
A Novel Data Association Algorithm for Object Tracking in Clutter with
Application to Tennis Video Analysis

Fei Yan Alexey Kostin William Christmas Josef Kittler
Centre for Vision, Speech and Signal Processing

University of Surrey
Guildford, Surrey, GU2 7XH, UK

{f.yan, a.kostin, w.christmas, j.kittler}@surrey.ac.uk

Abstract

It is well recognised that data association is critically
important for object tracking. However, in the presence
of successive misdetections, a large number of false can-
didates and an unknown number of abrupt model switch-
ings that happen unpredictably, the data association prob-
lem can be very difficult. We tackle these difficulties by us-
ing a layered data association scheme. At the object level,
trajectories are “grown” from sets of object candidates that
have high probabilities of containing only true positives; by
this means the otherwise combinatorial complexity is signif-
icantly reduced. Dijkstra’s shortest path algorithm is then
used to perform data association at the trajectory level. The
algorithm is applied to low-quality tennis video sequences
to track a tennis ball. Experiments show that the algorithm
is robust to abrupt model switchings, and performs well in
heavily cluttered environments.

1 Introduction

In automatic annotation of sports video, higher-level de-
scriptions generally rely on low-level features. In the con-
text of tennis game, the evolution of a game is described
by key events such as the ball being hit, the ball bouncing
on the ground, etc. To detect these important events, the
tracking of the tennis ball is essential.

It is well recognised that data association, i.e., the prob-
lem of determining which object candidates are object-
originated and which are clutter-originated, is critically
important for object tracking. Many data association
algorithms have been developed, ranging in complex-
ity from Nearest Neighbour Standard Filter (NNSF) [1],
Track-splitting Filter [10], Probabilistic Data Association
(PDA) [1], Viterbi Data Association (VDA) [8], Proba-
bilistic Multi-Hypothesis Tracker (PMHT) [11], to Multi-

Hypothesis Tracker (MHT) [9]. However, most of the ex-
isting techniques are intrinsically iterative. That is, the as-
sociation/estimation at the current step relies on that in pre-
vious steps. When applying an iterative algorithm to tennis
ball tracking, there is a major difficulty: sudden changes
of tennis ball motion, or in more general terms, abrupt mo-
tion model switchings. When the ball is hit by a player, it
changes its motion drastically. Since the ball travels at very
high velocity after being hit, it is often blurred into back-
ground, and can not be detected in the first few frames. As
a result, the next detected ball position can be very far away
from the predicted position that is obtained using an obso-
lete motion model. Most iterative trackers would lose track
in such situation.

In [5], Lepetit et al. propose a non-iterative tracking al-
gorithm under the name of Robust Data Association (RDA).
The key idea of RDA is to treat data association as a mo-
tion model fitting problem. First, object candidates in each
frame are detected. A sliding window containing sev-
eral frames is then moved over the sequence. The Max-
imum Likelihood Estimation Sample Consensus (MLE-
SAC), which is a RANSAC-like algorithm [13], is used to
find the model that is best at explaining the candidates in-
side the window, i.e., the model with maximum likelihood.
An estimate of the object position in one frame, e.g., the
middle frame in the sliding window, is then given by the
best model. As the sliding window moves, eventually ob-
ject positions in all frames are estimated.

RDA solves data association and estimation simultane-
ously and non-iteratively by RANSAC. It is more robust
to abrupt motion change. However, several deficiencies
were noticed. Firstly, like most RANSAC algorithms, RDA
draws samples randomly from all candidates in the sliding
window. As the ratio of true positives drops, the number
of trials required to get a “good” model increases polyno-
mially, where the polynomial coefficient is the number of
candidates required to fit a model. This fast growing com-

plexity makes RDA impractical in highly cluttered envi-
ronments. Secondly, in RDA, estimates are given by the
best models in corresponding intervals independently of
each other. No motion smoothness constraint is applied.
If a clutter-originated motion is wrongly picked up as the
best model in an interval, there is no mechanism to recover
from such error. In applications where motion discontinu-
ity points have significant meaning, this may lead to poor
performance.

In this paper, we propose an algorithm to remedy these
problems. Instead of randomly sampling, we exhaustively
evaluate for each candidate, if a small ellipsoid around it in
the x-y-t (column-row-time) space contains enough candi-
dates to fit a dynamic model. The fitted model is then opti-
mised recursively using candidates that are consistent with
it. This heuristic approach reduces the algorithm’s com-
plexity significantly: as the ratio of true positives drops, the
complexity grows approximately linearly, instead of poly-
nomially as in RDA. Since the generated trajectories may
have originated from clutter, Dijkstra’s shortest path algo-
rithm [4] is then applied in a second pass, to filter out false
trajectories and join the true ones together. Once the data
association problem is solved, model switching points (key
events, i.e., hit, bounce, etc., in the context of tennis ball
tracking) can be spotted by detecting motion discontinu-
ities. The estimation problem, if still desired, now becomes
trivial. A Kalman smoother can be used to give a Minimum
Mean Square Estimate (MMSE) of the object state. The
proposed algorithm has been applied to low-quality tennis
video sequences to track a tennis ball. Experiments show
that it is robust to abrupt changes of object motion, and
works well in heavily cluttered environments.

The proposed algorithm consists of two steps: trajectory
generation and trajectory linkage. We describe each step
in detail in Section 2 and Section 3, respectively. An algo-
rithm for detecting model switching points is also briefly in-
troduced in Section 4. The performance of the algorithm is
presented in Section 5. Conclusions are given in Section 6.

2 Generating the Trajectories

2.1 Looking for a seed triplet

Assume object candidates in each frame are already de-
tected. Let us denote the set of candidates in frame k by
Ck = {cj

k}
mk
j=1, where mk is the total number of candidates

in frame k, and cj
k is the jth candidate in Ck. Also assume

a sliding window containing 2N + 1 frames is moving over
the video sequence. At time i, the interval Ii spans frame
i − N to frame i + N . For interval Ii, centred at each cj

i

and with radius r, a circular area Aj
i is considered, where

r is the maximum distance the object can travel between

(a) (b)

Figure 1. Looking for a seed triplet. Squares
with numbers: candidates detected in differ-
ent frames. (a) For the candidate in frame
76, no seed triplet is found: although 2 can-
didates (besides the one from frame 76) fall
into the circular area, there is no candidate
from C77. (b) Sufficient candidates are found
in the circular area to form a seed triplet: one
from C75 and one from C77.

two successive frames. Now we examine if at least one can-
didate from Ci−1 and at least one candidate from Ci+1 fall
into Aj

i (Fig. 1). Assume cj′

i−1 ∈ Ci−1 and cj′′

i+1 ∈ Ci+1 are

found inside Aj
i , cj′

i−1, cj
i and cj′′

i+1 can then be used to solve
a constant acceleration motion model. Throughout the rest
of this paper, we call such 3 candidates a “seed triplet”.

2.2 Fitting a model to the seed triplet

Consider 3 candidates detected in frame k1, k2 and k3,
where k1 < k2 < k3. Let the positions of the candidates be
p1, p2 and p3, respectively. A constant acceleration model
can be solved as:

v1 = p2−p1

∆k21
− ∆k21×a

2 (1)

a = 2× ∆k21×(p3−p2)−∆k32×(p2−p1)
∆k21×∆k32×(∆k21+∆k32)

(2)

where ∆k21 , k2 − k1, ∆k32 , k3 − k2, a is the
constant acceleration, v1 is the velocity at time k1, and
p1,p2,p3,a,v1 ∈ R2. An estimate of the object position
in any frame k is then given by

p̂k = p1 + ∆k × v1 +
∆k2

2
× a (3)

where ∆k , k − k1.
Such a model can be fitted to any 3 candidates detected in

different frames. Now we apply it to the seed triplet found
inside Aj

i , as illustrated in Fig. 2. In this special case, k1 =
i− 1, k2 = i, and k3 = i + 1.

Figure 2. Fitting a motion model to the seed
triplet in Fig. 1(b). Squares: candidates de-
tected in different frames, including true pos-
itives and false positives. Red squares with
rounded corners: seed triplet used for model
fitting. Circles: positions estimated with the
fitted model.

2.3 Optimising the model recursively

The advantage of using seed triplets for model fitting is
that a seed triplet has a higher probability of containing only
true positives than a sample set that is drawn randomly from
all candidates in the sliding window [7]. However, even if
a seed triplet is free of false positives, the model computed
with it is usually poor, as estimates are given by extrapola-
tion. This can be seen in Fig. 2. As the estimates get further
away from the seed triplet on the time axis, they depart from
detected ball positions in x-y plane rapidly.

We remedy this problem by recursively optimising the
model using supports (inliers) found in the previous itera-
tion [2]. First, we define a support of a model as a candidate
that is consistent with the model. A candidate cj

k located at
pj

k is said to be a support if d(p̂k,pj
k) < dth, where d(·, ·)

is the Euclidean distance between two points, p̂k is the es-
timated object position at time k as given by the model, dth

is a predefined threshold, and i−N ≤ k ≤ i+N . Note that
in the rare case where at time k more than one candidate has
distance smaller than dth to p̂k, only the one with smallest
distance counts as a support.

Let S be the set of supports for a model. Also let

kmin , min k ∀cj
k ∈ S (4)

kmax , max k ∀cj
k ∈ S (5)

kmid , arg min
k

||kmax−k |−|k−kmin || ∀cj
k ∈ S (6)

Now we use the 3 candidates in S from frame kmin, kmid

and kmax as a new triplet to fit another model. Since the el-
ements in the new triplet are further apart from each other,
more estimates are interpolated. The resulting model is usu-
ally “better” than the one computed with the seed triplet.
One iteration of the optimisation is thus complete (Fig. 3).

Figure 3. Optimising the fitted model. As-
sume after first iteration (see Fig. 2), two can-
didates from C74 and C78 are consistent with
the model, i.e., kmin = 74, kmax = 78, and
kmid = 76. The new triplet (red squares with
rounded corners) is then used to compute a
“better” model.

2.4 Knowing when to stop the optimisa-
tion loop

Now we need a measure of “goodness” of a model.
RANSAC-like algorithms normally use the number of sup-
ports a model gets. In [13], MLESAC is proposed to
give a more accurate measure. However, MLESAC in-
volves estimation of mixture parameters of a likelihood
function [5, 12], which can be complicated and computa-
tionally expensive. In our implementation, the following
cost function [13] is adopted:

C =
i+N∑

k=i−N

∑
j

ρ(pj
k) (7)

where

ρ(pj
k) =

{
d2(p̂k,pj

k) if d(p̂k,pj
k) < dth

d2
th if d(p̂k,pj

k) ≥ dth
(8)

and a smaller C indicates a better model.
Having defined C, the optimisation loop terminates

when the support set S stops expanding, or when C starts to
increase. More specifically, let Mw be the model after wth

iteration, Cw be its cost, kw
min and kw

max are defined as in
Eq. (4) and Eq. (5), the loop terminates if

kw
min = kw+1

min , kw
max = kw+1

max (9)

or
Cw+1 > Cw (10)

Note that the second situation happens mostly when S is ex-
tended in the time domain, and the departure of the constant
acceleration model from observations becomes significant.

(a) (b) (c)

Figure 4. Model optimisation on real data. Black squares: tennis ball candidates inside an interval of
31 fields (N = 15). The arrows point at the candidates that were used for model fitting. Red circles:
estimates given by the models. From (a) to (c): first, second and fourth (final) iteration.

Figure 5. An example of graph topology.
Each node is a trajectory. Shadowed nodes:
T ′ and T ′′. Each edge is assigned a weight
(distance). The objective is then to find the
path from T ′ to T ′′ with smallest total weight.

Once the optimisation is complete, Mw is retained as
the final fitted model to the current seed triplet. If Mw is
object originated, it is now usually well converged to the
“true motion” of the object (see Fig. 4).

Now we introduce the concept of trajectory. A trajectory
T is defined as the union of a parameterised model M and
its support set S, i.e., T = {M,S}. According to this defi-
nition, what we finally get from a seed triplet is a trajectory
with an optimised motion model and its support set. For
interval Ii, the above model fitting/model optimising steps
are applied to each seed triplet that contains each cj

i in Ci.
Among all the generated trajectories, only the one with the
best model is retained, and is denoted by Ti = {Mi,Si}.

3 Linking the Trajectories

3.1 Problem formulation

As the sliding window moves, a sequence of trajectories
are generated. These trajectories may have originated from
the true object or from clutter, or from both. Now we need
a method for data association at the trajectory level.

The trajectory-to-trajectory association is formulated as
a shortest path problem. Assume the first and last object
originated trajectories are already found as T ′ and T ′′. Also
assume a distance measure between two trajectories is de-
fined according to the compatibility of them. Now the ob-
jective is to find the path with smallest total distance that

links T ′ and T ′′. An example of graph topology is shown
in Fig. 5, where each node is a trajectory, and a directed
and weighted edge exists from Tu to Tv , if u < v and
kmin,v − kmax,u ≤ kth. The assumption here is that
misdetection of object can happen in at most kth succes-
sive frames. Since object originated trajectories should be
consistent with each other, and inconsistent with clutter-
originated trajectories, a shortest path algorithm is expected
to filter out false trajectories and join the true ones together,
if the distance between two trajectories is properly defined.

3.2 Defining the distance between two
trajectories

Both M and S of a trajectory T are used to define the
distance between two trajectories (Fig. 6). First, two trajec-
tories Tu and Tv (u < v) are said to be “overlapping” if
kmin,v ≤ kmax,u. For overlapping trajectories, their sup-
port sets are used. Two overlapping trajectories are “con-
flicting” (not compatible) if for kmin,v ≤ k ≤ kmax,u, ∃k
such that

(∃c′

k ∈ Su ∧ @c
′′

k ∈ Sv) ∨
(∃c′′

k ∈ Sv ∧ @c
′

k ∈ Su) ∨ (11)

(∃c′

k ∈ Su ∧ ∃c′′

k ∈ Sv ∧ p
′

k 6= p
′′

k)

The distance between two overlapping trajectories is then
given by

D(Tu, Tv) =
{

∞ if Tu and Tv are conflicting
0 otherwise (12)

When the distance between two trajectories is infinite, the
edge between them is effectively broken.

For non-overlapping trajectories, their parameterised
models are used. Object positions from time kmax,u to time
kmin,v are estimated. The distance is then defined as

D(Tu, Tv) = min d(p̂k,u, p̂k,v), kmax,u ≤ k ≤ kmin,v (13)

(a) (b)

(c)

Figure 6. Distance between two trajectories.
Solid circles and squares: supports of Tu

and Tv respectively. Dashed circles and
squares: estimates given by Mu and Mv re-
spectively. Solid line: Mu. Dashed line:
Mv. (a) Non-overlapping case. D(Tu, Tv) =
d(p̂59,u, p̂59,v). (b) Overlapping and conflict-
ing case. D(Tu, Tv) = ∞. (c) Overlapping and
non-conflicting case. D(Tu, Tv) = 0.

3.3 Finding the optimal path

Dijkstra’s algorithm is a dynamic programming algo-
rithm for finding the shortest path in a directed graph with
non-negative edge weights [4]. Among all the trajectories
generated as the sliding window moves, the first and last
trajectories with “good enough” models are used as T ′ and
T ′′, respectively. Dijkstra’s algorithm is then applied to find
the shortest path from T ′ to T ′′.

An example on a tennis video sequence is shown from
Fig. 7 to Fig. 9. The sequence is a short play shot de-
interlaced into 212 fields and containing 4 key events: far
player serving, ball bouncing in the near side of the court,
near player hitting the ball, and finally the ball bouncing in
the far side of the court.

Fig. 8 shows the trajectories generated in all intervals.
Fig. 9 shows the result of applying Dijkstra’s algorithm: a
shortest path with 8 nodes and 7 edges. The edge weights
(in time order) are: 0, 1.2, 2.7, 0, 0, 0, 0, where the zeros are
given by Eq. (12) and the non-zeros are given by Eq. (13).
The overall weight of the shortest path is 3.9 pixels. Note
that the flight path of the ball between being hit by the near

Figure 7. All candidates in a short play shot
plotted in row-column-time 3D space. Blue
circles: false positives. Red circles: true pos-
itives. The data association problem is then
equivalent to recovering the colour informa-
tion in this figure, assuming it is lost. The
average number of candidates in this shot is
6.3/field.

player and bouncing in the far side of the court is broken
into 3 trajectories in the shortest path (node 5 to node 7).
This is because, in the presence of air resistance and spin of
the ball, constant acceleration is an approximation of tennis
ball dynamics. As a result, the model optimisation loop ter-
minates before it exploits the whole flight path, according
to Eq. (10). In Fig. 8 and Fig. 9, a trajectory Ti is shown as
estimates given by Mi between kmin,i and kmax,i.

According to Eq. (12) and Eq. (13), the shortest path
found is guaranteed to be non-conflicting: at any time k,
there is at most one candidate in the support sets of the
shortest path. The data association problem is thus solved.

Shown in Fig. 10 and Fig. 11 is the proposed algorithm
applied to a long tennis sequence. This play shot con-
tains 832 fields, and the average number of candidates is
15.8/field. In Fig. 12, final tracking results (after interpo-
lation and event detection) of both sequences are superim-
posed on mosaic images.

4 Detecting the Model Switching Points

The points at which the motion model switches may be
significant in some applications. For example, in tennis ball
tracking, these points are key events that can be used to de-
scribe how a tennis game evolves, i.e., hit, bounce, etc. By
detecting these key events, we can then automatically anno-
tate a tennis game. Furthermore, it is only when the model
switching points are detected that interpolation of missing

(a) (b)

Figure 8. Trajectories generated in all inter-
vals. Clutter-originated trajectories are to be
filtered out by Dijkstra’s algorithm. (a) Pro-
jection on x-y plane. (b) 3D view.

object positions becomes possible. For completeness we
briefly introduce how the model switching points are de-
tected; a more detailed description of the underlying theory
can be found in [6].

We use the algorithm of generalised edge-preserving sig-
nal smoothing proposed in [6]. This algorithm is a partic-
ular case of finite element analysis for elastic rods under
distributed forces, where the stiffness matrix is block tridi-
agonal. In this analogy the role of the elastic rod is played
by the ball trajectory unfolded in the time domain, i.e., the
position of each finite element of the rod corresponds to
the ball position in each frame. Following the mechani-
cal analogy, a constant acceleration model is incorporated
in the form of rod elasticity. Each pair of neighbouring
rod elements is joined by a spring which forces them to
take states according to the model. The energy accumu-
lated by each pair is expressed in a so-called edge func-
tion. Ball observations produce a distributed force on the
rod pulling it towards them. Energy accumulated in each
spring is expressed in a so-called node function. The to-
tal energy accumulated in the mechanical system is the sum
of all node functions and edge functions. The principle of
model switching point detection relies on the detection of
pair of the neighbouring trajectory elements which, if frac-
tured, reduces the total energy most. After incorporating
one fracture into the model, the algorithm locates the next
fracture. The procedure stops when the drop in the total
energy become less than a threshold. Once model switch-
ing points are detected, object positions are interpolated in
frames where the object is not detected.

5 Experiments

Experiments were carried out on video sequences from
the 2003 Australian Open tennis tournament women’s fi-
nal match. The sequences were recorded using a single in-
terlaced stationary camera with pan, tilt, and zoom (PTZ).
Frames were first de-interlaced into fields. Homographies

(a) (b)

(c) (d)

Figure 9. Shortest path given by Dijkstra’s al-
gorithm. The nodes in the shortest path are
numbered in time order, and adjacent nodes
are plotted alternatively in blue and red. (a)
Projection on x-y plane. (b) Projection on t-y
plane. (c) Projection on t-x plane. (d) 3D view.

between fields were calculated and used to compensate
global motion (PTZ). Foreground moving objects were ex-
tracted by differencing temporally neighbouring fields and
thresholding the difference. A simple filter was used to keep
only foreground blobs with appropriate size. These blobs
were then used as tennis ball candidates for the proposed
algorithm. Since the sequences had relatively low quality,
and only a simple blob classifier was used, the average num-
ber of detected ball candidates in each field was m̄ = 11.6.
Among these candidates were tennis balls held in ball boys’
hands and moving as the ball boys waved their arms; wrist-
bands the players wore and moving as the players struck the
ball; etc. These smoothly moving false candidates posed a
major challenge to the tracker.

We used the 25 longest sequences in the match for our
experiments. Each sequence was a play shot starting from
a serve. In total the 25 sequences were approximately 5
minutes long. Some ground truth of the experimental data
is shown in Table 1. In Table 1, np is the total number
of fields in play, i.e., from the time the ball used for play
leaves the server’s hand till it is last seen in the sequence.
Our objective is to track this ball during this period of time.
nd is the number of in-play fields where the ball is detected
as a candidate. The detection rate is then defined as rd =
nd/np. rd is less than unity as misdetection can happen
when the ball is occluded by the players or confused with
court lines, or when the ball is blurred into background due

Figure 10. All candidates in a long play shot
plotted in row-column-time 3D space. Blue
circles: false positives. Red circles: true pos-
itives. The average number of candidates in
this shot is 15.8/field.

to its very high velocity.

in play detected det. rate det. cand. per
fields (np) fields (nd) (rd) field (m̄)

13099 12143 92.7% 11.6

Table 1: Some ground truth of the experimental data

PDA [1] and RDA [5] were also implemented for com-
parison with the proposed algorithm. The performance of
the algorithms, measured by distribution of tracking preci-
sion, is shown in Fig. 13. To calculate the distributions, the
ground truth of the tennis ball positions in all in-play fields
was manually labelled. Tracking results were then com-
pared against the ground truth. The tracking precision was
defined as the Euclidean distance between the ground truth
and the tracked (detected or interpolated) ball position.

In Fig. 13, the performance of PDA is not shown. Due
to the existence of abrupt motion change, PDA lost track
in most sequences. This happened mostly when the near
player hit the ball: in the image plane, the motion change of
the ball was more drastic when the ball was hit by the near
player than by the far player. The loss of track could not be
recovered since no reinitialisation mechanism was used.

In our implementation of RDA, the number of trials, K,
was chosen so that the probability of finding a set that con-
sisted entirely of true positives, P , was greater than a thresh-
old P0. It has been shown [3] that

K ≥ log(1− P0)
log(1− εs)

(14)

(a) (b)

Figure 11. The proposed algorithm applied
to the long play shot shown in Fig. 10. (a):
Trajectories generated in all intervals. (b):
Shortest path given by Dijkstra’s algorithm.

(a) (b)

Figure 12. Tracking results superimposed on
mosaic images. Yellow circles: detected ten-
nis ball positions. White crosses: interpo-
lated tennis ball positions. Red squares: de-
tected key events. (a) corresponds to Fig. 7,
Fig. 8 and Fig. 9. (b) corresponds to Fig. 10
and Fig. 11.

where ε is the ratio of true positive, and s is the size of
each sample set. In our experiment, P0 was set to 0.99.
According to Eq. (14), at least 9021 trials were needed. The
interval size of RDA was set to 15 (nA = nB = 7), as
suggested in [5].

It can be seen in Fig. 13 that the proposed algorithm out-
performs RDA. Note that in RDA, even if the 3 samples
used for model fitting were all true positives, when they
were temporally close to each other, or when there was a
model switching point in between them, the estimate given
by the fitted model could still be poor. It was also noticed in
the experiments that the two algorithms had different failure
modes. In RDA, poor estimates tended to happen indepen-
dently of each other. This could have disastrous effect on
event detection, since almost each time a poor estimate was
made, a false event was produced. In the proposed algo-
rithm, on the other hand, object motion was guaranteed to
be smooth inside each trajectory. When a clutter-originated
trajectory was wrongly picked up as a node in the short-
est path, a sequence of poor estimates was produced. As
a result, poor estimates showed a temporally clustered pat-
tern, and had a smaller impact on event detection. In fact,

Figure 13. Distribution of Tracking Precision.

in the proposed algorithm, 5 clutter-originated nodes in 3
sequences were responsible for most of the poor estimates.

The proposed algorithm also had the advantage of being
very efficient. At each time step, on average m̄ = 11.6 can-
didates were evaluated. On average there were 1.03 seed
triplets containing each candidate, and it took 3.3 iterations
for model optimisation to converge. The effective number
of models evaluated was then K ′ = 11.6 ∗ 1.03 ∗ 3.3 ≈ 39.
This was much smaller than the number of models evaluated
in RDA (K > 9021). The estimation of mixture parameters
of the likelihood function in RDA was also time consum-
ing. On average, the processing speed of RDA was approx-
imately 2 fields/second, as opposed to 40 fields/second for
the proposed algorithm. Time was measured on a Pentium
4 2.8G computer running Linux, and overhead of disk I/O
was included. Parameters used in the experiments were:
N = 15, dth = 3, kth = 15.

6 Conclusion

In this paper, we have proposed a data association al-
gorithm for single object tracking in clutter. Conventional
object-to-track data association is an NP-hard combinato-
rial optimisation problem. The presence of abrupt model
switchings makes the problem even more difficult. We
tackle the difficulties by a layered data association scheme.
At the object level, trajectories are “grown” from sets of ob-
ject candidates (seed triplets) that have high probabilities of
containing only true positives, the otherwise combinatorial
complexity is significantly reduced. Dijkstra’s shortest path
algorithm is then used to perform data association at the tra-
jectory level. The algorithm is applied to low-quality tennis
video sequences to track a tennis ball. Experiments show
that the algorithm is robust to abrupt model switchings, and

performs well in heavily cluttered environments.
In the future, we would like to extend the algorithm to

handle multiple plays in one shot. Due to the graph-based
nature of the algorithm, this extension can be done by apply-
ing a graph-parsing step. Currently for trajectory-level data
association we minimise a total distance using a shortest
path algorithm. We would like to try to cast the trajectory-
to-trajectory association problem into a maximum likeli-
hood (ML) or maximum a posteriori (MAP) framework. We
would also like to apply the algorithm to more applications,
e.g., other ball games.

Acknowledgements

This work has been supported by the IST-507752 MUS-
CLE Network of Excellence.

References

[1] Y. Bar-Shalom and T. E. Fortmanm. Tracking and Data As-
sociation. Academic Press INC., 1988.

[2] O. Chum, J. Matas, and J. Kittler. Locally optimized ransac.
In DAGM-Symposium, pages 236–243, 2003.

[3] O. Chum, J. Matas, and S. Obdrzalek. Enhancing ransac
by generalized model optimization. In Asian Conference on
Computer Vision, volume 2, pages 812–817, 2004.

[4] E. W. Dijkstra. A note on two problems in connexion with
graphs. Numerische Mathematik, 1:269–271, 1959.

[5] V. Lepetit, A. Shahrokni, and P. Fua. Robust data associ-
ation for online applications. In IEEE International Con-
ference on Computer Vision and Pattern Recognition, vol-
ume 1, pages 281–288, 2003.

[6] V. Mottl, A. Kostin, and I. Muchnik. Generalized edge-
preserving smoothing for signal analysis. In IEEE Workshop
on Nonlinear Signal and Image Analysis, 1997.

[7] D. R. Myatt, P. H. S. Torr, S. J. Nasuto, J. M. Bishop, and
R. Craddock. Napsac: High noise, high dimensional robust
estimation - it’s in the bag. In British Machine Vision Con-
ference, pages 458–467, 2002.

[8] T. Quach and M. Farooq. Maximum likelihood track for-
mation with the viterbi algorithm. In IEEE Conference on
Dedsion and Control, pages 271–276, 1994.

[9] D. Reid. An algorithm for tracking multiple targets. IEEE
Transactions on Automatic Control, 24(6):843–854, 1979.

[10] P. Smith and G. Buechler. A branching algorithm for dis-
criminating and tracking multiple objects. IEEE Transac-
tions on Automatic Control, pages 101–104, 1975.

[11] R. Streit and T. Luginbuhl. Probabilistic multi-hypothesis
tracking. Technical Report, 1995.

[12] B. J. Tordoff and D. W. Murray. Guided-mlesac: Faster im-
age transform estimation by using matching priors. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
27(10):1523–1535, 2005.

[13] P. H. S. Torr and A. Zisserman. Mlesac: A new robust esti-
mator with application to estimating image geometry. Com-
puter Vision and Image Understanding, 78:138–156, 2000.

