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Abstract

In this paper we describe a method that estimates the
motion of a calibrated camera (settled on an experimen-
tal vehicle) and the tridimensional geometry of the environ-
ment. The only data used is a video input. In fact, inter-
est points are tracked and matched between frames at video
rate. Robust estimates of the camera motion are computed
in real-time, key-frames are selected and permit the features
3D reconstruction. The algorithm is particularly appropri-
ate to the reconstruction of long images sequences thanks
to the introduction of a fast and local bundle adjustment
method that ensures both good accuracy and consistency
of the estimated camera poses along the sequence. It also
largely reduces computational complexity compared to a
global bundle adjustment. Experiments on real data were
carried out to evaluate speed and robustness of the method
for a sequence of about one kilometer long. Results are also
compared to the ground truth measured with a differential
GPS.

1. Introduction

During last years, many works [8, 4] were carried out
on the robust and automatic estimate of the movement of
a perspective camera (calibrated or not) and points of the
observed scene, from a sequence of images. It is still to-
day a very active field of research, and several successful
systems currently exist [13, 1, 12, 9, 15]. Interest points
are initially detected and matched between successive im-
ages. Then, robust methods proceeding by random samples
of these points make possible to calculate the geometry of
subsequences of 2 and 3 images. Lastly, these “partial” ge-
ometries are merged and the reprojection errors (due to the
difference between points detected in the images and the
reprojections of 3D points through the cameras) are mini-
mized.

This paper deals with the problem of scene reconstruc-
tion from images obtained by a moving calibrated camera.
The reconstruction consists in finding the 3D model of the
environment, by using only the recorded data. Many ap-

plications (architecture, navigation of robots, etc.) require
the use of such a model. The problem often takes the SFM
denomination for Structure From Motion, which was the
subject of many works in vision.

One can note several types of approaches for SFM algo-
rithms. First of all, the methods without global optimization
of the full geometry are fast but their accuracy is question-
able since errors accumulate in time. Among those works of
Vision-Based SLAM (Simultaneous Localization and Map-
ping), Nistér [11] presents a method called “visual odom-
etry”. This method estimates the movement of a stereo
head or a simple camera in real time from the only visual
data: the aim is to guide robots. Davison [2] proposes a real
time camera pose calculation but he assumes that number of
landmarks is small (under about 100 landmarks). This ap-
proach best suite to indoor environments and is not appro-
priate for long displacements because of algorithmic com-
plexity and growing uncertainty.

With a really different approach, we can find off-line
methods carrying out a bundle adjustment optimization of
the global geometry in order to obtain a very accurate model
(see [18] for a very complete survey of bundle adjustment
algorithms). Such an optimization is very computing time
expensive and can not be implemented in a real time appli-
cation. Bundle adjustment is a process which adjusts itera-
tively the pose of cameras as well as points position in order
to obtain the optimal least squares solution.

Most articles refer to Levenberg-Marquardt (LM) to
solve the non linear criterion involved in bundle adjustment,
a method which combines the Gauss-Newton algorithm and
the descent of gradient. The main problem in bundle adjust-
ment is that it is very slow, especially for long sequences
because it requires inversion of linear systems whose size is
proportional to the number of estimated parameters (even if
one benefits from the sparse structure of the systems).

It is also important to have an initial estimate relatively
close to the real solution. So, applying a bundle adjustment
in a hierarchical way is an interesting idea [8, 16] but it does
not solve the computing time problem. Thus, it is necessary
to take an alternative method whose purpose is to decrease
the number of parameters to be optimized. Shum [16] ex-



ploits information redundancy in images by using two vir-
tual key frames to represent a sequence.

In this paper we propose an accurate and fast incremen-
tal reconstruction and localization algorithm. The idea of
an incremental method for a 3D reconstruction and mo-
tion estimation has already been developed in many ways.
Steedly [17] proposes an incremental reconstruction with
bundle adjustment where he readjusts only the parameters
which have changed. Even if this method is faster than a
global optimization, it is not sufficiently efficient and very
data dependent. There are also Kalman filters or extended
Kalman filters [2], but they are known to provide less ac-
curate results than bundle adjustment. Our idea is to take
benefit from both offline methods with bundle adjustment
and from speed of incremental methods. In our algorithm,
a local bundle adjustment is carried out at each time a new
camera pose is added to the system. The nearest approach is
proposed by Zhang [19], but in this work, local optimization
is done on a triplet of images only, and structure parameters
are eliminated from the proposed reduced local bundle ad-
justment. Taking into account of 2D reprojections of 3D
estimated points in more than three images without elimi-
nating the 3D points parameters greatly improves the accu-
racy of the reconstruction.

The paper is organized as follows. First, we present our
complete method to estimate camera motion and 3D struc-
ture from a video flow. We explain our incremental method
with local bundle adjustment: we propose to only optimize
the end of the 3D structure with a set of parameters re-
stricted to the last cameras and 3D points observed by these
cameras. In a second part, we present experiments and re-
sults on real data, and we compare to a GPS localization.

2. Description of the incremental algorithm

Let us consider a video sequence acquired with a cam-

era settled on a vehicle moving in an unknown environment.
The goal of this work is to find the position and the orien-
tation in a global reference frame of the camera at several
times ¢ as well as the 3D position of a set of points (viewed
along the scene). We use a monocular camera whose intrin-
sic parameters are known (including radial distortion) and
assumed to be unchanged throughout the sequence.
The algorithm begins with determining a first triplet of im-
ages that will be used to set up the global frame and the
system geometry. After that, a robust pose calculation is
carried out for each frame of the video flow using features
detection and matching. Some of the frames are selected
and become key-frames that are used to 3D points trian-
gulation. The system operates in an incremental way, and
when a new key-frame and 3D points are added, we pro-
ceed to a local bundle adjustment. The result (see Figure 3)
is a set of camera poses corresponding to key-frames and
3D coordinates of points seen in images.

2.1. Interest points detection and matching

The whole method is based on the detection and match-
ing of features points. In each frame, Harris corners [7] are
detected. Matching a pair of frames is done as follows:

e For each interest pointin ¢émage 1, we select some can-
didate corresponding points in a region of interest de-
fined in image 2

e Then a Zero Normalized Cross Correlation score is
computed between interest points neighborhoods.

e The pairs with the high-scores are selected to provide
a list of corresponding point pairs between the two im-
ages.

In order to suite to a real time application, the step “de-
tection and matching” has been implemented using SIMD
extensions of modern processors. That provides a very effi-
cient solution and not much time consumption.

Figure 1. An example of image from the video data. Small squares
represent detected interest points, and white lines represent dis-
tance covered by matched points.

2.2. Sequence initialization

We have in mind that the motion between two consecu-
tive frames must be sufficiently large to compute the epipo-
lar geometry. So we select frames relatively far from each
other but that have enough common points. For that, the
first image noted I is always selected as a key frame. The
second image I is selected as far as possible from I; in the
video but with at least M/ matched interest points with I7.
Then for I3, we choose the frame most distant from I so
that there are at least M matched interest points between I3
and I5 and at least M’ matched points between I3 and I;
(in our experiments, we choose M = 400 and M' = 300).
Actually, this process ensures to have a sufficient number



of points in correspondence between frames to calculate the
movement of the camera. The camera coordinate system as-
sociated to I; is set as the global coordinate system and the
relative poses between the first three key frames is calcu-
lated using the 5-points algorithm [10] and a RANSAC [5]
approach. More details on the initialization process are de-
veloped in [15]. Then, observed points are triangulated into
3D points using the first and the third observation. Finally
an optimization of estimated poses and 3D points coordi-
nates is done with a Levenberg-Marquardt algorithm (LM).

2.3. Real-time robust pose estimation

Let us suppose that pose of cameras C to C;_4 corre-
sponding to selected key-frames I3 to I;_; have previously
been calculated in the reference reconstruction frame. We
have also found a set of points whose projections are in the
corresponding images. The goal is to calculate camera pose
C corresponding to the last acquired frame I. For that, we
match I (last acquired frame) and I;_; (last selected key
frame) to determine a set of points p whose projections on
the cameras (C;—2 C;—1 C) are known and whose 3D co-
ordinates have been computed before. From 3D points re-
constructed from C;_o and C;_1, we use Grunert’s pose
estimation algorithm as described in [6] to compute the lo-
cation of camera C. A RANSAC process gives an initial
estimate of camera C' pose which is then refined using a
fast LM optimization stage with only 6 parameters (3 for
optical center position and 3 for orientation). At this stage,
the covariance matrix of camera C' pose is calculated by the
hessian inverse and we are able to draw an ellipsoid of con-
fidence at 90% (see Figure 2). If C'ov is the covariance ma-
trix of camera C pose, the ellipsoide of confidence is given
by AzTCov~'Az < 6.25 since AzT Cov™! Az obeys a
X, distribution with 3 dof.

2.4. Key frames selection and 3D points reconstruc-
tion

As mentioned before, not all the frames of the input are
taken into account for the 3D reconstruction, but only a sub-
sample of the video. For each frame, the normal way is to
compute the corresponding localization using the last two
key frames. We set up a criterion that indicates if a new
frame must be added as a key frame or not. First, if the
number of matched points with the last key frame I;_; is not
sufficient (typically inferior to a fixed level M, M = 400
in experiments), we have to introduce a new key-frame. We
have also to take a new key frame if the the uncertainty of
the calculated position is too high (for example, superior to
the mean inter-distance between two consecutive key posi-
tions). Obviously, it is not the frame for which criterion is
refused that becomes a key frame but the one which imme-
diately precedes. After that, new points (ie. those which are
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Figure 2. Top view of a processing reconstruction. We can see the
trajectory, 3D reconstructed points and the ellipsoid of confi dence
for the most recently calculated camera.

only observed in I; o, I;_; and I;) are reconstructed using
a standard triangulation method.

Figure 3. Top view of a complete reconstruction in a urban envi-
ronment. The distance covered is about 200 meters long including
a half-turn. More than 8.000 3D points have been reconstructed
for 240 key frames.

2.5. Local bundle adjustment

When the last key frame I; is selected and added to
the system, a stage of optimization is carried out. It is a




bundle adjustment or Levenberg-Marquardt minimization
of the cost function f(C¢, P?) where C* and P? are respec-
tively the cameras parameters (extrinsic parameters) and 3D
points chosen for this stage 7. The idea is to reduce the num-
ber of calculated parameters in optimizing only the extrinsic
parameters of the n last cameras and taking account of the
2D reprojections in the N (with N > n) last frames (see
Figure 4). Thus, C* = {C;_p41..C;} and P? contains all
the 3D points projected on cameras C?. Cost function f? is
the sum of points P? reprojection errors in the last frames
Ci_ N+1 1O C;:

fePy = 30 > (E)
C;e{Ci—n41; Ci} p;EP?
where ¢7; = d*(pij, Kipj) is the square of Euclidean

distance between K;p;, estimated projection of point p;
through the camera C; and the measured corresponding ob-
servation. K is the projection matrix 3 x 4 of camera ¢
composed of C; extrinsic parameters and known intrinsic
parameters.

Thus, n (number of optimized cameras at each stage)
and N (number of images taken into account in the repro-
jection function) are the 2 main parameters involved in the
optimization process. Their given value can influence the
result quality and execution speed. Experiments permitted
to determine what are values for n and N that provide an
accurate reconstruction.

It is important to specify that when the reconstruction
process starts, we refine not only the last parameters of
the sequence, but the very whole 3D structure. Thus, for
i < Ny, we chose to take N = n = 4. Ny is the maximum
number of cameras so that optimization at stage ¢ is global
(in our experiments, we choose Ny = 20). That makes it
possible to have reliable initial data, which is significant
given the recursive aspect of the algorithm, and that does
not pose any problem because the parameters number is
still relatively restricted at this time.

Comparison with global bundle adjustment:

Because of 3D points independence, we can take advan-
tage [8, 18] of the sparse structure of the Jacobian matrix
J of the error measure vector €. So, we have implemented
the sparse minimization algorithm as described in [8]. The
system to be solved for each Levenberg-Marquardtiteration

U w Acameras _ chameras
WT v Apo'ints - Y;)oz'nts

where U, V, W are sub-matrix composing Hessian ma-
trix JTJ, Acameras, Apoints are increments to be calcu-
lated and Yeqmeras, Ypoints are obtained by the product ma-
trix JZ¢. The resolution is carried out with 2 stages:

o
Ci-3

Figure 4. Local bundle adjustment when camera C; is added. Only
surrounded points and cameras are optimized. Nevertheless, we
take account of 3D points reprojections in the [V last images.

1. Calculation of the increment A ymerqs t0 be applied
to cameras by resolution of the following system:

(U—inle)Acameras = cameras_inlypoints(]-)

2. Direct calculation of the increment A p,ints to be ap-
plied to 3D points:
Apoz'nts = Vﬁl(Ypoints - WTAcameras)
Let n and P be the number of cameras and points
optimized in bundle adjustment. Let p be the number

(considered as constant) of projecting points through each
camera.

Once JTJ is calculated (time complexity is proportional
to the number N, = p.N of 2D reprojections taken into
account), the two time computing expensive stages of this
resolution are:

e The matrix product WV 1 W7

o The resolution of cameras linear system (1).

For matrix product WV ~!W7, the number of necessary
operations can be given by first considering the number of
not-null blocks of WV 1. It is the same number as W,
ie. (p.n), number of reprojections in n images, because
V1 is block diagonal. Then, in the product (WV )W T,
each not-null 6 x 3 block of WV =1 is used once in the
calculation of each block column of WV ~'W7T. Thus the
time complexity of the product WV W7 is O(p.n?).
The time complexity of the traditional resolution of the
linear system (1), is ©(n?) [14].

So, the time complexity of one bundle adjustment itera-
tion is: O(p.N + p.n? + n?).



Thus, we can see that is very interesting to reduce the
number of parameters (n and N) involved in the optimiza-
tion process. For example, the complexity reduction com-
pared to global bundle adjustment obtained with a sequence
of 20 key frames and 150 2D reprojections per image is
given in the following table:

| Type | p | n | N gain ]
global 150 | 20 | 20 1
reduced1 | 150 | 5 | 20 | 10
reduced2 | 150 | 3 | 10 | 25

Table 1. Complexity gain obtained with a reduced local bundle ad-
justment compared to global bundle adjustment for one iteration.

In practice, we note that the number of necessary itera-
tions is quite low; it is due to the fact that, excepting the
last added camera, all the cameras poses have already been
optimized at stage i — 1,7 — 2, ...

2.6. Method summary

The proposed method is summarized as follow:

1. Select a triplet of images that become first three key
frames. Set up the global frame, estimate the relative
pose, and triangulate 3D points.

2. For each new frame, match with last key frame and
estimate the camera pose and uncertainty. Detect if a
new key frame has to be selected. If not, repeat 2.

3. If a new key frame is selected, add precedent frame
as new key frame, triangulate new points and make a
local bundle adjustment. Repeat from 2.

3. Experiments on real data

We applied our incremental localization and mapping al-
gorithm to a semi-urban scene. The goal is to evaluate ro-
bustness to perturbations in a complex environment and ac-
curacy compared to ground truth provided by a Real Time
Kinematics Differential GPS. The camera was settled on an
experimental vehicle whose velocity is about 0.8 m/s. The
covered distance is about 70 meters and the video sequence
is 1 min long (Image size is 512 x 384 pixels at 7.5 fps).
More than 4.000 3D points have been reconstructed and 94
images selected as key frames from a series of 445. This
sequence is particularly interesting because of images con-
tain (people walking in front of the camera, sunshine, etc...)
that does not favors the reconstruction process. Moreover,
the environment is more appropriate to a GPS localization
because the satellites in the sky are not occulted by high
buildings. It is also interesting because of the trajectory: a
turn on the right, two turns on the left and a straight line.

Figure 5. 2 frames from real data experiments. We can see some
pedestrians

3.1. Processing Time

In our experiments, we used a standard Linux PC (Pen-
tium 4 at 2.8 GHz, 1Go of RAM memory at 800 MHZ).
Image processing time through the sequence is reported in
Figure 6. Time measured includes feature detection (#1500
Harris points per frame), matching, and pose calculation for
all frames. For key frames, treatment time is longer (see
Figure 6) because of points 3D reconstruction and local
bundle adjustment. In this case, we took n = 3 (number
of optimized camera poses) and N = 10 (number of cam-
eras used for reprojection criterion minimization). We can
note that speed results are very interesting with an average
0f 0.09 s for normal frames and 0.28 s for key frames (let us
notice that time between two frames is 0.133 s at 7.5 fps).
Results are reported in table 2.

| Frames | Max Time | Mean Time | Total |
Non-key frames 0.14 0.09 30.69
Key frames 0.43 0.28 26.29

Table 2. Results. Computation times are given in seconds.

3.2. Ground truth comparison

The calculated trajectory obtained with our algorithm
was compared to data given by a GPS sensor. It is a Real
Time Kinematics Differential GPS whose precision is about
the inch in the horizontal plane. For the comparison, we ap-
plied a rigid transformation (rotation, translation and scale
factor) to the trajectory as described in [3] to fit with GPS
reference data. Figure 8 shows trajectory registration with
GPS reference. As GPS positions are given in a metric
frame we can compare camera locations and measure posi-
tioning error in meters. For camera key pose ¢, 3D position
error is:

Eisp = \/(zi — z6ps)* + (yi — yaps)? + (2i — 2Gps)?

and 2D position error in horizontal plane is:

Eiop = /(zi — zGps)? + (yi — Yyops)?

where x;, y;, 2; are estimated coordinates for camera pose
1 and zgps, Yyaps, Zaps are corresponding GPS coordi-
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Figure 6. Processing time (in seconds) for non-key frames and for
key frames.

Figure 7. Top view of the reconstructed scene and trajectory (#
4.000 points and 94 key positions).

nates. Figure 9 shows 2D/3D error variations through the
94 frames. The maximum measured error is 2.0 meters
with a 3D mean error of 41 centimeters and a 2D mean
error of less than 35 centimeters.
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Figure 8. Registration with GPS reference, top: in horizontal
plane, bottom: on altitude axis. Continuous line represents GPS
trajectory and points represent estimated key positions. Coordi-
nates are expressed in meters.
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Figure 9. Error in meters. continuous line: 2D error, dotted line:
3D error.

3.3. Parameterizing the local bundle adjustment

In our incremental method, local bundle adjustment con-
sists in optimizing the end of the reconstruction only, so as
to avoid useless calculation and very long computing time.



As mentioned before, optimization is applied to the n last
estimated camera poses, taking account of points reprojec-
tions in a larger number IV of cameras. So, we tested several
values for n and IV as reported in table 3, 4 and 5. Note that
we must have N > n + 2 to fix the reconstruction frame
and the scale factor at the sequence end. First, we com-
pared results to GPS trajectory as explained previously, and
to a trajectory computed with a global bundle adjustment.
We also measured mean time processing for local bundle
adjustment in function of n. In practice, it does not vary
much with N.

Comparison with GPS
N
n n n+l n+2 | n+3 | n+5 | n+7
n=2 failed | failed | 0.55 | 0.49 | 0.85 | 1.99
n=3 failed | 3.28 | 0.45 | 041 | 0.41 | 0.41
n=4 6.53 1.77 | 042 | 0.40 | 0.41 | 0.27
| global | 0.33 |

Table 3. Mean 3D position error (in meters) compared to GPS for
the incremental method with different n and IV, and for a global
bundle adjustment.

Comparison with global bundle adjustment

N N n n+1 n+2 | n+3 | n+5 | n+7
n=2 failed | failed | 3.17 | 0.43 | 1.56 | 1.80
n=3 failed | 3.61 1.60 | 0.43 | 0.30 | 0.47
n=4 7.67 1.44 1.03 | 0.24 | 0.25 | 0.36
Table 4. Mean 3D position error (in meters) compared to globa

bundle adjustment for different n and V.

n 2 3 4 5 6
Mean Time | 0.24 | 0.31 | 0.33 | 0.37 | 0.44

Table 5. Mean local bundle adjustment computation times in func-
tion of n for many N (in seconds).

For N = n orn + 1, it happened that the reconstruction
was not completed because of the process failure before the
end of the sequence. That proves that the fact of introducing
anumber N > n+2is very important in a real environment
and bring robustness and accuracy to the estimation. More-
over, with Figure 10, one can note that very many points
are tracked over more than 3 views. If n > 3 and N quite
larger, we have very accurate results; the problem is then
time consumption. In our experiments, we often use n = 3
or4 and 6 < N < 11 (values in bold-faced in tables 3 and
4).
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Figure 10. Points distribution with track length.

3.4. Visual comparison with a very long urban scene

Experiments have been carried out in a town-center (see
Figure 12) with a camera fixed on a car. The vehicle ran
about one kilometer and the video is about 3 min long.
With Figure 11, one can visually ensure that reconstruction
is not much deformed and drift is very low compared to the
covered distance. That shows that our algorithm, very ap-
propriate to long scene reconstruction in term of computing
time is also quite precise and robust. The estimated mean
3D position error compared to global bundle adjustment is
0.29m.

3.5. Conclusion

We presented a nice application of SFM techniques to
localization and mapping, for a moving car. The method
is very fast and accurate, thanks to the proposed local bun-
dle adjustment technique. The model is built in real-time
with 3D points reconstructed from interest points extracted
in images and matched through the monocular video se-
quence. We can envisage to extend the method to more
complex 3D primitives such as planes, lines, or curves. We
think that the approach can be adapted to many applications
in robotics to guide mobile robots, or in augmented reality
applications.

References
[1] “Boujou,” 2d3 Ltd, http://www.2d3.com, 2000. 1

[2] A.J. Davison, “Real-Time Simultaneous Localization
and Mapping with a Single Camera,” Proc. ICCV, Nice,
2003. 1,2

[3] O.D. Faugeras and M. Hebert, “The representation,
recognition, and locating of 3-D objects,” International
Journal of Robotic Research, Vol 5, No. 3, pp. 27-52,
1986. 5



B X £ R HERALYTEOOTIER
LECUFARLAY =

AVELE ROTALE
£ N 2y e O !

Figure 11. The long urban sequence a) top: a city map with the tra-
jectory in blue b). bottom: reconstruction result (354 key frames,
16.135 3D points).

Figure 12. 2 frames from urban sequence.

[4] O.D. Faugeras and Q.T. Luong, The Geometry of Mul-
tiple Images, The MIT Press, 2001 1

[5] M. Fischler and R. Bolles, “Random Sample Consen-
sus: a Paradigm for Model Fitting with Application
to Image Analysis ans Automated Cartography”, Com-
mun. Assoc. Comp. Mach., 24:381-395, 1981 3

[6] R.M. Haralick, C.N. Lee, K. Ottenberg and M. Nolle,
“Review and analysis of solutions of the three point

29 9

perspective pose estimation problem,” ”International

Journal of Computer Vision,” 1994 3

[7] C.Harris, M. Stephens, “A Combined Corner and Edge

Detector”, Alvey Vision Conference pp. 147-151, 1998.
2

[8] R.Hartley and A.Zisserman, “Multiple View Geome-
try in Computer Vision,” Cambridge University Press,
2000. 1,4

[9] M. Lhuillier and Long Quan. “A Quasi-Dense Ap-
proach to Surface Reconstruction from Uncalibrated
Images,” IEEE Transaction on Pattern Analysis and
Machine Intelligence, 27(3):418-433,2005. 1

[10] D. Nister, “An efficient solution to the five-point rela-
tive pose problem,” CVPRO3, pp. 195-202,2003 3

~ [11] D. Nister, O. Naroditsky and J. Bergen, “Visual

Odometry,” CVPRO4, Vol. 1, pp. 652-659, 2004. |

- [12] D. Nister Automatic Dense Reconstruction from Un-

calibrated Video Sequences, PhD Thesis, Ericsson and
University of Stockholms, 2001. 1

[13] M. Pollefeys, R. Koch and L. Van Gool, “Self-
Calibration and Metric Reconstruction in spite of
Varying and Unknown Internal Camera Parameters,”
ICCV’98. 1

[14] WH. Press, S.A. Teukolsky, W.T. Vetterling, B.P.
Flannery, ”"Numerical Recipes in C: The Art of Scien-
tific Computing”, Cambridge University Press, 1992. 4

[15] E. Royer, M. Lhuillier, M. Dhome and T. Chateau.
“Localization in urban environments: monocular vision
compared to a differential GPS sensor,” CVPR’05. 1,3

[16] H. Shum, Q. KE, and Z. Zhang, “Efficient bun-
dle adjustment with virtual key frames: A hierarchi-
cal approach to multi-frame structure from motion,”
CVPR99, Vol 2, pp. 538-543, 1999. 1

[17] D. Steedly and I. A. Essa, ‘“Propagation of Innova-
tive Information in Non-Linear Least-Squares Structure
from Motion,” ICCV, pp. 223-229,2001. 2

[18] B. Triggs, P. F. McLauchlan, R. I. Hartley & A. W.
Fitzibbon, “Bundle adjustment - A modern synthesis,
in Vision Algorithms: Theory and Practice”, LNCS, pp.
298-375, Springer Verlag, 2000. 1,4

[19] Z. Zhang and Y. Shan, “Incremental Motion Es-
timation through Modified Bundle Adjustment”, In
Proc. International Conference on Image Processing
(ICIP03), Vol .11, pp.343-346,2003. 2



