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Abstract

Activity recognition is an important issue in building in-
telligent monitoring systems. We address the recognition of
multilevel activities in this paper via a conditional Markov
random field (MRF), known as the dynamic conditional ran-
dom field (DCRF). Parameter estimation in general MRFs
using maximum likelihood is known to be computationally
challenging (except for extreme cases), and thus we pro-
pose an efficient boosting-based algorithm AdaBoost.MRF
for this task. Distinct from most existing work, our algo-
rithm can handle hidden variables (missing labels) and is
particularly attractive for smarthouse domains where reli-
able labels are often sparsely observed. Furthermore, our
method works exclusively on trees and thus is guaranteed to
converge. We apply the AdaBoost.MRF algorithm to a home
video surveillance application and demonstrate its efficacy.

1. Introduction

Recently, there has been a growing research interest in
developing probabilistic models to address the problem of
automated recognition of activities of daily livings (ADLs)
- an important issue in building intelligent monitoring sys-
tems. Most existing approaches, however, have taken a gen-
erative approach, in particular, the hidden Markov model
and its variants. Notwithstanding initial success, genera-
tive models rely on joint probability models and thus suffer
from several shortcomings, in particular failing to reflect the
discriminative nature of data. In this paper, we advocate a

∗Bui is supported by the Defense Advanced Research Projects Agency
(DARPA), through the Department of Interior, NBC, Acquisition Services
Division, under Contract No. NBCHD030010.

discriminative approach for activity modeling and recogni-
tion. Observing that activities are naturally acted out in a
hierarchical manner, correlated temporally and across mul-
tilevel of semantics, we propose the use of Dynamic Con-
ditional Random Fields (DCRFs) [14], a conditional ver-
sion of the Markov random fields (MRFs), to model the
activities where temporal regularities at different levels of
abstraction can be jointly represented. We then introduce
AdaBoosted Markov Random Forests (AdaBoost.MRF), a
novel boosting-based algorithm for parameter estimation
of the general MRFs. Given training data, we train the
DCRFs and later use them to annotate and segment unseen
observation sequences. Distinct from most existing work
on discriminative models including the work of [8, 14],
our AdaBoost.MRF can also handle hidden variables (miss-
ing labels) - an important enhancement, especially in a
smarthome environments when reliable labels are sparely
observed.

Conditional Markov random fields [7, 8, 13] are power-
ful modeling tools in computer vision since they can incor-
porate arbitrary, overlapping and long-range features. Un-
fortunately, maximum likelihood estimation (MLE) of pa-
rameters in the general MRFs is known to be intractable,
except for simple tree structures, and some approximations
have been introduced. One of the earliest and most popular
methods is pseudo-likelihood [2], which is very efficient.
The method, nevertheless, cannot handle missing state vari-
ables, which often happen in real situations. Sampling-
based methods such as MCMC are theoretically attractive,
but they are often impractical for extremely slow conver-
gence. The state-of-the-art includes message passing algo-
rithms such as Pearl’s belief propagation (BP) and the more
recently introduced method by Wainwright, Jaakkola and
Willsky (WJW) [16], which are efficient but their conver-
gence is still an unsolved problem. In addition, the WJW
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inference has not been applied for learning in conditional
MRFs.

In this paper, we tackle the parameter estimation prob-
lem using a boosting-based algorithm. Our proposed Ad-
aBoost.MRF is based on a ranking-based multiclass boost-
ing algorithm called AdaBoost.MR [12]. At each round,
the AdaBoost.MRF selects the best trained spanning tree of
the network based on the performance on weighted error.
The data is adaptively re-weighted to address more hard-to-
classify instances. Each selected spanning tree is weighted
and unioned together to recover the original network. Fi-
nally, the parameters of the network are the convex com-
bination of all selected tree parameters. Since our method
works exclusively on trees, inference is very efficient and
surely converged. We show that under mild assumptions,
the AdaBoost.MRF is guaranteed to reach the unique opti-
mum. Furthermore, since the AdaBoost.MRF considers all
the variables in the MRFs, the hidden variables problem can
also be effectively handled.

We apply the AdaBoost.MRF to learn the parameters of
the DCRFs on the activity data obtained in a home video
monitoring scenario. We compare our AdaBoost.MRF with
the maximum likelihood method, which used BP and WJW
as inference engines. To evaluate the effectiveness of the
discriminative DCRFs against generative methods, we im-
plement a variant of the layered hidden Markov models
(LHMMs) [11], which has previously been applied for ac-
tivity recognition. Differing from the original LHMMs, our
variant can handle partially observed state variables to make
it compatible with the DCRFs considered in this paper. We
also show that the multilevel DCRFs perform better than the
flat-CRFs as more information is encoded.

The paper will continue with a related background in
Section 2. Section 3 introduces the AdaBoost.MRF algo-
rithm and discusses its convergence. Section 4 shows how
we model and learn multilevel activities with MRFs, fol-
lowed by Section 5 to present the experimental results. Fi-
nally, Section 6 concludes the paper with future direction.

2. Related Work

Our work is based on conditional MRFs, also known as
conditional random fields (CRFs) [7, 8, 13]. A Markov
random field (Figure 1) is an undirected graph G =
(V, E) which represents a random joint state variable y =
(y1, y2, ..., yn), where each ys corresponds to a node s in
the network. The CRFs specify the conditional distribution
of the state variable given the observation x

p(y|x) = exp(〈λ, Ψ(x, y)〉 − Φ(x)) (1)

where λ = {λk} is parameter vector, Ψ(x, y) =∑
c ψ(x, yc) for ψ(x, yc) is the local potential or feature,

and Φ(x) is the log-partition function.

Inference in general MRFs is known to be intractable
except for trees with limited tree-widths. For other struc-
tures, approximate methods such as mean fields and be-
lief propagation (BP) must be used. A more recently pro-
posed method by Wainwright, Jaakkola and Willsky (WJW)
[16] also offers an interesting alternative to compute the
so-called pseudo-marginals based on minimising the upper
bound of the log-partition function. Like BP, the WJW is
an efficient message passing scheme. However, the BP is
not guaranteed to converge and there has not been any for-
mal proof nor extensive empirical evaluation of the WJW.
Our AdaBoost.MRF, in contrast, works on tree inference
and thus is guaranteed to converge with known analytical
complexity. Besides, to the best of our knowledge, we are
the first to perform learning using WJW in the conditional
MRFs setting.

Work using MRFs to model activities is still limited (e.g.
see [13]) and most applications employ directed models,
such as hidden Markov models (HMMs). However, HMMs
are flat models that are not capable of modeling multi-
level activities directly. Recent extensions to HMMs to deal
with such complex patterns include the abstract HMMs [3],
the hierarchical HMMs [10], and the layered HMMs [11].
However, these attempts appear to ignore the case of par-
tially observed states which are considered in this paper.

Learning in Markov random fields is mainly based on
the maximum likelihood (ML) principle. Boosting [12] can
provide an alternative for the task. It is originally proposed
as a meta-learning method to combine weak classifiers into
a strong one by iteratively addressing more hard-to-classify
data instances. Recently, it has been interpreted in terms
of functional gradient [9], a framework we adopt in this pa-
per. Note that the AdaBoost.MR proposed in [12] addresses
only simple classification, where the data of interest does
not have any structure. For structured data such as CRFs,
boosting has been applied in [15], but the algorithm relies
on the BP for approximate inference and does not address
the missing variables. Similarly, work in [4] is limited to
tractable CRFs.

3. AdaBoost.MRF

In this section we describe AdaBoost.MRF, the boosting
algorithm for parameter estimation of general Markov ran-
dom fields. We consider the general case where the state
label y may have a hidden component h and a visible com-
ponent v.

3.1. Boosted Markov Random Forests

Given a data point x, the task of classification is often to
find the best label y∗ that maximises some function F (x, y)

y∗ = arg max
y

F (x, y) (2)
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Figure 1. An example of Markov network (left-
most) and some spanning trees (right).

where F (x, y) is known as the strong learner in the boost-
ing literature. As in the usual boosting setting, we formu-
late an objective function, which in this paper is based on
the exponential loss of AdaBoost.MR [12]. Given train-
ing data pairs (xi, yi), i = 1, .., D, the loss is Lexp =∑

i

∑
y exp(F (xi, y) − F (xi, yi)). Since for an instance

i, we are given only the visible part vi of yi, we estimate
the incomplete loss

Linco =
X

i

X
v

exp(F (xi, v) − F (xi, vi)) (3)

The main difference from most of the previous boosting
work is that the number of classes in our cases can be ex-
tremely huge, e.g. |Y | = Sn where S is the state size for
each node in the network.

In each round t of boosting, the strong learner Ft(x, v) is
updated by adding a ‘weak-learner’ ft(x, v) to the previous
Ft−1(x, v) as Ft(x, v) = Ft−1(x, v) + αtft(x, v), where
αt is the weight of each weak learner in the ensemble. The
weak learner and its weight are chosen to minimise the loss
in (3), i.e.

(ft, αt) = arg min
f,α

Linco (4)

Since we are interested in estimating the distribution
p(v|x), we may choose the weak learner as f(x, v) =
log p(v|x). However, if we use the distribution defined over
the general Markov networks, the computation of the weak
learner itself is intractable. To address this issue, we pro-
pose the use of weak learners which in this case we choose
to be spanning trees as weak approximations to the whole
network. Thus, each learner is “weak” because it is a crude
approximation of the true model with moderate complexity

ft(x, v) = log pt(v|x) (5)

This choice also allows incorporation of the hidden infor-
mation since ft(x, v) = log pt(v|x) = log

∑
h pt(v, h|x).

The strong learner F is a collection of trees, and we call
our boosting method AdaBoost.MRF (AdaBoosted Markov
Random Forests). Figure 1 shows a simple example of a
four-node network and some spanning trees.

3.2. Loss bound using Hölder’s inequality

In this subsection, we address further the intractability of
the exponential loss in (3) by a tractable upper bound using

tree likelihood. We have

Linco =
X
i,v

exp{
tX

j=1

αj(log pj(v|xi) − log pj(v
i|xi))}

=
X

i

P
v

Q
j pj(v|xi)αjQ

j pj(vi|xi)αj
(6)

Although the evaluation of each weak learner is tractable,
the sum over all visible variables in the numerator is un-
fortunately intractable, except for a special case that all se-
lected spanning trees are the same.

Fortunately, there exists a technique that helps to re-
move the summation in the numerator. The idea is to ap-
ply the Hölder’s inequality [5, Theorem 11] to the numera-
tor

∑
v

∏
j pj(v|xi)αj ≤ ∏

j(
∑

v pj(v|xi)αjrj )1/rj , where∑
j 1/rj = 1 and rj > 0. If we can ensure that αj > 0 and

αjrj = 1 ∀j, or
∑

j αj = 1, we obtain

Linco ≤
X

i

Q
j(

P
v pj(v|xi))αjQ

j pj(vi|xi)αj
=

X
i

1Q
j pj(vi|xi)αj

=
X

i

exp(−
X

j

αj log pj(v
i|xi)) (7)

=
X

i

exp(−Ft(x
i, vi)) = LH (8)

since
∑

v pj(v|xi) = 1, ∀i, j. It can be seen that the new
bound is tractable to evaluate, and is also convex so that a
global minimum exists. We use the new loss LH for learn-
ing. The domain of LH is therefore a linear space of func-
tions [9], which are {ft(xi, v) = log pt(v|xi)} in our case.

The requirement
∑

j αj = 1 can be met by defining the
following ensemble

Ft(x, v) = (1 − αt)Ft−1(x, v) + αtft(x, v) (9)

= Ft−1(x, v) + αtht(x, v) where (10)

ht(x, v) = ft(x, v) − Ft−1(x, v) (11)

Each previous weak learner’s weight is scaled down by a
factor of 1 − αt as α′

j ← αj(1 − αt), for j = 1, ..., t − 1,

so that
∑t−1

j=1 α′
j + αt =

∑t−1
j=1 αj(1−αt) + αt = 1, since

∑t−1
j=1 αj = 1.

3.3. Weak learners, convergence and com-
plexity

We now show how to carry out the stepwise optimisation
in (4) with the incomplete loss replaced by the upper bound
LH(F ) in (8).

The loss LH(F ) as a function of F (x, v) can be min-
imised by moving in the gradient descent direction

∇LH(xi, v) =

j − exp(−Ft−1(x
i, vi)) if v = vi

0 otherwise
(12)
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However, as the functional gradient∇LH and and the func-
tional direction h in (10) may not belong to the same func-
tion space, direct optimisation may not apply. In [9] the au-
thors propose to find the best ht pointing to the decreasing
direction of LH , i.e.

ht = arg min
h

〈∇LH , h〉 < 0 (13)

The step size αt is determined using a line search or by
setting it to a small constant ∈ (0, 1).

Let wi,t−1 ∝ exp(−Ft−1(xi, vi)) be data weights, i.e.∑
i wi,t−1 = 1. Substituting (12) into (13), we have

ht = arg min
h

∑

i

−wi,t−1h(xi, vi) (14)

As h(xi, vi) = f(xi, vi) − Ft−1(xi, vi), minimising
with respect to h(xi, vi) and f(xi, vi) is equivalent since
Ft−1(xi, vi) is a constant. Recall from (5) that f(xi, vi) =
log pτ (vi|xi; λτ ), this minimisation translates to selecting
the best tree t and its parameters λt as follows1

(t, λt) = arg max
τ,λτ

X
i

wi,t−1 log pτ (vi|xi; λτ ) (15)

Our final result has a satisfying interpretation: the func-
tional gradient descent step tries to solve the maximum re-
weighted log-likelihood problem (15) for each tree, and se-
lect the best tree with the largest re-weighted log-likelihood.
As boosting proceeds, some trees may be more likely to be
selected than others, so the accumulated weights of trees
may be different.

As with the standard boosting [12], the data distribution
is iteratively updated as

wi,t ∝ wi,t−1 exp(−αtht(x
i, vi)) (16)

where ht is the new learner added to the ensemble in (10).
Since αt > 0, the weight increases if ht = ft − Ft−1 <

0. The new interpretation is that for a given data instance
i, if the new weak learner ft is less likely than the average
of previous weak learners Ft−1, the AdaBoost.MRF will in-
crease the weight for that data instance. This is different
from the usual boosting behaviour, where the data weight
increases if the strong learner fails to correctly classify the
instance. The AdaBoost.MRF seems to maximise data like-
lihood rather than to minimise the training error, and this is
particularly desirable for density estimation.

Since LH is convex and twice differentiable, it is known
that and if LH is Lipschitz continuous and the search di-
rection satisfies the condition in (13), our algorithm is guar-
anteed to converge to the global minimum [1, Proposition
1.2.3]. The algorithm terminates when we cannot find any
weak learner h that satisfies the condition in (13).

1With slight abuse of notation, the same t is used for both the boosting
step and the selected tree at that step.

The running time of AdaBoost.MRF scales linearly
in number of trees R, each of which (Section 2) takes
O(2|V |S2) inference time. If we only consider limited
spanning trees, just enough to cover the whole network,
then R can be quite moderate. For example, for a fully con-
nected network, we just need R = |V |, and in a grid-like
network (Figure 3a), R = 2 is enough (Figure 4).

3.4. Combining the parameters

Up to this point, we have successfully estimated the pa-
rameters of individual trees, and thus the strong learner in
the boosting sense, which may be enough for classification
purposes. However, our ultimate goal is to (approximately)
estimate the parameters of the original network, which is a
superimposition of individual trees. This subsection argues
for a sensible method for such an approximate estimation.

Recall that F (x, y) =
∑

t αtft(x, y) and ft(x, y) =
log pt(y|x), and F (x, y) =

∑
t αt log pt(y|x). Assume that

the tree distribution also belongs to the exponential family
in (1) with different parameters λt and the same potential
function Ψ(x, y). We require that the parts of the parame-
ters λt, which correspond to cliques outside the trees to be
zero. Thus

F (x, y) = 〈
X

t

αtλt, Ψ(x, y)〉 −
X

t

αtΦt(x) (17)

Thus, the label y∗ returned by the strong learner in (2) be-
comes y∗ = argmax〈∑t αtλt, Ψ(x, y)〉. Obviously, y∗
should also be the MAP assignment of the model defined
by yMAP = argmaxy p(y|x) = argmax〈λ, Ψ(x, y)〉, i.e.
y∗ = yMAP . One natural way is to set λ as the ensemble
parameters λ =

∑
t αtλt so that

p(y|x) ∝ exp 〈
X

t

αtλt, Ψ(x, y)〉 ∝
Y

t

pt(y|x)αt (18)

p(y|x) =

Q
t pt(y|x)αtP

y

Q
t pt(y|x)αt

(19)

Thus, the combined model is a Logarithmic Opinion Pool
(LogOP) [6], a special case of the more general ensemble
framework. Each model pt(y|x) is an expert to provide
an estimate of the true distribution q(y|x). The aggrega-
tor p(y|x) is indeed a minimiser of the weighted sum of
Kullback-Leibler divergences between the q(y|x) and each
pt(y|x) [6]

p(y|x) = arg min
q(y|x)

X
t

αt

X
y

q(y|x) log
q(y|x)

pt(y|x)
(20)

The work of [6] shows that p(y|x) is closer to the true
distribution q(y|x) than the average of all individual experts
pt(y|x). Our boosting algorithm can be seen as an estimator
of the weighting factors {αt}.

The AdaBoost.MRF is summarised in Figure 2.
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Input: i = 1, ..., D data pairs, graphs {Gi = (Vi, Ei)}
Output: parameter vector λ

Begin
Select spanning trees for each data instance
Initialise {wi,0 = 1

D
}, and α1 = 1

For each boosting round t = 1, 2, . . .

Train all trees given weighted data {wi}
/*Select the best tree distribution*/
ft = arg maxτ,λτ

P
i wi,t−1 log pτ (vi|xi; λτ )

ht = ft − Ft−1

If
P

i wi,t−1hi,t ≤ 0 Then go to Output
If t > 1 Then select the step size 0 < αt < 1

/*Update the strong learner*/
Ft = (1 − αt)Ft−1 + αtft

/*Scale down the previous learner weights*/
αj ← αj(1 − αt), for j = 1, ..., t − 1

/*Update the data weight*/
wi,t = 1

Wt
wi,t−1 exp(−αthi,t)

End
Output λ =

P
t αtλt

End

Figure 2. AdaBoost.MRF - AdaBoosted
Markov Random Forests.

3.5. AdaBoost.MRF as guided search for
MLE

As we rely on the boosting capacity to boost very weak
learners to a strong one, we do not need to reach the maxi-
mum of the weighted log-likelihood in each round. We can
simply run a few training iterations and take the partial re-
sults as long as the condition in (13) is met. To speedup
the learning, we can initialise the parameters for each weak
learner to the previously learned values. This procedure has
an interesting interpretation for tree-structured networks.
As we do not have to select the best spanning trees any-
more, the algorithm is simply to optimise the re-weighted
log-likelihood in a stage-wise manner. We argue that this
approach can be attractive because more information from
the data distribution can be used to guide the MLE, and it
can create more diverse weak classifiers.

4. MRFs for Multilevel Activities

Our problem of interest is to model human behaviors in
a smart environment at multiple levels of abstraction. Be-
haviours are naturally acted out in a hierarchical structure
and we consider two-level of abstractions in this work using
a two-layer dynamic conditional random field (DCRF) [14].
The bottom level presents primitive or atomic activities such

as go-to-cupboard or at-the-fridge. Higher-order activities
are captured at the higher level such as having-snack or
short-meal. Differing from the original setting of the DCRF
in [14], we allow some missing labels in our model, and thus
we call the model the partially hidden DCRF (ph-DCRF)
(Figure 3). We note that although the two-level DCRF is
considered in this paper, the same construction can be gen-
eralized to model more complex semantics with richer lev-
els of hierarchy and temporal interactions.

y

x

y

x

(a) ph-DCRF (b) Collapsed ph-DCRF

Figure 3. (a): The partially hidden DCRF (ph-
DCRF), and (b): The equivalent chain CRF.
Filled circles and bars are data observations,
empty circles are hidden labels, shaded la-
bels are the visible.

Given the training data, we first learn the parameters
and then use it for annotating and segmenting unseen data.
We now describe and compare some alternatives to the Ad-
aBoost.MRF for parameter learning.

Part of our AdaBoost.MRF (Figure 2) requires parameter
estimation using maximum likelihood (ML) of all trees of
the ph-DCRFs. Another approach is to apply ML directly to
the original network. Recall that y = (v, h), the conditional
incomplete log-likelihood is

L(λ) = log p(v|x) = Φ(v, x) − Φ(x) (21)

The gradient ∂L(λ)
∂λk

follows as

X
c,hc

p(hc|vc, x)ψk(vc, hc, x) −
X
c,yc

p(yc|x)ψk(yc, x) (22)

Thus the computation of the gradient of log-likelihood re-
duces to computing the clique marginals. We assume only
singleton and pairwise cliques, so the marginals can be es-
timated exactly and efficiently for our trees.

For the original ph-DCRF, exact estimation of marginals
can be carried out by collapsing all the states at the cur-
rent time into a mega-state (see Figure 3b) and performing
a forward-backward procedure, which is infeasible for deep
models. Approximate inference using the BP and WJW
[16] methods has the complexity of O(2I|E|S2), where I
is the number of message passing rounds, |E| is the number
of edges in the network, and S is the state size per node.
However, the number of rounds I until convergence if it
does is not known analytically, and there has not been any
theoretical estimate of it yet.
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In our AdaBoost.MRF, inference in the trees takes
O(2|V |S2) time, where |V | is the number of nodes in the
network. Thus, for D data instances, and R trees, the Ad-
aBoost.MRF costs O(4DR|V |S2) in total time for each
gradient evaluation since we need to take both Φ(v, x) and
Φ(x) into account. Similarly, the BP and WJW-based ML
requires O(4DI|E|S2) time. As for fully connected net-
works, |E| = 1

2 |V |(|V | + 1) while for the grid DCRFs,
|E| ≈ 2|V |, if we take only R = |V | trees for the for-
mer case, and R = 2 for the latter case, the total complexity
per gradient evaluation of the BP and WJW-based ML and
the AdaBoost.MRF will be similar up to a constant I . We
summarise the complexities in Table 1.

BP/WJW AdaBoost.MRF
O(4DI|E|S2) O(4DR|V |S2)

Table 1. Complexity per gradient evaluation.

5. Experimental Results

We consider a smart house environment for the el-
derly and apply the AdaBoost.MRF to the problem of
learning and annotation of activities of daily livings
(ADLs). The dataset was collected in our previous work
[10], which captures some daily routines of actions per-
formed in the kitchen and dining room. There are 45
video sequences for training and 45 sequences for test-
ing. The observations are sequences of noisy coordi-
nates of the actor walking in scene acquired using a back-
ground subtraction tracking algorithm. We consider 3
complex activities (states) at the top level: {1} short-
meal, {2} have-snack, {3} normal-meal and 12 primi-
tive activities at the bottom level: {i} Door→Cupboard,
{ii} Cupboard→Fridge, {iii} Fridge→Dining chair, {iv}
Dining chair→Door, {v} Door→TV chair, {vi} TV
chair→Cupboard, {vii} Fridge→TV chair, {viii} TV
chair→Door, {ix} Fridge→Stove, {x} Stove→Dining chair,
{xi} Fridge→Door, {xii} Dining chair→Fridge. Each
complex activity is comprised of some primitive activities,
and states at each level can freely transit to each other but
generally we do not have this knowledge at hand for our
experiment.

For evaluating the aspect of missing labels, we randomly
provide half the labels for each level during training. For
testing, the MAP assignments resulted from Pearl’s loopy
max-product algorithm are compared against the ground-
truth.

5.1. Feature extraction

With the data described above, the input to the DCRFs is
simply sequences of coordinates. At each time slice γ, we
extract a vector of five elements from the observation se-
quence g(x, γ) = (X, Y, uX , uY , s =

√
u2

X + u2
Y ), which

correspond to the (X, Y ) coordinates, the X & Y veloci-
ties, and the speed respectively. To fully specify the model,
we consider three types of feature functions for the poten-
tials of the network: (a) data-association corresponding
to node potentials, (b) temporal-relation corresponding to
state transition potentials at the same level, and (c) cross-
semantic-relation corresponding to parent-child potentials
across different levels.

For the first feature set, we define the data-association
features at the bottom level as

ψl,m,ε(x, y2
γ) := δ[y2

γ = l]gm(x, γ + ε) (23)

where m = 1, ..., 5 is the index of components of g(x, γ),
ε = −s1, ..., 0, ..., s2 is the amount of look-ahead or look-
back, for some positive integers s1, s2, y2

γ = 1, ..., 12 is
the state (at level 2). We choose s1 = s2 = 2 for rea-
sonable computation, so that the current primitive activity
y2

γ is correlated with five surrounding observation features
g(x, γ). At the top level, however, instant information such
as velocities offer limited help since the complex activities
often span long periods. Instead of using the real coordi-
nates (X, Y ) for data association, we quantize them into 24
squares in the room. We also use much larger windows with
s1 = s2 = 20. To avoid computational overhead, we take
ε = −s1,−s1 + 5, ..., s2 − 5, s2.

The second and third feature sets consist of simple indi-
cator functions

ψl1,l2(y
d
γ−1, y

d
γ) := δ[yd

γ−1 = l1]δ[yd
γ = l2] (24)

for the second set, and

ψlpa,lch
(yd−1

γ , yd
γ) := δ[yd−1

γ = lpa]δ[yd
γ = lch] (25)

for the third set, where d = 1, 2 is the depth level.

5.2. Spanning trees for AdaBoost.MRF

The AdaBoost.MRF algorithm described in Figure 2 re-
quires the specification of a set of spanning trees which
will be used as the weak classifiers. Given the grid struc-
ture considered in this experiment, there are many spanning
trees that can be extracted. However, since the nature of
our problem is about temporal regularities where the slice
structure is repeated over time, it is natural to decompose
the network into trees in a such a way that the structural
repetition is maintained. With this hint, there are two most
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Figure 4. (a,b) Two process view of the DCRF
in activity modeling: (a) the complex activity,
and (b) the primitive.

noticeable trees that stand out as shown in Figure 4, which
roughly corresponds the top and bottom chains respectively.

With the same method, the number of trees for dynamic
models which respect the Markov assumption is reduced
drastically. If we impose further restrictions that each state
can only interact with the level right above and right below
it, then the number of trees can be manageable (e.g. see
Figure 5 for another example).

Figure 5. 2-slice structures of spanning trees
for the DCRFs whose 2-slice structure is
given in the left-most graph in Figure 1.

5.3. Segmentation and Annotation results
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Figure 6. Macro-averaged F1 scores at the
bottom layer vs training time.

For comparing with the AdaBoost.MRF for the DCRFs,
we implement ML learning methods based on BP, WJW and

exact inference. We also evaluate the effectiveness of the
DCRFs against the Layered HMMs (LHMMs) [11], where
the output of the bottom HMM is used as the input for the
top HMM. Since, it is difficult to encode rich feature infor-
mation in the LHMMs without producing very large state
space, we limit the LHMMs features to be the discretised
positions and the differences between current position and
the previous and next ones. Our new implementation of
LHMMs differs from the original in [11] for each HMM
has been extended to handle the partially observed states.
To test whether adding more layers can improve the per-
formance of the model, we run a simple Flat-CRF on the
data at the lower level. All learning algorithms are ini-
tialised uniformly. For segmentation purposes, we report
the macro-averaged F1 scores on a per-label basis.

For parameter optimisation of the (re-weighted) log-
likelihood, initially we used the limited memory quasi-
Newton method (L-BFGS) as suggested in the CRF liter-
ature but it seems to be slower and it converges prematurely
to poor solutions for the BP and the exact inference. The
conjugate-gradient (CG) method works better in our exper-
iments. For the Markov forests, we run for only two itera-
tions of CG per boosting round with the initial parameters
from the previously learned ones since we only need to meet
the condition (13). The WJW inference loop is stopped if
the messages have converged at the rate of 10−4 or after 100
rounds. It appears that the final performance of BP is sen-
sitive to the choice of convergence rates, while it is fairly
stable for the WJW. For example, the F1 scores at the bot-
tom level for BP are 0.84, 0.87 and 0.82 corresponding to
the rates of 10−3, 10−4 and 10−5, respectively. Below we
report only the case of 10−4, which appears to be the best
both in terms of accuracy and speed. Learning algorithms
for the DCRFs are stopped after 100 iterations if they have
not converged at the rate of 10−5.

The performance of the AdaBoost.MRF and its alter-
natives is reported in Figure 6 and Table 2, respectively.
Overall, after enough training time, the AdaBoost.MRF per-
forms comparably with the ML methods based on BP and
WJW. The exact inference ML method gives slightly bet-
ter result as expected but at the cost of much slower train-
ing time. However, it should be stressed that inference in
our AdaBoost.MRF always converges, while it is not guar-
anteed in the BP and WJW and it is generally intractable
in the exact method. The complexity per evaluation of
the log-likelihood gradient is known and fixed for the Ad-
aBoost.MRF, while for the BP and the WJW, it is generally
dependent on the convergence criteria and how much the
distribution is different from uniform. (see Table 1).

Table 2 also shows that the choice of discriminative
model over the generative model in our activity recogni-
tion problem is justified. The LHMMs are worse than both
the flat-CRFs at the bottom layer and the DCRFs at the top
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Table 2. Macro-averaged F1 scores for top
and bottom layers.

Algorithm Top-layer Bottom-layer

AdaBoost.MRF 0.98 0.87
BP 0.99 0.87
WJW 0.98 0.87
Exact 0.98 0.88
LHMM 0.88 0.67
Flat-CRFs - 0.78

layer. Furthermore, the DCRFs variants are more consis-
tently accurate than the flat CRFs. The result is consistent
with that in [14]. This can be explained by the fact that more
information is encoded in the DCRFs.

Figure 7 shows the AdaBoost.MRF segmentation details
of 22 randomly selected sequences which are concatenated
together.
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Figure 7. The segmentation compared with
the ground-truth at the bottom level.

6. Conclusion

We have presented a novel method for using boosting in
parameter estimation of the general Markov networks with
hidden variables. The algorithm AdaBoost.MRF offers an
efficient way to tackle the intractability of the maximum
likelihood method by breaking the model into tractable trees
and combining them to recover the original networks. We
apply the algorithm to the new problem of multilevel ac-
tivity recognition and segmentation using the recently pro-
posed DCRFs.

We should stress that, however, the AdaBoost.MRF is
not limited to the DCRFs but can be applied to arbitrary

CRFs. In addition, not only it can discriminatively approx-
imately estimate the conditional distributions p(y|x), but
also it can generatively learn the joint distributions p(x, y).

Furthermore, in our experiments, it appears that the Ad-
aBoost.MRF exhibits a structure learning behaviour since it
may selectively pick some trees more frequently than oth-
ers, giving higher weights to those trees. An important issue
we have left unanswered is that how to automatically select
the optimal tree at each round without knowing the set of
trees in advance. We plan to investigate these aspects and
the use of AdaBoost.MRF in wider range of applications.
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