.

In IEEE W’shop on Content-based Access of Im. and Vid.

Libraries, 2000.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and

object recognition using shape contexts. PAMI, 24:509–522,

2002.

[5] F. L. Bookstein. Landmark methods for forms without land-

marks: morphometrics of group differences in outline shape.

Med. Im. Anal., 1(3):225–243, 1996.

[6] L. F. Costa and R. M. Cesar. Shape Analysis and Classifica-

tion, Theory and Practice. CRC Press, 2001.

[7] A. Del Bimbo and P. Pala. Shape indexing by multi-scale

representation. Im. and Vis. Comp., 17:245–261, 1999.

[8] I. L. Dryden and K. V. Mardia. Statistical Shape Analysis.

Wiley, 1998.

[9] C. Grigorescu and N. Petkov. Distance sets for shape fil-

ters and shape recognition. IEEE Trans. Image. Proc.,

12(10):1274–1286, 2003.

[10] A. C. Jalba, M. H. F. Wilkinson, and J. B. T. M. Roerdink.

Shape representation and recognition through morphological

curvature scale spaces. IEEE Trans. on Image Processing, In

Press.

[11] J. Latecki and R. Lakamper. Application of planar shape

comparison to object retrieval in image databases. Patt.

Recog., 35:15–29, 2002.

[12] L. J. Latecki, R. Lakämper, and U. Eckhardt. Shape descrip-

tors for non-rigid shapes with a single closed contour. In

CVPR, pages 424–429, 2000.

[13] H. Ling and D. Jacobs. Using the inner-distance for classifi-

cation of ariculated shapes. In CVPR, 2005.

[14] G. McNeill and S. Vijayakumar. 2D shape classification and

retrieval. In IJCAI, 2005.

[15] E. Milios and E. G. M. Petrakis. Shape retrieval based on

dynamic programming. IEEE Tran. Im. Proc., 1(1):141–147,

2000.

[16] F. Mokhtarian and M. Bober. Curvature Scale Space Repre-

sentation: Theory, Applications and MPEG-7 Standardiza-

tion. Kluwer Academic, 2003.

[17] T. B. Sebastian, P. N. Klein, and B. B. Kimia. On aligning

curves. PAMI, 25(1):116–125, 2003.

[18] B. J. Super. Learning chance probability functions for shape

retrieval or classification. In IEEE W’shop on Learning in

Comp. Vis. and Pat. Recog., 2004.

[19] Z. Tu and A. Yuille. Shape matching and recognition using

generative models and informative features. In ECCV, 2004.

[20] J. Zhang, X. Zhang, H. Krim, and G. G. Walter. Object rep-

resentation and recognition in shape spaces. Patt. Recog.,

36:1143–1154, 2003.


